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Abstract. Let S = K[x1, . . . , xn], let A, B be finitely generated graded S-modules, and let m =
(x1, . . . , xn) ⊂ S. We give bounds for the regularity of the local cohomology of Tork (A, B) in terms
of the graded Betti numbers of A and B, under the assumption that dim Tor1 (A, B) ≤ 1. We apply
the results to syzygies, Gröbner bases, products and powers of ideals, and to the relationship of
the Rees and symmetric algebras. For example we show that any homogeneous linearly presented
m-primary ideal has some power equal to a power of m; and if the first �(n − 1)/2� steps of the
resolution of I are linear, then I2 is a power of m.

1. Introduction. Let S = K[x1, . . . , xn] and let A, B be finitely generated
graded S-modules. If T is a finitely generated graded S-module we write reg T
for the Castelnuovo-Mumford regularity of T , and we extend this to Artinian
graded modules T by setting reg T = max{i | Ti �= 0}. The main technical results
of this paper, proved in Section 2, give upper bounds on the regularity of the
local cohomology modules H

j
m ( Tork (A, B)) under the hypothesis that Tor1 (A, B)

has Krull dimension ≤ 1. A special case says that if A⊗B has finite length then,
for any k,

reg Tork (A, B) + n ≤ reg Torp (A, K) + reg Torq (B, K)

for any p, q with

p + q = n + k, p ≤ n, q ≤ n.

In this formula reg Torp (A, K) is just the maximal degree of a homogeneous
generator of the minimal p-th syzygies of A. Such terms occur so often in this
paper that we will adopt a special notation, and write

tp(A) := reg Torp (A, K).

The rest of the paper is devoted to applications of the bounds proven in
Section 2. By way of introduction, we will now sample the less technical con-
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sequences. Almost every result stated below occurs with more generality in the
body of the paper.

We begin, in Section 3, with the regularity of the Tor modules. We show that
if A and B are finitely generated graded S-modules such that dim Tor1 (A, B) ≤ 1,
then

reg Tork (A, B) ≤ reg A + reg B + k,

which generalizes results of Geramita-Gimigliano-Pitteloud [1995], Chandler
[1997], Sidman [2002], Conca-Herzog [2003], and Caviglia [2003]. Several of
these results rely on an argument due to Lazarsfeld. For a geometric consequence,
let X, Y ⊂ Pn−1 be projective schemes. It is elementary that, if I and J are their
homogeneous ideals, then the ideal of forms vanishing on X ∩ Y is equal to I + J
in degree d 	 0. It follows from our results that if dim (X∩Y) = 0 then it suffices
to take

d > tp(S/I) + tq(S/J)− n

for any p, q such that p ≤ codim X, q ≤ codim Y , and p + q = n.
In Section 4 we deduce relations between graded Betti numbers. For example,

we show that if A = B = S/I is a cyclic module of dimension ≤ 1, then the
function p �→ tp(S/I) satisfies the weak convexity condition

tn(S/I) ≤ tp(S/I) + tn−p(S/I)

for 0 ≤ p ≤ n.
We also compare the graded Betti numbers of a module and an ideal that

annihilates it. We prove that if S/I is Cohen-Macaulay of codimension c, and I
contains a regular sequence of elements of degrees d1 ≤ · · · ≤ dq, then

tc(S/I) ≤ tc−q(S/I) + d1 + · · · + dq.

If I is generated in degrees ≤ d, then we can take all the di = d, and we see that

tc(S/I)− tc−q(S/I) ≤ qd.

In Section 5 we study the relationship between the graded Betti numbers of
an ideal I and its initial ideal in reverse lexicographic order. For example, suppose
that I ⊂ S is a homogeneous m-primary ideal. Setting m = tp(S/I), we show that
the initial ideal of I in reverse lexicographic order contains (x1, . . . , xp)m−p+1. If
the minimal free resolution of I is linear for q steps, I is generated in degree d,
and L is any ideal generated by n−q−1 independent linear forms, then we show
that

md ⊂ I + L.



THE REGULARITY OF TOR AND GRADED BETTI NUMBERS 3

In other words, reg (I + L) ≤ d.
In Section 6 we explore the meaning of this last condition by characterizing

the ideals I generated by quadrics such that m2 ⊂ I+L for every ideal L generated
by n− q− 1 independent linear forms.

In Section 7 we study powers of linearly presented ideals. The following
conjecture sparked this entire paper:

CONJECTURE 1.1 (Eisenbud and Ulrich). If I ⊂ S is a linearly presented m-
primary ideal generated in degree d, then In−1 = md(n−1).

We prove this conjecture when n = 3, and, in Section 8, for the case of
monomial ideals. In general we can prove an asymptotic statement:

THEOREM 1.2. If I is a linearly presented m-primary ideal generated in degree
d, then It = mdt for all t 	 0.

This theorem relies on our specialization results in Section 5.
The following theorem proves Conjecture 1.1 in the case n = 3, and gives

more precise information than Theorem 1.2. It is perhaps the most surprising
result of this paper.

THEOREM 1.3. Suppose I and J are homogeneous ideals in S of dimension≤ 1,
generated in degree d. If the resolutions of I and J are linear for �(n− 1)/2� steps
(for instance if I and J have linear presentation and n ≤ 3), then IJ has linear
resolution. In particular, if I and J are m-primary then IJ = m2d.

Here the last statement follows from the previous one because the powers of
the maximal ideal are the only m-primary ideals with linear resolutions. Based
on this evidence, we extend Conjecture 1.1 to:

CONJECTURE 1.4. If I is an m-primary ideal, and the resolution of I is linear
for q steps, then It is equal to a power of m for all t ≥ (n− 1)/q.

A natural generalization of Conjecture 1.1 and Theorem 1.3 would be to say
that if I is a linearly presented ideal of small dimension whose free resolution
begins with q linear steps, then the t-th power of I has a resolution that begins
with tq linear steps. This is false, even for q = 1. In fact in Section 7 we give
an example, Example 7.10, of an m-primary ideal I in 8 variables with linear
presentation whose square is not even linearly presented. Sturmfels [2000] (see
also Conca [2003]) previously gave examples of this phenomenon, but not for
m-primary ideals.

The torsion in I ⊗ It is Tor2 (S/I, S/It). In Section 9 we use this relationship
to study the torsion in the symmetric algebra Sym (I). We were motivated by
the following conjecture of Eisenbud and Ulrich for (not necessarily m-primary)
ideals I ⊂ S with linear resolution:
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CONJECTURE 1.5. Assume that I has linear free resolution and is generated in
degree d. If I is of linear type on the punctured spectrum (that is, the torsion of
Sym (I) is supported only at m) then for every t the torsion of Symt (I) is concen-
trated in degree dt; equivalently, the symmetric algebra of I is a subalgebra of the
symmetric algebra of md.

We are able to show, for example, that if I is an m-primary ideal generated in
degree d, and has a free resolution that is linear for �n/2� steps, then, for every
t, the torsion in Symt (I) is concentrated in degree dt. (Related ideas show that
∧tI is a vector space concentrated in degree dt.) We show in Example 9.3 that,
at least for n = 3, the bound �n/2� is sharp.

In Section 10 we explore a consequence for elimination theory, a method of
finding the defining ideal of the image of a map αV : Pn−1 → PN−1 given by
an N-dimensional vector space V ⊂ Sd of forms of degree d. We assume that
the morphism αV is everywhere defined, which means that V generates an ideal
I = SV that is m-primary. Let M = dimK Tor1 (I, K) be the number of relations
required for I, and let φ be a N × M matrix of linear forms that presents I.
The matrix φ can be represented as an n× N ×M tensor over K, and thus also
represents an n × M matrix of linear forms ψ over the polynomial ring in N
variables representing PN−1. In this setting, we show that if the free resolution
of the ideal I generated by V begins with at least �n/2� linear steps, then the
annihilator of cokerψ is the ideal of forms in PN−1 that vanish on αV ( Pn−1).

If I is an ideal generated in degree d, and It = mdt, then the number of
generators µ of I must satisfy

(
µ + t − 1

t

)
≥
(

n + td − 1
n− 1

)
.

By Corollary 7.6, this relation is satisfied with t = 2 if the resolution of I is
linear for �(n − 1)/2� steps. In Section 11 we give a stronger lower bound for
the number of generators of an ideal whose resolution is linear for n − 2 steps
(the “almost linear” case). Lower bounds on the number of generators of ideals
whose resolutions are linear for q steps would follow from Conjecture 1.4.

The truncation principle. Since the focus of this paper is on linearly pre-
sented ideals, we have stated many results only for this case. However, it is
possible to make any ideal I into an ideal with linear resolution for q steps
by truncating, and thus generalize many of the results. Rather than doing this
throughout the paper, we illustrate it here.The following result is elementary:

PROPOSITION 1.6. If J = I ∩mu then ti(J) = max{u + i, ti(I)}. Thus J has linear
resolution for q steps if u ≥ ti(I)− i for 0 ≤ i ≤ q.
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2. Degrees of syzygies. Throughout this paper, K is a field and S =
K[x1, . . . , xn] is a polynomial ring in n variables, graded with deg xi = 1 (but
see Remark 2.4 below for the case of general grading). We write m = (x1, . . . , xn)
for the homogeneous maximal ideal of S. All Tor and Ext modules are taken over
the ring S. The Krull dimension of a module A is denoted dim A (we use dimK

for vector space dimension).
We write reg A for the (Castelnuovo-Mumford) regularity of a graded S-

module A (see for example Eisenbud [2004]). If A is a finitely generated graded
vector space, or more generally an Artinian graded S-module, then reg A = sup{i |
Ai �= 0}. If A is a finitely generated graded S-module then reg A is defined in terms
of local cohomology by the formula

reg A = max
j
{reg Hj

m (A) + j}.

For example, if A = 0 then reg A = −∞. We may also compute reg A in terms of
Tor (or in terms of a minimal free resolution) by the formula

reg A = max
p
{tp(A)− p}.

From local duality one see that the two ways of expressing the regularity are also
connected “termwise” by the inequality tp(A)− p ≥ reg H

n−p
m (A) + n− p.

The numbers reg H
j
m (A) + j and tp(A)− p will appear often in our formulas.

The next two theorems express the basic technical result of this paper.

THEOREM 2.1. Suppose that A and B are finitely generated graded S-modules
such that dim Tor1 (A, B) ≤ 1, and let j, k be integers. If p ≤ codim A, q ≤ codim B
and p + q = n− j + k then

reg Hj
m ( Tork (A, B)) ≤ tp(A) + tq(B)− n.

THEOREM 2.2. Suppose that A and B are finitely generated graded S-modules
such that dim Tor1 (A, B) ≤ 1, and let j, k be integers. If n−j+k ≥ codim A+codim B,
then

reg Hj
m ( Tork (A, B)) ≤ max

p+q=n−j+k
p≥codim A
q≥codim B

{
tp(A) + tq(B)

}
− n.
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In fact, both these theorems follow from a more general statement:

THEOREM 2.3. Suppose that A and B are finitely generated graded S-modules
such that dim Tor1 (A, B) ≤ 1, and let j, k be integers. For any integers p, q with
p + q = n− j + k

reg Hj
m ( Tork (A, B)) ≤ max{X, Y , Z}

where

X = tp(A) + tq(B)− n,

Y = max
p′+q′=n−j+k

p′>p

{
tp′(A) + reg Hn−q′

m (B)
}

,

Z = max
p′+q′=n−j+k

p′<p

{
reg Hn−p′

m (A) + tq′(B)
}

.

Proof of Theorem 2.1. Since q′ < q ≤ codim B in the expression for Y and
p′ < p ≤ codim A in the expression for Z, the local cohomology modules in
the expressions for Y and Z in Theorem 2.3 are zero. Because the regularity
of the module 0 is −∞ we have Y = Z = −∞, and Theorem 2.3 reduces to
Theorem 2.1.

Proof of Theorem 2.2. Since n − j + k ≥ codim A + codim B, we can pick
p, q with p ≥ codim A, q ≥ codim B and p + q = n − j + k. Replacing the terms
reg H

n−q′
m (B) in Y with the possibly larger terms tq′(B)− n (and similarly for Z)

in Theorem 2.3, we obtain Theorem 2.2.

We postpone the proof of Theorem 2.3 until later in this section.

Remark 2.4. These formulas adapt easily to the case where the degrees of the
xi are not assumed to be 1: Setting σ =

∑
deg xi we must add n− σ to the term

X in Theorem 2.3, and we correspondingly add n − σ to the right hand side of
the formulas in Theorem 2.1 and Theorem 2.2. The proofs use the comparison
tp(A)− p ≥ reg H

n−p
m (A) + σ − p.

Finally, if the module B is Cohen-Macaulay, a special case of the inequality
takes on a simple form no matter what the relation of n − j + k and codim A +
codim B:

COROLLARY 2.5. Suppose that A and B are finitely generated graded S-modules
such that dim Tor1 (A, B) ≤ 1. If B is Cohen-Macaulay of dimension b then

reg Hj
m ( Tork (A, B)) ≤ tb−j+k(A)− b + reg B.
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For example, when B has finite length, this statement reduces to the easy
formula reg ( Tork (A, B)) ≤ tk(A) + reg B.

Proof of Corollary 2.5. Take q = n − b = codim B in Theorem 2.3. Because
B is Cohen-Macaulay, the only nonvanishing local cohomology of B is Hb

m (B).

Hence the terms reg H
n−q′
m (B) that appear in the expression for Y in Theorem 2.3

are all −∞. The terms tq′(B) that appear in the expression for Z are all −∞ as
well, because when p′ < p the number q′ is bigger than n − b, the projective
dimension of B.

The assumption dim Tor1 (A, B) ≤ 1 is used in the proof of Theorem 2.3 to en-
sure the degeneration of a certain spectral sequence. The theorem can fail without
this assumption, even in the case where A = B = R/I is 2-dimensional and n = 4:
for instance Example 4.5 does not satisfy Corollary 2.5 for
k = 0.

We note that the hypothesis dim Tor1 (A, B) is always satisfied if A, B are
“dimensionally transverse” in the sense that codim A ⊗ B ≥ codim A + codim B
(in which case equality holds), and A, B are both locally Cohen-Macaulay off a
set of dimension ≤ 1.

For any graded S-module we write mindeg T = inf{i | Ti �= 0}. If T = 0 we
set mindeg T = ∞.

Proof of Theorem 2.3. Let F: · · · → F1 → F0 be a minimal homogeneous
free resolution of A and let G: · · · → G1 → G0 be a minimal homogeneous
free resolution of B. The proof consists of an analysis of the double complex
F∗ ⊗G∗ = (F⊗G)∗ where ∗ denotes Hom (−, S).

For any finite complex K: · · · → Kn → Kn−1 → · · · of free S-modules there
is a spectral sequence with E2 term ExtsS ( Ht (K), S) converging to Hs+t (K∗), ob-
tained from the double complex Hom (K, I), where I is an injective resolution
of S. We apply this to K = Tot(F ⊗ G). Since Tor1 (A, B) has Krull dimen-
sion at most 1, Auslander’s Theorem [1961] on the rigidity of Tor shows that
Ht (F ⊗ G) = Tort (A, B) has dimension ≤ 1 for every t ≥ 1. It follows that
ExtsS ( Ht (K), S) is nonzero only when t = 0 or when s = n − 1 or s = n. The E2

differential ExtsS ( Ht (K), S) → Exts+2
S ( Ht−1 (K), S) thus vanishes and the spectral

sequence degenerates at E2. The degeneracy in turn shows that ExtsS ( Ht (K), S)
is a subquotient of Hs+t (K∗).

By local duality

Hj
m ( Tork (A, B)) = Hj

m ( Hk (K))

= HomK ( Extn−j ( Hk (K), S), K)(n),
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where HomK denotes the graded Hom functor over K. Since Extn−j ( Hk (K), S)
is a subquotient of Hn−j+k (K∗), it follows that

reg Hj
m ( Tork (A, B)) ≤ −mindeg Hn−j+k (K∗)− n.

To prove Theorem 2.3 we need to show that any homogeneous element
ζ ∈ Hn−j+k (K∗) of degree

deg ζ < −max{X, Y , Z} − n = min{−X − n,−Y − n,−Z − n}

is zero. We have

−X − n = −tp(A)− tq(B)

and by local duality

−Y − n = min
p′+q′=n−j+k

p′>p

{
−tp′(A) + mindeg Extq

′
(B, S)

}
, (*)

−Z − n = min
p′+q′=n−j+k

p′<p

{
mindeg Extp

′
(A, S)− tq′(B)

}
. (**)

Let z = {zp′,q′ | p′ + q′ = p + q} be a homogeneous cycle of K∗ representing ζ.
Since

mindeg (F∗p ⊗ G∗q) = mindeg (F∗p ⊗ K) + mindeg (G∗q ⊗ K)

= −tp(A)− tq(B)

> deg ζ,

it follows that zp,q = 0. To finish the proof we will show that the other components
zp′,q′ are also zero.

By equation (**) the vertical homology of K∗ is zero at (K∗)p′,q′ in degree
deg ζ when p′ + q′ = p + q and p′ < p, while by equation (*) the horizontal
homology of K∗ is zero at (K∗)p′,q′ in degree deg ζ when p′ + q′ = p + q and
p′ > p.

We may thus complete the proof by applying the following more general
lemma to the complex L formed by taking the degree deg ζ part of K∗. The
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result gives information about the total cycles in the double complex

L:

. . .

dhor✲ Lp′,q′

dvert✻

dhor✲ Lp′,q′+1

dvert✻

dhor ✲

. . .

dhor✲ Lp′−1,q′

dvert

✻

dhor✲ Lp′−1,q′+1

dvert

✻

dhor ✲

. . . .dvert

✻

dvert

✻

LEMMA 2.6. Let L be any bounded below double complex, with noation as
above, suppose that p, q are chosen so that the vertical homology of L is zero at
Lp′,q′ when p′ + q′ = p + q and p′ < p, and the horizontal homology of L is zero at
Lp′,q′ when p′ + q′ = p + q and p′ > p. If ζ ∈ Hp+q(Tot(L)) represented by a cycle

z = (zp′,q′) ∈ ⊕p′+q′=p+qLp′,q′

satisfies zp,q = 0, then ζ = 0.

Proof. We have dvert(zp−1,q+1) = −dhor(zp,q) = 0. By our assumption the ver-
tical homology vanishes at Lp−1,q+1 so zp−1,q+1 = dvert(w) for some w ∈ Lp−2,q+1.
Subtracting dTotw from z we get a homologous cycle y whose components yp′,q′

agree with zp′,q′ for p′ ≥ p, but yp−1,q+1 = 0. Repeating this process we see that
z is homologous to a cycle x with xp′,q′ = zp′,q′ for p′ ≥ p while xp′,q′ = 0 for
p′ < p.

Similarly, using the fact that the horizontal homology is zero at Lp′,q′ for
p′ > p and p′ + q′ = p + q, we can change x by a boundary to arrive at a cycle
that is 0 in every component, so ζ = 0.

In the special case where B is a Gorenstein factor ring of S we can describe
when Theorem 2.3 (in the form of Corollary 2.5) is sharp. Suppose φ: F′ → F
is a map of graded free modules such that reg F = d. By a generalized row of φ
of minimal degree we mean the composition of φ with a projection F → S(− d).
By the ideal of entries in this row we mean the ideal that is the image of the
corresponding map F′(d) → S.

PROPOSITION 2.7. Suppose that A is a finitely generated graded S-module with
free resolution

· · · −−→ Ft
φt−−→ Ft−1 −−→ · · · φ1−−→ F0
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and J is an ideal such that S/J is Gorenstein of dimension b and A/JA has finite
length. If k ≤ codim A− b then

reg Tork (A, S/J) ≤ tb+k(A)− b + reg S/J

with equality if and only if J contains the ideal of entries in some generalized row
of minimal degree of φb+k+1.

Proof. The inequality is Corollary 2.5. Since B = S/J is Cohen-Macaulay we
have reg B = tn−b(B)− n + b. Since A⊗ B = A/JA has finite length,

reg Tork (A, B) = −mindeg HomK ( Tork (A, B), K).

By local duality, we can rewrite this as −( mindeg Extn ( Tork (A, B), S))− n.
We now use the notation and spectral sequence from the proof of Theo-

rem 2.3. Because A ⊗ B has finite length, the E2 page of the spectral sequence
for the homology of K∗ has nonzero terms only in one row and one column, and
if follows that Extn ( Tork (A, B), S) = Hn+k (K∗).

From this we see that equality holds in Proposition 2.7 if and only if
mindeg Hn+k ( Tot (F∗⊗G∗)) = mindeg (F∗b+k⊗G∗n−b). Because B is Gorenstein we
may write G∗n−b = S(e) for some e. Moreover G∗ is a resolution of Extn−b (B, S) =
B(e). It follows that Hn+k ( Tot (F∗ ⊗ G∗)) ∼= Hb+k ((F∗ ⊗ B)(e)). Hence equality
holds if and only if mindeg (F∗b+k ⊗ S(e)) = mindeg Hb+k ((F∗ ⊗ B)(e)). Since F∗

is a minimal complex, this is equivalent to saying that a generator of minimal
degree of F∗b+k is a cycle mod J; that is, J contains the ideal of entries in some
generalized row of minimal degree of φb+k+1.

3. Castelnuovo-Mumford regularity. The following is an extension of re-
sults of Sidman [2002] and Caviglia [2003], who treat the case k = 0 by different
methods.

COROLLARY 3.1. If A and B are finitely generated graded S-modules such that
dim Tor1 (A, B) ≤ 1, then

reg Tork (A, B) ≤ reg A + reg B + k.

Proof. We use the formula

reg M = max
j
{reg Hj

m (M) + j}

to compute reg Tork (A, B), and

reg A + reg B = max
p,q
{tp(A)− p + tq(A)− q}.
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The proof is then a straightforward application of the inequalities in Theorems
2.1 and 2.2.

COROLLARY 3.2. Suppose that A and B are finitely generated graded S-modules
such that dim Tor1 (A, B) ≤ 1. If k + dim B ≤ p ≤ codim A then

reg Tork (A, B) ≤ tp(A) + tn+k−p(B)− n.

Proof. Since p ≤ codim A and n + k − p ≤ codim B, Theorem 2.1 gives

reg Tork (A, B) ≤ max
j=0,1

{tp(A) + tn−j+k−p(B) + j− n}.

But tn−j+k−p(B) + j ≤ tn+k−p(B), again because n + k − p ≤ codim B.

COROLLARY 3.3. Suppose that A and B are graded S-modules such that δ :=
dim Tor1 (A, B) ≤ 1. If B is a Cohen-Macaulay module of dimension b, then for
k > 0,

reg Tork (A, B) ≤ max{tp(A)− p | b + k − δ ≤ p ≤ b + k} + reg B + k.

Proof. Notice that dim Tork (A, B) ≤ δ by the rigidity of Tor (see Auslander
[1961]). Thus the assertion follows from Corollary 2.5.

As an application of Corollaries 3.1 and 3.3 with k = 1, we have:

COROLLARY 3.4. If I and J are homogeneous ideals of S such that (IJ)d = (I∩J)d

for d >> 0, then the equality holds for all d ≥ reg I + reg J. If in addition S/J is
Cohen-Macaulay of dimension b, then it suffices that

d ≥ tb(I)− b + reg J.

Proof. We use the formula Tor1 (S/I, S/J) = (I ∩ J)/IJ, and apply Corollaries
3.1 and 3.3.

Suppose that X, Y ⊂ Pn−1 are schemes. The ideal IX∩Y of X ∩ Y is the
saturation of the sum of the ideals of X and Y; that is, IX∩Y and IX + IY agree
in high degrees. Using Theorems 2.1 and 2.2 we can make this quantitative in
the case where X and Y meet at most in dimension 0. Note that in this case
codim X + codim Y ≥ n− 1.

COROLLARY 3.5. Let X, Y ⊂ Pn−1 be schemes with ideals I, J ⊂ S. Suppose
that dim X ∩ Y = 0.

(a) If codim X + codim Y ≥ n, then any form of degree d vanishing on X ∩ Y is
a sum of a form vanishing on X and a form vanishing on Y as long as

d > tp(S/I) + tq(S/J)− n

for some integers p, q satisfying p ≤ codim X, q ≤ codim Y , and p + q = n.
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(b) If codim X + codim Y = n−1, then any form of degree d vanishing on X∩Y
is a sum of a form vanishing on X and a form vanishing on Y as long as

d > max{t1+codim X(S/I) + tcodim Y (S/J),

tcodim X(S/I) + t1+codim Y (S/J)} − n.

Proof. Notice that S/(I+J) = (S/I)⊗(S/J). It follows that S/(I+J) is saturated
in degree d if H0

m ( Tor0 (S/I, S/J))d = 0. Cases (a) and (b) follow from Theorems
2.1 and 2.2, with j = k = 0.

A similar result follows for any schemes X and Y whose intersection is
“homologically transverse” except along a zero-dimensional set in Pn−1 (but the
sum of the codimensions of X and Y may then be < n− 1, in which case more
terms appear in case (b)).

4. Convexity of degrees of syzygies. Theorem 2.1 yields a kind of “triangle
inequality” or convexity for degrees of syzygies that seems to be new even in
the case where A = B is a module of finite length.

COROLLARY 4.1. Suppose that A and B are finitely generated graded S-modules
such that dim Tor1 (A, B) ≤ 1, then

tn(A⊗ B) ≤ tp(A) + tn−p(B)

whenever dim B ≤ p ≤ codim A. In particular, if A = B = S/I is a cyclic module of
dimension≤ 1, then the function p �→ tp(S/I) satisfies the weak convexity condition

tn(S/I) ≤ tp(S/I) + tn−p(S/I)

for 0 ≤ p ≤ n.

When dim B > codim A a similar result follows from Theorem 2.2.

Proof. For any finitely generated graded module M,

Torn (M, K) = ker
(

M(− n)




x1
...

xn




−−→ Mn(− n + 1)
)

= socle M(− n),

as can be calculated from the Koszul resolution of K. Thus reg Torn (A ⊗ B) =
reg H0

m (A⊗ B) + n, and the assertion follows from Theorem 2.1.

If a module A is annihilated by an m-primary ideal J, then it is immediate
that the degree of the socle of A is bounded above by the highest degree of a



THE REGULARITY OF TOR AND GRADED BETTI NUMBERS 13

generator of A plus the highest degree of the socle of S/J. This relation can
be written as tn(A) ≤ t0(A) + tn(S/J). The following result gives such a bound
without the assumption that J is m-primary.

COROLLARY 4.2. Suppose that A is a finitely generated graded S-module of
codimension c and that δ := dim A − depth A ≤ 1. Let J be a homogeneous ideal
contained in the annihilator of A. If depth S/J ≥ depth A then for 0 ≤ q ≤ codim J,

tc+δ(A) ≤ tc+δ−q(A) + tq(S/J).

In particular:
(a) If the annihilator of A contains a regular sequence of forms of degree

d1 ≤ · · · ≤ dq then

tc+δ(A) ≤ tc+δ−q(A) + d1 + · · · + dq.

(b) If J is generated in degree d with linear resolution, then

tc+δ(A) ≤ tc+δ−q(A) + d + q− 1.

Proof. We may harmlessly assume that K is infinite. If dim A > 1, a general
sequence of depth A linear forms is a regular sequence on both A and S/J, so
we factor out these linear forms (and work over the corresponding factor ring
of S) without changing the statement. Thus we may suppose dim A ≤ 1 and
depth A = 0, so n = c + δ. Since the case q = 0 is trivial, we may assume that
q ≥ 1.

We now apply Theorem 2.1 with k = j = 0, B = S/J and p = n − q.
As p ≤ codim A we obtain reg H0

m ( Tor0 (A, B)) ≤ tp(A) + tq(B) − n. Since
reg H0

m ( Tor0 (A, B)) = reg H0
m (A) = tn(A)− n, this gives the first statement. Parts

(a) and (b) follow immediately by computing tq(B) in the given cases.

Example 4.3. Let X be an arithmetically Cohen-Macaulay scheme of codi-
mension c in Pn−1 with ideal I. If X is contained in a nondegenerate variety of
codimension q and (minimal) degree q + 1, then by part (b) of Corollary 4.2,

tc(S/I) ≤ tc−q(S/I) + q + 1.

Example 4.4 (G. Caviglia [2004]). The principle of part (a) of Corollary 4.2
does not hold for individual steps in the resolution. For example, if

I = (x3
1, . . . , x3

4, (x1 + · · · + x4)3) ⊂ S = K[x1, . . . , x4],

then t1(S/I) = 3 while t2(S/I) = 7 > 3 + 3. Notice that I is m-primary.
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Here is a class of two-dimensional ideals that exhibit even more extreme
behavior:

Example 4.5 (G. Caviglia [2004]). If

I = (xr
1, xr

2, x1xr−1
3 − x2xr−1

4 ) ⊂ S = K[x1, . . . , x4],

then t1(S/I) = r while t2(S/I) = r2 > 2r for r ≥ 3, and in fact reg (S/I) = r2 − 2.

This example also shows that the dimension bound on Tor1 (A, B) is necessary
in Corollary 2.5 and Corollary 3.1. Set A = S/(xr

1, xr
2) and B = S/(x1xr−1

3 −x2xr−1
4 ).

For r ≥ 3,

reg Tor0 (A, B) = reg (S/I) = r2 − 2 > reg (A) + reg (B) = 3r − 3.

In this case dim Tor1 (A, B) = 2.

5. Specialization and degrees of syzygies. As an application of Corol-
lary 3.3 we give a bound for the saturation and regularity of a plane section,
generalizing Theorem 1.2 of Eisenbud-Green-Hulek-Popescu [2004]:

COROLLARY 5.1. Let X ⊂ Pn−1 be a scheme, and let Λ ⊂ Pn−1 be a linear
subspace such that the sheaf Tor1 (OX ,OΛ) is supported on a finite set. Let I ⊂ S
be any homogeneous ideal defining X, and let L ⊂ S be the ideal of Λ.

(a) The restriction map

Id → H0 (IX∩Λ,Λ(d))

is surjective for all d ≥ tdim Λ(I)− dim Λ.
(b) Let c be the codimension of X ∩ Λ in Λ. We have

reg (IX∩Λ) = reg
(IX + IΛ

IΛ

)

≤ max{tp(I)− p | c− 1 ≤ p ≤ dim Λ− 1}.

The hypothesis that the sheaf Tor1 (OX ,OΛ) is supported on a finite set is
satisfied for general Λ of any dimension, or for any Λ such that X ∩ Λ is finite.

Proof. By Corollary 2.5 we have

reg Hj
m (S/(I + L)) = reg Hj

m ( Tor0 (S/I, S/L))

≤ tdim (S/L)−j(S/I)− dim S/L

= tdim Λ−j(I)− dim Λ− 1

< tdim Λ−j(I)− dim Λ.
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Taking j = 0 in the inequalities, we see that I + L is saturated in degree d when
d ≥ tdim Λ(I) − dim Λ, proving part (a). Adding j to both sides and taking the
maximum over j for 1 ≤ j ≤ dim S/(I + L) = dim (X ∩ Λ) + 1 we see that

reg IX∩Λ = max
1≤j
{reg⊕m Hj (IX∩Λ(m)) + j + 1}

≤ max
1≤j≤dim S/(I+L)

{reg Hj
m (S/(I + L)) + j + 1}

≤ max
1≤j≤dim S/(I+L)

{tdim Λ−j(I)− dim Λ + j},

which is the desired inequality.

We say that the resolution of a finitely generated graded S-module A generated
in a single degree d is linear for q steps if it has the form

· · · S−−→
nq

(− d − q) −−→ · · · −−→ Sn0 (− d) −−→ A −−→ 0.

COROLLARY 5.2. Let I ⊂ S be a homogeneous ideal, let p be an integer with
0 ≤ p ≤ projdim(S/I), and set m = tp(S/I). Let L ⊂ S be any ideal generated by
n− p linearly independent linear forms. If I + L contains a power of m (which will
always be true if K is infinite, L is general and p ≤ codim I) then I + L contains
mm−p+1, and more generally

mm−p+s ⊂ I + Ls.

For example, if I is generated in degree d and the minimal free resolution of I is
linear for p− 1 steps, then

md ⊂ I + L.

Proof. The resolution of Ls is linear, as one can see by computing the degree
of the socle of S/Ls (in fact, the resolution can be obtained as an Eagon-Northcott
complex, see Eisenbud [1995, pg.600]). Hence tn−p(S/Ls) = n − p + s − 1. As
p ≤ codim I, Theorem 2.1 gives reg H0

m (S/I ⊗ S/Ls) ≤ m − p + s − 1, which is
the asserted result.

Notice that the containment md ⊂ I + L in Corollary 5.2 actually gives that
I and md coincide modulo L.

COROLLARY 5.3. Let I ⊂ S be a homogeneous ideal, let L ⊂ S be any ideal
generated by n− p linearly independent linear forms, and let “−” denote images
in S = S/L. If I is m-primary then tS

p(S/I) ≤ tS
p(S/I).

COROLLARY 5.4. Suppose that I ⊂ S is a homogeneous m-primary ideal, and
let in I denote the initial ideal of I with respect to the reverse lexicographic order
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on the monomials of S, with the variables ordered x1 > x2 > . . . > xn. If 0 ≤ p ≤ n
and m = tp(S/I), then

(x1, . . . , xp)m−p+1 ⊂ in I.

In particular, if I is generated in degree d and the resolution of I is linear for p− 1
steps, then the initial ideal of I in reverse lexicographic order contains (x1, . . . , xp)d.

Proof. Corollary 5.2 shows that mm−p+1 ⊂ I + L, where L = (xp+1, . . . , xn).
Because the monomial order is reverse lexicographic, in (I + L) = ( in I) + L
(see Eisenbud [1995, Proposition 15.12]). Thus mm−p+1 ⊂ ( in I) + L, whence
(x1, . . . , xp)m−p+1 ⊂ in I.

In the case where I is m-primary and linearly presented, Corollary 5.4 says
that (x1, x2)d ⊂ in I. In generic coordinates we hope for a stronger inclusion:

CONJECTURE 5.5. Suppose that the ideal I ⊂ S is m-primary, linearly presented,
and generated in degree d. If K is infinite, then

md ⊂ I + (z3, . . . , zn)2

for sufficiently general linear forms z3, . . . , zn, or even

(z1, z2)d−1m ⊂ Gin I,

where Gin I denotes the reverse lexicographic initial ideal with respect to generic
coordinates z1, . . . , zn. If the resolution of I is linear for p−1 steps, then we similarly
conjecture that

md ⊂ I + (zp+1, . . . , zn)2

for sufficiently general linear forms zi.

We were led to this conjecture studying Conjecture 1.1. In case n = 3 and S/I
is Gorenstein, Conjecture 5.5 would follow from the Strong Lefschetz property.
We have observed it experimentally in a large number of cases with n = 3 and
n = 4.

COROLLARY 5.6. Suppose that K has characteristic zero and I ⊂ S is a homo-
geneous m-primary ideal. If I is generated in degree d and the resolution of I is
linear for n− 2 steps, then µ( Gin I) = µ(md).

Proof. Corollary 5.2 shows that I + (z) = md + (z) for every linear form z in S.
But then µ( Gin I) = µ(md) by Conca-Herzog-Hibi [2004, Corollary 3.4 (b)].
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6. Ideals generated by quadrics. If an ideal I generated in degree d has
a resolution that is linear for q steps, then by Corollary 5.2 we have md ⊂
I + (zq+2, . . . , zn) for every set of linearly independent linear forms zq+2, . . . , zn.
For ideals generated by quadrics, this latter condition is easy to interpret. For sim-
plicity we assume throughout this section that the base field K is algebraically
closed of characteristic not 2. We will identify a quadric and its associated sym-
metric bilinear form.

Recall that a m-dimensional vector space of quadrics in n variables (with
a basis) can be described by a symmetric n × n matrix of linear forms in m
variables; to get the symmetric matrix corresponding to the i-th quadric, just set
all but the i-th variable equal to 0, and set the i-th variable equal to 1. We call
a symmetric matrix of linear forms in m variables symmetrically q-generic if
every generalized principal (q + 1) × (q + 1) submatrix has linearly independent
entries on and above the diagonal (here a principal submatrix is one involving
the same rows as columns, and a generalized submatrix of A is a submatrix of
PAP∗ for some invertible matrix P). These definitions are adapted from the notion
of k-generic matrices in Eisenbud [1988]. In particular, symmetrically 1-generic
matrices are the same as 1-generic matrices that happen to be symmetric. We say
that a family of quadrics is q-generic if the corresponding matrix of linear forms
is symmetrically q-generic.

It is convenient for our purpose to specify a space of quadrics via its or-
thogonal complement. A symmetric matrix A representing a quadric may be
thought of as a linear transformation A: W → W∗. The dual of the vector space
Hom (W, W∗) is Hom (W∗, W) via the pairing (A, B) = TraceAB. What this means
in practice for symmetric matrices A = (aij), B = (bij) is that (A, B) =

∑
i,j aijbij.

Thus from a space of (quadratic or) bilinear forms U we can construct a space U⊥

of (quadratic or) bilinear forms. This is the degree 2 part of the the “annihilator
ideal” that appears for example in Eisenbud [1995, Section 21.2].

The orthogonal complement construction allows us to give examples of q-
generic families of quadrics for all q:

PROPOSITION 6.1. A nonzero quadratic form Q has rank ≥ q + 2 if and only if
the family (Q)⊥ of quadratic forms orthogonal to Q is q-generic.

Proof. If Q has rank ≤ q + 1 then, after a change of variables, Q will be
represented by a diagonal matrix with at most q + 1 nonzero entries. It fol-
lows that the matrices in (Q)⊥ satisfy a nontrivial linear equation among the
entries of some (q + 1) × (q + 1) principal submatrix, so the family is not
(q + 1)-generic.

Conversely, suppose the family V = (Q)⊥ is not q-generic. In this case the
symmetric matrix of linear forms corresponding to V has a (q + 1) × (q + 1)
generalized principal submatrix whose entries on or above the diagonal are lin-
early dependent. The coefficients of this dependency relation define a nonzero
quadratic form Q′ of rank at most q + 1 so that V ⊂ (Q′)⊥. Since both sides are
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codimension 1 in S2, they are equal, and it follows that Q′ and Q generate the
same 1-dimensional subspace. In particular they have the same rank.

PROPOSITION 6.2. Let V ⊂ S2 be a vector space of quadrics in n variables. The
ideal I generated by V has the property that m2 ⊂ I + (zq+2, . . . , zn) for every set of
linearly independent linear forms zq+2, . . . , zn if and only if V is q-generic.

Proof. Let A be the symmetric matrix of linear forms associated to V . The
space of quadratic forms V ⊂ (S/(zq+2, . . . , zn))2 corresponds to the (q + 1) ×
(q + 1) generalized submatrix of A obtained by leaving out rows and columns
corresponding to the linear forms zi. Its

(q+2
2

)
entries on and above the diagonal

are linearly independent if and only if it corresponds to a space of quadrics of
dimension

(q+2
2

)
, which is the dimension of (S/(zq+2, . . . , zn))2.

COROLLARY 6.3. If the ideal I generated by m quadratic forms in n variables
is m-primary and satisfies m2 ⊂ I + (z3, . . . , zn) for every set of independent linear
forms z3, . . . , zn, then m ≥ 2n− 1.

Proof. The entries of a 1-generic n× n matrix must span a space of at least
dimension 2n− 1; see Eisenbud [1988, Proposition 1.3].

Example. The “catalecticant” (or Hankel) matrix




y1 y2 y3 . . .
y2 y3 . . .
y3 . . .
...




is a symmetrically 1-generic matrix representing a 2n − 1 dimensional space of
quadrics.

COROLLARY 6.4. Let V ⊂ S2 be a vector space of quadrics. If V is not q-generic
then the ideal I generated by V has a free resolution with at most q−1 linear steps.

In case V has codimension 1 in the space of all quadrics, Corollary 6.4 is
sharp:

PROPOSITION 6.5. Let V ⊂ S2 be a codimension 1 subspace of the quadratic
forms of S. The ideal generated by V has q linear steps in its resolution if and only
if V is q-generic.

Proof. Let Q be a quadratic form generating the orthogonal complement of
V . Suppose that the rank of Q is q + 2. By Proposition 6.1 and Corollary 6.4, it
suffices to show that the resolution of I = (V) has q linear steps.

Let J be the annihilator of Q in the sense of Eisenbud [1995, Section 21.2].
Thus S/J is Gorenstein with “dual socle generator Q”, and J contains exactly
n− q− 2 independent linear forms.
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If q + 2 = n, the resolution of S/J has the form

0 → S(− n− 2) −−→ ⊕S(− n) −−→ · · · −−→ ⊕S(− 2) −−→ S,

showing that J = I and proving the proposition in this case.
For arbitrary q we see that the resolution of S/J is the tensor product of a

Koszul complex on n− q− 2 linear forms with a resolution of S/J′, where S/J′

is Gorenstein of codimension q+2 and has resolution similar to the one above. In
particular, J is generated in degrees 1 and 2, so I may be written as I = J ∩m2.
Hence the truncation principle Proposition 1.6 shows that S/I has q linear steps
in its resolution as required.

Using the theory of matrix pencils, it should be possible to analyze all the
complements of codimension two sets of quadrics.

7. Regularity of products and powers. There has been considerable recent
progress on the general subject of regularity bounds for powers of an ideal; for
example see Trung-Wang [2002] and the references cited there.

In this section we give our results on Conjecture 1.4. We prove that some
power of a linearly presented ideal I coincides with a power of m, and that in
case the resolution of I is linear for at least �(n− 1)/2� steps, then I2 is a power
of m. We can also give some weak numerical evidence related to the number of
generators of I. This section is devoted to these and related more general results.

THEOREM 7.1. If I ⊂ S = K[x1, . . . , xn] is a linearly presented m-primary
ideal generated in degree d (or, when the ground field is algebraically closed, if
md ⊂ I + (z3, . . . , zn) for all sequences of n− 2 linearly independent linear forms
z3, . . . , zn), then It = mdt for all t 	 0.

We will use the following criterion:

PROPOSITION 7.2. Let I ⊂ S be an ideal generated by a vector space V ⊂ Sd

for some d. If Is = mds for some s ≥ 1, then It = mdt for all t ≥ s. This condition is
satisfied if and only if the linear series |V| maps Pn−1 isomorphically to its image
in P (V).

Proof of Proposition 7.2. To prove the first assertion it suffices, by induction, to
treat the case t = s+1. Suppose that Is = mds. Since I ⊂ md we get Imd(s−1) = mds.
Thus Is+1 = IIs = Imds = Imd(s−1)md = mdsmd = md(s+1), as required.

To prove the last assertion, note that the image of Pn−1 under the map φ
defined by the linear series |V| is by definition the variety with homogeneous
coordinate ring ⊕

t

(V)t ⊂
⊕

t

Sdt.
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To say that φ is an isomorphism onto its image means that these two rings are
equal in high degree; that is, (V)t = Sd, or equivalently It = mdt for large t.

Proof of Theorem 7.1. We can harmlessly extend the ground field and assume
that it is algebraically closed.

By Proposition 7.2 it suffices to show that the map φ defined by the linear
series |V| is an isomorphism. For this it is even enough to show that the restriction
of φ to any line is an isomorphism: There is a line through any two points of
Pn−1 and a line containing any tangent vector to a point of Pn−1, so if φ restricts
to an isomorphism on each line then φ is one-to-one and unramified, whence an
isomorphism.

A line � ⊂ Pn−1 is defined by an ideal generated by the vanishing of n − 2
linear forms, say z3, . . . , zn. The restriction φ|� of φ to � is defined by the degree
d component of the ideal (I +(z3, . . . , zn))/(z3, . . . , zn). By Corollary 5.2, this ideal
equals (md + (z3, . . . , zn))/(z3, . . . , zn), so φ|� is defined by the complete linear
series of degree d, which is an isomorphism as required.

To give the results about Conjecture 1.4 in their natural generality, we turn
to the regularity of the product of two ideals.

The following fact was proved (in a superficially more special case) by Jessica
Sidman [2002]:

THEOREM 7.3. Suppose that I and J are homogeneous ideals of S and set δ =
dim Tor1 (S/I, S/J). If j ≥ δ, then

reg Hj
m(IJ) + j ≤ reg I + reg J.

Thus if δ ≤ 1 then reg IJ ≤ reg I +reg J, and if δ ≤ 2 then reg (IJ)sat ≤ reg I +reg J.

Since Tor1 (A, B) = (I ∩ J)/IJ, the condition dim Tor1 (A, B) ≤ 1 of Corol-
lary 3.1 may be interpreted as saying that the codimension of (IJ)d in (I ∩ J)d is
bounded independently of d. Thinking of I, J as determining projective schemes
X, Y ⊂ Pn−1, we may also state the condition as saying that X and Y are “homo-
logically transverse” except at a finite set of points of Pn−1.

Proof. Extending the ground field if necessary, we may assume it is infinite.
A general linear form is then annihilated only by an ideal of finite length modulo
I, J, IJ or I + J. If δ ≥ 2 then factoring out such a general form, the left hand side
of the displayed inequality can only increase and the right hand side can only
decrease. Thus it suffices to treat the case δ ≤ 1.

Consider the exact sequence

0 → IJ → I → I/IJ → 0.

Note that I/IJ = Tor0 (I, S/J) and that Tor1 (I, S/J) = Tor2 (S/I, S/J) has dimen-
sion at most δ ≤ 1 according to Auslander [1961]. By Corollary 3.1,
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reg Tor0 (I, S/J) ≤ reg I + reg S/J, and therefore

reg IJ ≤ max{reg I, reg I/IJ + 1}
= max{reg I, reg I + reg S/J + 1}
= reg I + reg J.

THEOREM 7.4. Suppose that I and J are homogeneous ideals of S with
dim Tor1 (S/I, S/J) ≤ 1. If p, q are integers such that p ≤ codim I, q ≤ codim J
and p + q = n + 1, then

reg IJ ≤ max{reg I, reg J, tp(S/I) + tq(S/J)− n + 1}.

Proof. From the short exact sequences

0 → (I ∩ J)/IJ → S/IJ → S/(I ∩ J) → 0

0 → S/(I ∩ J) → S/I ⊕ S/J → S/(I + J) → 0

we see that

reg S/IJ ≤ max{reg S/(I ∩ J), reg (I ∩ J)/IJ}
≤ max{reg S/I, reg S/J, 1 + reg S/(I + J), reg (I ∩ J)/IJ}.

Notice that S/(I + J) = Tor0 (S/I, S/J) and (I ∩ J)/IJ = Tor1 (S/I, S/J). To bound
the regularity of these modules we apply Corollary 3.2 with 0 ≤ k ≤ 1.

From the hypothesis we see that 1 + dim S/J ≤ p ≤ codim I. Hence by
Corollary 3.2,

reg Tor0 (S/I, S/J) ≤ tp(S/I) + tq−1(S/J)− n

and

reg Tor1 (S/I, S/J) ≤ tp(S/I) + tq(S/J)− n.

Using the inequalities above, we obtain

reg S/IJ ≤ max{reg S/I, reg S/J, 1 + tp(S/I) + tq−1(S/J)− n,

tp(S/I) + tq(S/J)− n}.

Because q ≤ codim S/J we have

tq−1(S/J) ≤ tq(S/J)− 1.
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Thus

reg S/IJ ≤ max {reg S/I, reg S/J, tp(S/I) + tq(S/J)− n},

as required.

COROLLARY 7.5. Suppose that I and J are homogeneous ideals of S. If either
dim S/J = 0 and I is generated in degrees at most d, or dim S/J = 1 and I is related
in degrees at most d + 1, then

reg IJ ≤ max {reg I, d + reg J}.

Proof. We may assume I �= 0, and dividing I by its greatest common divisor
we may then suppose that codim I ≥ 2. Now apply Theorem 7.4 with p = 1 in
the first case, and p = 2 in the second case.

COROLLARY 7.6. Suppose that I and J are homogeneous ideals in S of dimension
≤ 1, generated in degree d. If the resolutions of I and J are linear for �(n− 1)/2�
steps (for instance if I and J have linear presentation and n ≤ 3), then IJ has linear
resolution. In particular, if I and J are m-primary then IJ = m2d.

Proof. Applying Corollary 3.2 with k = 0 we get

reg S/I = reg Tor0 (S/I, S/I) ≤ 2d − 2,

and similarly for reg S/J. From Theorem 7.4 with p = �(n + 1)/2� we see that
reg IJ ≤ 2d. Since IJ is generated in degree 2d, it follows that IJ has linear
resolution.

Taking I = J we get the special case s = �(n− 1)/2� of Conjecture 1.4:

COROLLARY 7.7. Suppose that I ⊂ S is a homogeneous ideal of dimension
≤ 1, generated in degree d. If the resolution of I is linear for �(n− 1)/2� steps (for
instance if I has linear presentation and n ≤ 3), then It has linear resolution for
all t ≥ 2. In particular, if I is m-primary then I2 = m2d.

If I ⊂ S is an m-primary ideal generated in degrees ≤ d then reg It ≤
reg I +(t−1)d. (Reason: Write e = reg I. Since me ⊂ I, we have me ⊂ me−dI and
thus me+(t−1)d ⊂ me+(t−2)dI. Induction on t completes the argument.) But we can
prove a little more. The following result is also a generalization of Corollary 7.7.

COROLLARY 7.8. Let I ⊂ S be a homogeneous ideal and let t ≥ 2 be an integer.
If dim S/I = 0 and I is generated in degrees at most d, or dim S/I = 1 and I is
related in degrees at most d + 1, then reg It ≤ reg I + (t − 1)d. More generally, for
1 + dim S/I ≤ p ≤ codim I,

reg It ≤ tp−1(I) + tn−p(I)− n + (t − 2)d + 1.
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Proof. We use induction on t ≥ 2. We may assume that codim I ≥ 2.
Corollary 3.2 shows that

reg S/I = reg Tor0 (S/I, S/I)

≤ tp(S/I) + tn−p(S/I)− n

< tp(S/I) + tn+1−p(S/I)− n,

where the last inequality holds because n + 1− p ≤ codim I. Similarly,

reg It−1/It = reg Tor1 (S/I, S/It−1)

≤ tp(S/I) + tn+1−p(S/It−1)− n.

Hence the exact sequence

0 → It−1/It → S/It → S/It−1 → 0

and an induction on t ≥ 2 show that

reg S/It ≤ tp(S/I) + tn+1−p(S/It−1)− n

≤ tp(S/I) + reg S/It−1 + 1− p.

The base case t = 2 of the present corollary now follows from the first inequality.
The induction step uses the second equality with p = 1 or p = 2, depending on
whether dim S/I = 0 and I is generated in degrees ≤ d, or dim S/I = 1 and I is
related in degrees ≤ d + 1.

COROLLARY 7.9. Suppose that I ⊂ S is a homogeneous ideal of dimension≤ 1.
If I is generated in degree d and has linear presentation, and if some positive power
of I has linear resolution, then all higher powers of I have linear resolution.

Proof. We may assume that codim I ≥ 2. If It−1 has linear resolution for
some t ≥ 2, the proof of Corollary 7.8 shows that

reg S/It ≤ d + reg S/It−1 = td − 1.

No such result holds for 2-dimensional ideals in S = K[x1, . . . , x4]: Aldo
Conca [2003] has shown for the ideal I = (x1xr

2, x1xr
3, xr−1

2 x3x4) + x2x3(x2, x3)r−1

with r > 1 that It has linear resolution for t < r, whereas Ir is not even linearly
presented. See also Sturmfels [2000].

For a long time the authors believed that the powers of linearly presented
m-primary ideals would also be linearly presented. Sadly this is not the case as
the following example shows. We discovered this example through an analysis
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of an example of Mike Stillman’s. He found a linearly presented m-primary ideal
whose square does not have a resolution with two linear steps. Our example
shows even more extreme behaviour.

Example 7.10. Let S = K[x1, . . . , x8] and

J = (x3
1, . . . , x3

8, x1x2(x3 − x4), x3x4(x5 − x6), x5x6(x7 − x8), x7x8(x1 − x2)).

One has t2(S/J) = 6 and t2(S/J2) = 12. The truncation principle Proposition 1.6
then shows that I = m2J has a linear presentation, but I2 is not even linearly
presented. Note that I is m-primary.

By comparing the number of generators of md(n−1) with the number of gener-
ators of the (n−1) symmetric power of I, we see that Conjecture 1.1 implies that
the minimal number of generators µ(I) is at least d(n− 1) + 1. This is exactly the
number of generators of (x1, x2)d−1m (Conjecture 5.5 would give a more precise
version.)

The following proposition, when combined with Corollary 5.2, provides fur-
ther numerical evidence.

PROPOSITION 7.11. Let I ⊂ S be an m-primary ideal generated by m forms of
degree d. If md ⊂ I + L for every ideal L generated by n − p independent linear
forms, then

m ≥ p(n− p) +

(
p− 1 + d

d

)
.

For example, if p = 2, n = 3 then m ≥ d + 3, while if p = 2, d = 2 then m ≥ 2n− 1
(see also Corollary 6.3).

Proof. Let W = S1 be the vector space of linear forms in S, and let V = Id ⊂
Sd. Consider the natural composite map of vector bundles on the Grassmannian
G of n− p dimensional subspaces Λ

V → Symd (W) → Symd (W/Λ).

The hypothesis implies that this map is locally everywhere surjective. Because
Symd (W/Λ) is ample (see Hartshorne [1970, Chapter 3]) the theorem of Fulton
and Lazarsfeld [1981] requires that dim G < dim V−rank Symd (W/Λ)+1, which
is the desired inequality.

We finish this section with a remark about Rees algebras and reduction num-
bers. Recall that if J ⊂ I are ideals of S, then the reduction number rJ(I) of I
with respect to J is the smallest integer 0 ≤ r ≤ ∞ with Ir+1 = JIr.
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COROLLARY 7.12. Let I ⊂ S be a homogeneous m-primary ideal generated in
degree d and assume that I �= md.

(a) If I has linear presentation, then depthR(I) = 1.
(b) If the resolution of I is linear for �(n− 1)/2� steps, then rJ(I) = max{2, n−

1−�(n−1)/d�} for every m-primary ideal J ⊂ I generated by n forms of degree d.

Proof. (a) Consider the exact sequence of finitely generated R(I)-modules

0 −−→ R(I) −−→ R(md) −−→ C −−→ 0.

The module C �= 0 has finite length by Theorem 7.1, showing that depthR(I) = 1.
(b) SinceR(I) is not Cohen-Macaulay and n ≥ 2, one has rJ(I) ≥ 2 according

to Valabrega-Valla [1978, Proposition 3.1] and Goto-Shimoda [1982, Remark
3.10]. On the other hand, It = mdt for every t ≥ 2 by Corollary 7.7. Therefore

rJ(I) = max{2, rJ(md)}.

It remains to see that rJ(md) = e := n−1−�(n−1)/d�. As reg S/J = n(d−1)
it follows that mde �⊂ J, whereas md(e+1) ⊂ J and hence md(e+1) = Jmde. Thus
indeed rJ(md) = e.

8. Monomial ideals. In this section we will prove Conjecture 1.4 for mono-
mial ideals, and give a necessary and sufficient condition for a monomial ideal
to satisfy the asymptotic version.

THEOREM 8.1. Let I ⊂ S = K[x1, . . . , xn] be a linearly presented m-primary
monomial ideal, generated in degree d. If the minimal resolution of I is linear for
q steps then It = mdt for all t ≥ (n− 1)/q.

Theorem 8.1 follows at once from the next two results:

PROPOSITION 8.2. If I is an m-primary monomial ideal that is generated in
degree d and has linear resolution for q steps, then I contains the ideal

J(d, q) =
∑

i1<···<iq+1

(xi1 , . . . , xiq+1)d.

Proof. Since I is its own initial ideal, in any monomial order, the statement
follows from Corollary 5.4.

PROPOSITION 8.3. For all t ≥ 1, J(td, tq) ⊂ J(d, q)t. In particular, if t ≥ n−1
q

then J(d, q)t = mdt.

Proof. The second statement follows from the first because J(d, q) = md for
q ≥ n− 1.
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By induction on i, it suffices to show that

J(i d, i q) ⊂ J(d, q) · J((i− 1)d, (i− 1)q).

To this end, let m =
∏

x
aj
j ∈ J(id, iq) be a monomial of degree id. By the definition

of J(id, iq), at most iq+1 of the aj are nonzero. To simplify the notation we assume
that aj = 0 for j > iq + 1.

Not every sum of q of the a1, . . . , aiq+1 can be strictly bigger than d; otherwise
id =

∑
j aj ≥ (d+1)i, a contradiction. Choose q of the aj whose sum σ is maximal

with respect to being at most d. By relabeling we may assume these are a1, . . . , aq.
Suppose first that there is no index k > q such that σ + ak ≥ d. It follows

from the maximality of σ, that ak ≤ aj whenever j ≤ q < k. From this we see
that the sum of any q + 1 of the aj is at most d − 1. But then

id =
iq+1∑
j=1

aj ≤ (d − 1)
⌈

iq + 1
q + 1

⌉
≤ (d − 1)i,

a contradiction.
Thus there exists an index k > q such that σ + ak ≥ d. It follows that

u := xa1
1 · · · x

aq
q xd−σ

k ∈ J(d, q), while v := m/u ∈ J((i − 1)d, (i − 1)q), as
required.

Here is a criterion for the asymptotic version to hold.

PROPOSITION 8.4. An m-primary monomial ideal I ⊂ S generated in degree d
has a power equal to a power of m if and only if J := m(xd−1

1 , . . . , xd−1
n ) ⊂ I.

Further, Jt = mdt if and only if t ≥ (d − 2)(n− 1).

The second statement is shown in the course of the proof of Herzog and
Hibi [2003, Theorem 1.1] (the original formulation is for any m-primary ideal
mJ′ with J′ generated in degree d − 1). We include a proof for the reader’s
convenience.

Proof. First consider J = mJ′, where J′ = (xd−1
1 , . . . , xd−1

n ). The tth power
of J′ has resolution obtained from that of the t-th power of m by substituting
xd−1

i for xi. Thus the regularity of J′t is precisely (d − 1)(t + n − 1) − n, so J′t

contains m(d−1)(t+n−1)−n+1 but no lower power. Since the generators of J′t have
degree (d − 1)t, we see that Jt = mtJ′t = mdt if and only if t ≥ (d − 1)(t + n −
1)− n + 1− (d − 1)t, that is, t ≥ (d − 2)(n− 1).

It remains to show if I has a power equal to a power of m, then J ⊂ I.
For V = Id the map φ defined by |V| defines an isomorphism according to
Proposition 7.2. Thus, writing P = (x1, . . . , xn−1) and Q = P ∩ K[Id], we have an
equality of homogeneous localizations S(P) = K[Id](Q). Therefore I must contain
xixd−1

n for each i, and likewise xix
d−1
j for every i, j.
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9. Torsion in symmetric and exterior powers. In general it is a difficult
problem to understand the relations defining the Rees algebra R(I) := S⊕ I⊕ I2⊕
· · · of an ideal I ⊂ S. As a start, we may write R(I) as a homomorphic image
Sym (I)/A of the symmetric algebra Sym (I). The relations defining Sym (I) are
easily derived from the first syzygies of I: if G1 → G0 → I → 0 is a free
presentation, then Sym (I) = Sym (G0)/G1 Sym (G0). That is, the defining ideal
of Sym (I) in the polynomial ring Sym (G0) is generated by the image of G1,
regarded as a space of forms that are linear in the variables corresponding to
generators of G0.

Thus the problem is to understand A. Let At be the component of A in
Symt (I), so that A = ⊕t≥2At. It is easy to see that At is the S-torsion submodule
of Symt (I). In this section we will study the regularity of At in the case where
I is a homogeneous m-primary ideal.

An ideal I is said to be of linear type if A = 0. Following Herzog, Hibi and
Vladoiu [2003] we say more generally that I is of fiber type if a generating set
of relations of the fiber ring R(I)/mR(I) lifts to a generating set for A. If I is
generated by forms of degree d, then all the generators of At have degrees ≥ dt.
The simplest situation occurs when the regularity of At is dt.

THEOREM 9.1. Let I ⊂ S be a homogeneous m-primary ideal.
(a) If I is generated in degrees at most d and related in degrees at most e + 1,

then regAt ≤ reg I + (t − 2)d + e for every t.
(b) Suppose that I is generated in degree d and has linear presentation. Let

s ≥ 1 be an integer such that Is = mds. We have regAs+u ≤ max{regAs, sd} + ud
for every u ≥ 0.

(c) If the resolution of I is linear for �n/2� steps, then At is concentrated in
degree dt for every t; in particular, I is of fiber type and A is annihilated by m.

In the course of their study of implicitization of surfaces, Busé and Jouanolou
[2003, Proposition 5.5] proved a different bound for the torsion in the symmetric
algebra Sym (I) for ideals I of dimension ≤ 1. This was later sharpened by Busé
and Chardin [2003]. (Although the result was originally stated only for ideals with
n + 1 generators, this restriction is irrelevant. A forthcoming paper of Chardin
will contain further generalizations.)

Our proof of Theorem 9.1 is based on a more general lemma:

LEMMA 9.2. If I ⊂ S is a homogeneous m-primary ideal generated in degrees
at most d then

regAt ≤ max {d + regAt−1, reg Tor2 (S/I, S/It−1)}.

Proof of Lemma 9.2. Let G1 → G0 → I be a minimal homogeneous free
presentation, so that G0 is generated in degrees ≤ d. There is a commutative



28 D. EISENBUD, C. HUNEKE, AND B. ULRICH

diagram with exact rows and columns of the form

0

Tor2 (S/I, S/It−1)
❄

G0 ⊗At−1 ✲ I ⊗ Symt−1 (I) ✲ I ⊗ It−1
❄

✲ 0

0 ✲ At

❄
✲ Symt (I)

❄
✲ It
❄

✲ 0

0
❄

0
❄

where the left most vertical map is given by the Sym (G0)-module structure
on Sym (I). The Snake Lemma shows that At is an extension of a quotient of
G0 ⊗ At−1 by a quotient of Tor2 (S/I, S/It−1). Since both these modules have
finite length, the regularity of such an extension is bounded by the maximum of
the two regularities as required.

Proof of Theorem 9.1. We may assume that n ≥ 2.
(a) We do induction on t. If t ≤ 1 then At = 0, so the assertion is trivial.

For t ≥ 2 we apply Lemma 9.2, and it suffices to prove reg Tor2 (S/I, S/It−1) ≤
reg I + (t − 2)d + e. From Theorem 2.1 with p = 2 we obtain

reg Tor2 (S/I, S/It−1) ≤ t2(S/I) + tn(S/It−1)− n ≤ e + 1 + reg S/It−1.

Hence reg Tor2 (S/I, S/It−1) ≤ reg It−1 + e ≤ reg I + (t− 2)d + e by Corollary 7.8,
as required.

(b) The same argument works, but this time we start the induction from
t = s, and use the fact that reg Is+u−1 = (s + u − 1)d for u ≥ 1 according to
Proposition 7.2.

(c) By Corollary 7.7 we know that I2 = m2d, and from Lemma 9.2 we have
regA2 ≤ reg Tor2 (S/I, S/I). By Theorem 2.1 with p = �n/2� + 1 we obtain
reg Tor2 (S/I, S/I) ≤ 2d. Thus we can apply part (b) with s = 2 to obtain the
desired result.

Example 9.3. The conclusion of Theorem 9.1(c) does not hold for linearly
presented monomial ideals in 3 variables. For example, let I be the ideal in
S = K[x1, x2, x3] generated by all the monomials of degree 5 except x3

1x2x3, x1x3
2x3,

x1x2x3
3. The ideal I is linearly presented, but (since it is not m3) it does not have

�n/2� = 2 linear steps in its resolution. In this case the S-module A2 is generated
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in degree 2d = 10, but has regularity 11 instead of 10. (However At does have
regularity 5t for all t ≥ 3.)

Example 9.4. There exist linearly presented m-primary ideals that are not
even of fiber type, as shown by the ideal I ⊂ S of Example 7.10. In this case
the S-module A2 is not generated in degree 2d = 10, since otherwise t1(I2) ≤
t1(I) + t0(I) = 11, and I2 would be linearly presented.

Notice that the conclusion of Theorem 9.1(c) holds for linearly presented
m-primary Gorenstein ideals in n = 4 variables, due to the symmetry of the
resolution in this case. Surprisingly, it works for n = 3 as well:

COROLLARY 9.5. Let I ⊂ K[x1, x2, x3] be a homogeneous m-primary Goren-
stein ideal. If I is generated in degree d and has linear presentation, then At is
concentrated in degree dt for every t; in particular, I is of fiber type and A is
annihilated by m.

Proof. We know that I2 = m2d by Corollary 7.7 and A2 = 0 by Huneke
[1984, Corollary 4.9 and the discussion after Corollary 4.11]. Hence the assertion
follows from part (b) of Theorem 9.1.

The application of Theorem 2.1 to Tor2 also yields a result on the regularity
of exterior powers:

COROLLARY 9.6. Suppose that char K �= 2 and I ⊂ S is a homogeneous ideal.
If dim S/I ≤ 1 then

reg H0
m ( ∧2 I) ≤ reg H0

m (I ⊗ I) ≤ tp(S/I) + tq(S/I)− n

for any p, q ≤ codim I such that p + q = n + 2. In particular, if I is an m-primary
ideal generated in degree d with linear free resolution for �n/2� steps, then ∧tI is
a vector space concentrated in degree dt for every t ≥ 2.

Proof. For the first statement we simply observe that ∧2I embeds into I ⊗ I
and that the torsion submodule of I⊗ I is Tor2 (S/I, S/I). Now use Theorem 2.1.

To obtain the second statement for t = 2 we apply the first inequality with
p = �(n + 2)/2� and q = �(n + 2)/2�. For general t ≥ 2 we use the surjection
∧2I ⊗∧t−2I → ∧tI, and the fact that the S-module ∧2I ⊗∧t−2I is annihilated by
m and generated in degree dt.

10. Application. Instant elimination. Let I be an ideal of S, generated by
a vector space V of forms of degree d. We may think of V as a linear series on
Pn−1 and ask for the equations of the image scheme; we may also restrict V to
a subscheme X ⊂ Pn−1 to try to compute the image of X. These computations
involve the elimination of variables: If V = 〈 f1, . . . , fm〉 then we are looking for
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the relations on the elements fit in SX[It] ⊂ SX[t]. Geometrically, the ideal I
defines the base locus of a blowup, and we are looking for the defining relations
on the fiber RSX (I)/mRSX (I).

In some interesting classical cases, there is a much easier way to do elim-
ination. For example, if V is the linear series of d-ics through a set B of

(d+1
2

)
general points in the projective plane then the ideal I generated by V is linearly
presented: indeed, by the Hilbert-Burch theorem, the free resolution of S/I has
the form

0 −−→ S(− d − 1)d φ−−→ S(− d)d+1 −−→ S.

The (d + 1) × d matrix φ of linear forms in 3 variables may be thought of as a
3 × (d + 1) × d tensor over K. This tensor may also be identified with a matrix
ψ of size 3 × d in d + 1 variables, called the adjoint (or Jacobian dual) matrix.
The image of P2 under the rational map defined by V is isomorphic to P2 blown
up at B. The defining ideal of this variety is generated by the 3 × 3 minors
of ψ by Room [1938]; see also Geramita and Gimigliano [1991], and Geramita,
Gimigliano and Pittleloud [1995], who do the case of determinantal sets of points
in Pr.

The idea of doing elimination in this way was generalized and put to prac-
tical use by Schreyer and his coworkers (Decker-Ein-Schreyer [1993], Popescu-
Ranestad [1996], Popescu [1998]) in their study of surfaces of low degree in P4,
in cases where the usual elimination methods were too demanding computation-
ally. It is easy to see that the method works whenever I is of linear type (as an
ideal of SX , in the sense that the powers of I are equal to the symmetric powers).
But the examples above are not of linear type.

Here is a general criterion for when the instant elimination process works.
We regard Sym (I) and R(I) as bigraded algebras with degrees with an element
of degree a in Symb (I) being given degree (a, b).

PROPOSITION 10.1. Let |V| be a linear series of forms of degree d on Pn−1.
Suppose that the ideal I generated by V has linear presentation, with matrix φ, and
that ψ is the adjoint matrix. If the torsion in the symmetric algebra of I occurs only
in degrees (a, b) such that a = db, then the annihilator of cokerψ is the ideal of
forms in P (V) that vanish on the image of Pn−1 under the rational map associated
to |V|.

Proof. Write V = 〈 f1, . . . , fm〉. We consider the epimorphism of bigraded
algebras

K[X1, . . . , Xn, T1, . . . , Tm] → Sym (I); Xi �→ xi, Ti �→ fi ∈ Sym1 (I)

where Xi is an indeterminate of degree (1, 0) and Ti is an indeterminate of degree
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(d, 1). There are K[T1, . . . , Tm]-module isomorphisms

cokerψ ∼= ⊕b( Sym (I))(db+1,b)
∼= ⊕b(R(I))(db+1,b),

where the last isomorphism follows from our assumption about the torsion of
Sym (I). On the other hand, since R(I) is a domain,

∑
b (R(I))(db+1,b) and∑

b (R(I))(db,b) = K[ f1t, . . . , fmt] have the same annihilator.

COROLLARY 10.2. Let |V| be a base point free linear series of forms of degree
d on Pn−1. Suppose that the free resolution of the ideal I generated by V is linear
for �n/2� steps. Let φ be a linear presentation matrix of I. If ψ is the adjoint matrix
of φ then the annihilator of cokerψ is the ideal of forms in P (V) that vanish on the
image of Pn−1 under the rational map associated to |V|.

Proof. Apply Theorem 9.1 (c) and Proposition 10.1.

11. Ideals with almost linear resolution. We can get a bound for the
number of generators of an ideal with “almost linear” resolution as follows. Let
n = r + 1 so that S = K[x0, · · · , xr], with r ≥ 2 to avoid the trivial case, and
suppose that the free resolution of S/I has the form

0 −−→
mr+1∑
i=1

S(−d−r−bi) −−→ Smr (−d−r+1) −−→ · · · −−→ Sm1 (−d) −−→ S;

that is, I is generated in degree d, S/I has “almost linear resolution,” and the
socle elements of S/I lie in degrees d + bi − 1, with bi ≥ 0. Assume further
that S/I has finite length. Our goal is to find a lower bound for the number of
generators of I (see also Corollary 6.3 and Proposition 7.11).

Computing the Hilbert polynomial 0 ≡ PS/I(ν) we get

0 =

(
ν + r

r

)
+

r∑
i=1

(− 1)imi

(
ν − d − (i− 1) + r

r

)
+ (− 1)r+1

mr+1∑
i=1

(
ν − d − bi

r

)
.

Taking ν = d − 1, all but the first and last terms vanish, so

(
d + r − 1

r

)
= (− 1)r

∑(
−bi − 1

r

)
=
∑(

bi + r
r

)
.(1)

Taking ν = d, all but the first two and the last terms vanish, so

m1 =

(
d + r

r

)
−
∑(

bi + r − 1
r

)
,(2)

or equivalently the Hilbert function satisfies HS/I (d) =
∑(bi+r−1

r

)
.
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Continuing in this way we could inductively compute all the mi in terms of
the bi. But already equations (1) and (2) suffice to give a lower bound for the
number of generators:

PROPOSITION 11.1. With notation as above,

m1 ≥
(

d + r − 1
r − 1

)
+

(
d + r − 2

r − 1

)

with equality if and only if S/I is Gorenstein.

Proof. By equation (1) we have d − 1 ≥ bi for every i, and equality holds
for some i if and only if mr+1 = 1, that is, S/I is Gorenstein (and there is only
one bi). Thus by equation (2)

m1 =

(
d + r

r

)
−
∑(

bi + r − 1
r

)

=

(
d + r

r

)
−
∑ bi

bi + r

(
bi + r

r

)

≥
(

d + r
r

)
− d − 1

d + r − 1

∑(
bi + r

r

)

with equality if and only if S/I is Gorenstein. By equation (1) we may rewrite
the last line as

(
d + r

r

)
− d − 1

d + r − 1

(
d + r − 1

r

)
=

(
d + r − 1

r − 1

)
+

(
d + r − 2

r − 1

)
.
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