
HEIGHTS OF IDEALS OF MINORS

By DAVID EISENBUD, CRAIG HUNEKE, and BERND ULRICH

Abstract. We prove new height inequalities for determinantal ideals in a regular local ring, or more
generally in a local ring of given embedding codimension. Our theorems extend and sharpen results
of Faltings and Bruns.

Introduction. Let ϕ be a map of vector bundles on a variety X. A well-
known theorem of Eagon and Northcott [EN] gives an upper bound for the
codimension of the locus where ϕ has rank ≤ s for any integer s.

Bruns [B] improved this result by taking into account the generic rank r of
ϕ. We shall see below that unlike the Eagon-Northcott estimate, in most cases
Bruns’ theorem is sharp only when X is singular. The first goal of this paper is
to give stronger results when X is nonsingular, and a little more generally.

Strengthening the Eagon-Northcott estimate in a different way from Bruns,
Faltings [F] gave an improved bound for the case s = r − 1 under the additional
assumption that X is nonsingular and the cokernel of ϕ is torsion free. We also
improve Faltings’ theorem to a result valid for all s.

Let R be a ring, and let ϕ: Rm → Rn be a matrix of rank r. We write Ii = Ii(ϕ)
for the ideal generated by the i × i minors of ϕ, and we assume that i ≤ r and
Ii �= R. Bruns’ theorem says that

height(Ii) ≤ (r − i + 1)(m + n− r − i + 1).

This formula is sharp for every m, n, r, i: take ϕ to be the image of the generic
n× m matrix

Φ = (xij) 1 ≤ i ≤ n, 1 ≤ j ≤ m

over the ring R = k[{xij}]/Ir+1(Φ). Note that this ring is singular for 0 < T <
min{m, n}.

For simplicity, for the remainder of this introduction we consider the case
in which the ring is regular. Under this hypothesis we give a bound which in
general improves Bruns’ bound as follows:
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THEOREM A. Let R be a regular local ring, and let ϕ: Rm → Rn be a matrix of
rank r. We write Ii = Ii(ϕ) for the ideal generated by the i× i minors of ϕ, and we
assume that i ≤ r and Ii �= R. Then

height(Ii) ≤ (r − i + 1)( max{m, n} − i + 1) + i− 1.

Theorem A is a weak form of Corollary 3.6.1 below.
One should compare this result with the “trivial” case where the matrix ϕ

contains only r nonzero rows (if m ≥ n) or r nonzero columns (if n ≥ m). In this
case the codimension of the ideal of i×i minors is given by the “Eagon-Northcott”
formula

height(Ii) ≤ (r − i + 1)( max{m, n} − i + 1),

which is an equality if the nonzero rows (columns) of ϕ are generic. This formula
coincides with ours when i = 1.

A particularly interesting situation is that where the cokernel of ϕ is torsion
free (or even a vector bundle on the punctured spectrum). In this torsion free case
Faltings improved Bruns’ bound (for r × r minors only) and showed

height(Ir) ≤ n.

Generalizing this to arbitrary size minors, we obtain:

THEOREM B. Let R be a regular local ring, and let ϕ: Rm → Rn be a matrix
of rank r. We write Ii = Ii(ϕ) for the ideal generated by the i × i minors of ϕ, and
we suppose that i ≤ r and Ii �= R. Assume that the cokernel of ϕ is torsion free (or
more generally, is torsion free locally in codimension one, and is not the direct sum
of a free module and a torsion module). Then

height(Ii) ≤ (r − i)( max{m, n} − i + 1) + n.

Theorem B is a weak form of Corollary 3.6.2 below.
Theorem B is sharp in the case where n = 3, m ≥ 3, r = i = 2 and ϕ is the

generic alternating 3× 3 matrix followed by a 3× (m− 3) matrix of zeros. If on
the other hand ϕ has one generic column, r− 1 generic rows, and the rest of its
entries 0, then

height(Ii) = (r − i)(m− i + 1) + min{m− i + 1, n− r + 1}.

This actual value is close to the bounds provided by Theorems A and B. Some
less degenerate examples are given in Section 4.
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We can also ask for a bound on the height of one ideal of minors modulo
the ideal of minors of the next larger size. We prove:

THEOREM C. Let R be a regular local ring, and let ϕ: Rm → Rn be a matrix of
rank r. We write Ii = Ii(ϕ) for the ideal generated by the i× i minors of ϕ, and we
suppose that i ≤ r and Ii �= R. By symmetry we may assume that m ≥ n. Then

height(Ii/Ii+1) ≤ max{m− i + 1, n} + r − i.

Theorem C is a weak form of Corollary 3.9.1 below.
This result is comparable to Theorems A and B (or their sharpenings) in the

case i = r; but it does not follow from these results in general because R/Ii+1 is
not regular. However, if we have good information about the higher order minors
of ϕ, as in the case where the cokernel of ϕ is an ideal, then Theorem C gives
results on the height of Ii(ϕ) that are better than those coming from Theorems
A and B. In this way we reprove a theorem of Huneke [Hu] and extend it as
follows:

COROLLARY D. Let R be a regular local ring, and let J be an ideal of R of height
g that is minimally generated by n elements.

(a) (Huneke) If J is not a complete intersection, that is n > g, then the locus of
primes P such that JP is not a complete intersection has codimension≤ n + 2g− 1.

(b) If R/J is a Cohen-Macaulay domain and n > g + 1, then the locus of primes
P such that JP cannot be generated by g+1 elements has codimension≤ 2n+3g−1.

Corollary D follows from a weak form of Example 3.11 below.
Huneke’s result (which is sharp, for example, in case J is the ideal of 2× 2

minors of a generic 2× 3 matrix) improves a formula of Faltings [F] by 1. One
should compare this to a famous conjecture of Hartshorne [Ha2] saying that if J
is the homogeneous ideal of a smooth projective variety which is not a complete
intersection, then the locus of primes P such that JP is not a complete intersection
has codimension ≤ 3g + 1.

Both Theorems A and C are direct consequences of our other main result,
which gives the bound on the codimension of the ideals of minors of a matrix ϕ̄
over a ring R̄ = R/I obtained by reducing ϕ modulo I.

THEOREM E. Let R be a regular local ring, and let ϕ: Rm → Rn be a matrix
of rank r. Let I be an ideal of R, and write ϕ̄ for the matrix over the ring R̄ = R/I
obtained by reducing ϕ modulo I. Let r̄ be the rank of ϕ̄ and set δ = r− r̄. Suppose
that i ≤ r̄ and Ii(ϕ̄) �= R̄. By symmetry we assume that m ≥ n. Then

height(Ii(ϕ̄)) ≤ (r̄ − i)(m− i + δ + 1) + max{m− i + 1, n} + δ.
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Theorem E is a weak form of Theorem 3.1.1 below. As with Faltings’ work, we
do not need R to be regular, but can give bounds in terms of certain embedding
codimensions.

We now describe the key ideas of our proofs. To establish height bounds for
ideals of minors it is helpful to identify as “many” row ideals of ϕ as possible
that have “small” height. As it turns out, the behavior of ϕ in this respect is
determined by the analytic spread � of M = Coker(ϕ) (see Section 1 for the
definition of analytic spread). If � has the maximal possible value n then every
row ideal of any matrix ϕ minimally presenting M has height at most r, and
(under weak conditions) the converse holds as well. Thus, whenever � < n there
have to exist row ideals whose height exceeds r. On the other hand we prove
in this case that after a flat local base change, at least � row ideals have height
≤ r − n + � < r. To paraphrase, if the analytic spread of M is not maximal, then
the behavior of the row ideals is more unbalanced, but not necessarily worse for
our purposes. This is the content of Theorem 2.2, the main technical result of
the paper. A complicated induction then completes the proofs of our formulas in
Section 3.

We finish this introduction with a list of open problems specifically suggested
by the results of this paper. Of course the biggest open problem is the conjecture
of Hartshorne mentioned above.

Problem 1. Let ϕ be a symmetric n× n matrix of rank r, and suppose that
2 is invertible in R (but not necessarily that R is regular). We conjecture that for
i ≤ r,

height(Ii) ≤
(

n− i + 2
2

)
−
(

n− r + 1
2

)
.

In Section 5 we prove this conjecture for the cases i = 1 and i = n − 1 if R is
regular.

If the conjecture is true, it is sharp, for example for the generic symmetric
matrix, taken modulo the ideal of (r + 1) × (r + 1) minors. This formula is the
analogue of Bruns’ bound for general matrices; it is computed as the difference
between the heights of the ideals of i × i and of (r + 1) × (r + 1) minors of a
generic symmetric matrix. Notice that the conjecture fails in characteristic 2, as
can be seen by taking ϕ to be a generic alternating 3× 3 matrix and i = 2.

Before stating the next problem, we recall that a generalized row (or column)
of zeros in a matrix ϕ is a row (or column) of zeros after we change ϕ by invertible
row (or column) operations. We assume again that R is regular.
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Problem 2. Are there better bounds than the ones of Theorems A and B if
we assume that ϕ has no (generalized) rows or columns of zeros?

Problem 3. Are there better bounds if ϕ is a matrix of linear forms?

Problem 4. Find sharp bounds assuming the ranks are small. For example,
what about I2 for a 4× 4 matrix of rank 2? Is the height bounded by 3?

1. Basic results. In this section we fix our notation and review some basic
facts, mainly about Rees algebras of modules, that will be used throughout.

Let R be a Noetherian ring and I an ideal of R. We write ht(I) for the height of
I and bight(I) for its big height, which is the maximum of the heights of minimal
primes of I. Let M a finitely generated R-module and ϕ an n by m matrix with
entries in R. By the ith row ideal of ϕ we mean the ideal generated by the entries
of the ith row of ϕ, and the rank of ϕ is the integer r = max{i|Ii(ϕ) �= 0}. We
say that M has a rank and write rank(M) = e if M ⊗R K is a free K-module of
rank e, with K denoting the total ring of quotients of R. Notice that if ϕ presents
M and M has a rank, then r + e = n.

Let ϕ be a matrix presenting M and T = T1, . . . , Tn a row of variables. The
row ideals of ϕ are related to the symmetric algebra Sym(M) of M via the homo-
geneous presentation Sym(M) ∼= R[T1, . . . , Tn]/I1(T ·ϕ) (see also [EHU1], where
this fact has been exploited systematically). Since the symmetric algebra fails to
be equidimensional in general, we are lead to consider the Rees algebra R(M)
of M instead. The general notion of Rees algebra has been introduced in [EHU2,
0.1]. In the present paper however we will restrict ourselves to considering mod-
ules that have a rank. In this case R(M) is equal to Sym(M) modulo R-torsion.
We say that M is of linear type if the natural map from Sym(M) to R(M) is an
isomorphism. If R has dimension d and E has a rank e, then dimR(M) = d + e
(see, e.g., [SUV, 2.2]). Suppose in addition that R is equidimensional, universally
catenary and local. Under this assumption R(M) is equidimensional. Thus we
may write R(M) ∼= R[T1, . . . , Tn]/b with bight(b) = ht(b). In fact ht(b) = r, the
rank of any matrix with n rows that presents M.

If U is a submodule of M, we say that U is a reduction of M or, equivalently,
M is integral over U if the ring R(M) is integral over its subalgebra R[U]. In
case R is local with residue field k, the analytic spread �(M) of M is defined to be
the Krull dimension dimR(M)⊗R k. The two notions are related by the fact that
�(M) = min{µ(U)|U a reduction of M} whenever k is infinite (here µ(−) denotes
minimal number of generators). One always has rank(M) ≤ �(M) ≤ µ(M) (see,
e.g. [SUV, 2.3]), and the last inequality is an equality if and only if M has no
proper reduction, at least in the case of an infinite residue field.

Before describing more refined estimates, we need to review the property Gs,
where s is an integer: A module M of rank e is said to satisfy Gs if µ(MP) ≤
dim RP + e − 1 for every prime ideal P with 1 ≤ dim RP ≤ s − 1. What makes
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the concepts of integral dependence and analytic spread play a central role in this
paper is their relation to the height of certain colon ideals:

THEOREM 1.1. [R, 2.5], [EHU3, 1.2 and 1.1] Let R be an equidimensional
universally catenary Noetherian local ring, let M be a finitely generated R-module
having a rank e, and let U be a submodule of M with µ(U) ≥ e− 1. If

ht(U :R M) > µ(U)− e + 1,

then U is a reduction of M.

This theorem yields the upper bound �(M) ≤ µ(U) when the hypothesis is
satisfied. Conversely, one has:

PROPOSITION 1.2. [EHU3, 3.7bis] Let R be a Noetherian local ring with infinite
residue field, let M be a finitely generated R-module having a rank e, and assume
that M satisfies Gs+1. If ht(U :R M) ≤ µ(U)−e+1 for every submodule U generated
by e + s− 1 general linear combinations of generators of M, then �(M) ≥ e + s.

In a more general setting one still has the following weaker bound:

PROPOSITION 1.3. [SUV, 4.1.a] Let R be a Noetherian local ring, and let M
be a finitely generated R-module having a rank e. If M is not a direct sum of a free
module and a torsion module, and MP is free for every prime ideal P with depth
RP ≤ 1, then �(M) ≥ e + 1.

If R→ S is a homomorphism of rings, Jc will denote the contraction to R of
an S-ideal J, and −S will stand for the functor −⊗RS. We will denote HomR(−, R)
by −∗. The embedding codimension ecodim(R) of a Noetherian local ring (R, m) is
defined as the difference µ(m)− dim R; equivalently, writing R̂ ∼= S/J with (S, n)
a regular local ring and J an S-ideal contained in n2, one has ecodim(R) = ht(J).

2. Choosing row ideals of small height. Let R be an equidimensional
universally catenary Noetherian local ring with infinite residue field and M a
finitely generated R-module having a rank e with n = µ(M), � = �(M). Theorem 1.1
shows that if � = n, then every row ideal of any matrix minimally presenting M
has height at most r = n − e. According to Proposition 1.2, the converse holds
in case M satisfies Gr+1. Thus, whenever � < n there tend to exist row ideals of
height strictly greater than r. On the other hand, we will prove below that it is
possible in this case to find “many” row ideals whose height is strictly less than
r. More precisely, over a flat local extension ring S of R there exists a matrix
φ minimally presenting MS such that at least � row ideals of φ have height at
most r− n + � = �− e. These row ideals are constructed inside the defining ideals
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of Rees algebras of certain modules. The local homomorphism R → S has a
complete intersection closed fiber, but regularity may fail to pass from R to S.
This will require some extra care since the height of ideals in S may no longer
be subadditive.

We begin by recording a weaker version of the above estimate, which has
the advantage that S can be chosen to be a localization of a polynomial ring over
R. This theorem was inspired by a result of Evans and Griffith saying that if R
is a universally catenary domain with algebraically closed residue field and N
is a finitely generated nonfree R-module of rank r, then there exists a minimal
generator x ∈ N with ht(N∗(x)) ≤ r [EG, 2.12].

THEOREM 2.1. Let R be an equidimensional universally catenary Noetherian
local ring, and let M be a finitely generated R-module with rank e. Write � = �(M)
and r = µ(M) − e. Then there exists a local homomorphism R → S, with S a
localization of a polynomial ring over R, and a minimal presentation matrix of MS

over S that has � row ideals of height at most r.

This result is a special case of the next theorem. Before stating the theorem
we remark on some notation and terminology. Let (R, m) be a Noetherian local
ring and M a finitely generated R-module with n = µ(M), � = �(M). When we
speak of a generic generating set for M defined over a local ring R′ obtained from
R by a purely transcendental residue field extension we mean the following: Let
X = (xij) be a generic n × n matrix over R, and R′ = R({xij}) = R[{xij}]mR[{xij}].
Fix a generating set m1, . . . , mn of M, and let vj =

∑n
i=1 xijmi ∈ MR′ . Then MR′ is

generated by v1, . . . , vn, and these elements are said to be a generic generating set
for M defined over R′. Furthermore, any � of the vj generate a minimal reduction
of MR′ . (This follows from the fact that the correct number of generic elements
always give Noether normalizations for finitely generated algebras over fields,
which is explicitly shown in [FUV, 7.3].)

THEOREM 2.2. Let (R, m) be an equidimensional universally catenary Noethe-
rian local ring, let M be a finitely generated R-module with rank e, and set
n = µ(M), � = �(M), r = n − e. Let v1, . . . , vn ∈ MR′ be a generic generating
set for M defined over a local ring R′ that is obtained from R by a purely transcen-
dental residue field extension, and let ψ be an n × m matrix presenting MR′ with
respect to v1, . . . , vn. Further let T be an n by n matrix of the form

T =




T1

...

Tn




=




1n−� 0

T ′




with rows Ti, where T ′ is a generic � by n matrix over R′. Set φ = Tψ.
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There exists a local ring R′′ obtained from R′ by another purely transcendental
residue field extension, a prime ideal Q of A = R′′[T] with det(T) /∈ Q and m ⊂ Q,
and AQ-regular sequences at, for n− �+ 1 ≤ t ≤ n, each of length n− �, so that the
following holds: given an arbitrary (possibly empty) set Λ = {t1, . . . , td} of integers
n− � + 1 ≤ t1 < . . . < td ≤ n and writing B = R′′[{Ti| i /∈ Λ}]Qc , a = at1 , . . . , atd

,
and S = AQ/(a), one has:

(1) The homomorphism R→ B is local (and regular), and the homomorphism
B→ S is local and flat with complete intersection closed fiber.

(2) φS is a presentation matrix of MS, and for n − � + 1 ≤ i ≤ n, the ith row
ideal Ji of φS has height at most r− n + � = �− e if i ∈ Λ and at most r otherwise.

(3) a form a regular sequence on AQ/IAQ for every proper ideal I of R.
(4) ecodim(SP) = ecodim(RP∩R) for every prime ideal P of S with P �∈

V(Jt1 · . . . · Jtd ).

Proof. Write U = R′vn−�+1 + · · · + R′vn ⊂ MR′ . Since U is generated by
� generic elements for M it follows that U is a minimal reduction of MR′ . To
simplify notation we write R instead of R′ from now on.

For n − � + 1 ≤ i ≤ n let ai be the ideal of Ai = R[Ti] generated by the ith

row ideal of φ. We obtain isomorphisms

Ai/ai
∼= Sym(M)

sending the (i, j) entry Tij of T to vj. Since Sym(M) maps onto R(M), there are
Ai-ideals bi containing ai such that Ai/bi

∼= R(M). Observe that bight(biA) =
bight(bi) = r (see the remarks at the beginning of Section 1).

Let (R′′, m′′) be the local ring obtained from R = R′ by a purely tran-
scendental residue field extension of transcendence degree (n − �)(∑µ(bi)), let
k′′ = R′′/m′′, E = ⊗�RR(U) ⊗R k′′ and F = ⊗�RR(M) ⊗R k′′. The above isomor-
phisms induce an isomorphism

A/(m, bn−�+1, . . . , bn) ∼= F .

Moreover, the natural map of k′′-algebras E → F is module finite since U is a
reduction of M. Its image is generated by the images in F of Tij for n− � + 1 ≤
i ≤ n and n − � + 1 ≤ j ≤ n. Hence these elements of F are algebraically
independent over k′′, because dimF = �2. It follows that the image of ∆ = det(T)
in F is not nilpotent. Thus there exists a prime ideal Q of A with ∆ �∈ Q and
(m, bn−�+1, . . . , bn) ⊂ Q.

For every t, n− �+ 1 ≤ t ≤ n, let at ⊂ R′′[Tt] be a sequence of n− � generic
elements for bt ⊂ R[Tt], defined using indeterminates over R = R′ as coefficients.
Such sequences exist by the definition of R′′. As (m, bt)At/mAt is an ideal in a
polynomial ring over a field of height dim(At/mAt) − �(M) = n − �, it follows
that at form a regular sequence on At/mAt ⊗k k′′.
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We are now ready to verify statements (1)–(4) in the theorem. Write n for
the maximal ideal of B. As m ⊂ Q we have that m ⊂ n and thus the map R→ B
is a (regular) local homomorphism. Furthermore, a ⊂ Q and AQ/nAQ is flat
over (At1/mAt1 )⊗k · · · ⊗k (Atd/mAtd )⊗k k′′. Thus a form a regular sequence on
AQ/nAQ, the closed fiber of the flat local map B→ AQ. Consequently, the (local)
homomorphism B → S = AQ/(a) is flat with complete intersection closed fiber,
and a form a regular sequence on AQ/IAQ for any R-ideal I ⊂ m [M, p. 177].
This proves (1) and (3).

To show (2), observe that the image of ∆ is a unit in S since ∆ /∈ Q. Thus
φS is a presentation matrix of MS. Obviously Ji = aiS ⊂ biS. If i /∈ Λ then S is
flat over Ai and hence ht(Ji) ≤ ht(biS) = ht(bi(Ai)Q∩Ai) ≤ bight(bi) = r. If on the
other hand i ∈ Λ then ai ⊂ bi, which together with the AQ-regularity of a gives
ht(Ji) ≤ ht(biS) ≤ dim(S)− dim(S/biS) = dim(AQ)− d(n− �)− (dim(AQ)− (d−
1)(n− �)− ht(biAQ)) = ht(biAQ)− (n− �) ≤ bight(biA)− n + � = r− n + � = �− e.
This proves (2).

Finally, to show (4) notice that if P ∈ Spec(S)\V(Jt1 ·. . .·Jtd ), then P �∈ V(btS)
for every t ∈ Λ. Thus by the generic choice of at in bt, the ring SP is a localization
of a polynomial ring over RP∩R.

Notice that Theorem 2.1 follows from Theorem 2.2.2 by taking Λ = ∅. We
will apply Theorem 2.2 in conjunction with the following generalization of a
theorem of Serre:

LEMMA 2.3.
(1) Let A → S be a local homomorphism of Noetherian local rings with A

regular and S equidimensional and universally catenary, let I be an ideal of A, and
let J be an ideal of S. Then

ht(IS + J) ≤ ht(I) + ht(J).

(2) Let B → S be a local homomorphism of equidimensional and universally
catenary Noetherian local rings, let K be an ideal of B, and let J be an ideal of S.
Then

ht(KS + J) ≤ ht(K) + ht(J) + ecodim(B).

Proof. We may assume that the local rings A, B and S are complete by
passing to their completions; our assumptions do not change (see [M, 31.7]), nor
do the conclusions.

We prove (1). Suppose first that the map A→ S is onto, and write S = A/L.
Lift J to an ideal H in A, so that J = H/L. Since S is equidimensional and A is
regular, ht(IS + J) = ht((I + H)/L) = ht(I + H) − ht(L) ≤ ht(I) + ht(H) − ht(L) =
ht(I) + ht(J), where the middle inequality follows from the subadditivity of height
in regular local rings [S, Chap. V, Thm. 3].
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To treat the general case we use a Cohen factorization of the map A → S.

Indeed by [AFH, 1.1] there is a factorization A
g→ R h→ S, where g is flat and

local with regular closed fiber and h is surjective. Notice that R is regular by [M,
23.7] and that ht(I) = ht(IR). Since R maps onto S, the assertion now follows.

We prove (2). Write B = A/L, where A is a regular local ring and ht(L) =
ecodim(B), and lift K to an ideal I in A so that K = I/L. Note that IS = KS and
ht(I) = ht(K) + ecodim(B). Now (2) follows from (1).

Next we give a short proof of a modified version of Theorem 2.2. It requires
the following definition:

Definition 2.4. Let R be a Noetherian local ring with residue field k (or
a positively graded k-algebra), let M be a finitely generated (graded) R-module
having a rank, and write R = R(M). We set

s(M) = dimk[(R⊗R k)/
√

0]1.

Remark 2.5. Observe that in general �(M) ≤ s(M) ≤ µ(M). If M is graded
and generated by homogeneous elements of the same degree, then R⊗R k embeds
into R and therefore s(M) = µ(M) as long as R is reduced and M is torsion free.

THEOREM 2.6. Let R be an equidimensional universally catenary Noetherian
local ring with algebraically closed residue field, let M be a finitely generated R-
module with rank e, and write r = µ(M) − e, s = s(M). There exists a minimal
presentation matrix of M that has s row ideals of height at most r.

Proof. Write R for the Rees algebra of M, k for the residue field of R, and
set V = [(R ⊗R k)/

√
0]1, which we identify with affine space of dimension s.

Consider the closed subset X of V whose coordinate ring is the homogeneous k-
algebra (R⊗R k)/

√
0. Since k is algebraically closed there exists a basis v1, . . . , vs

of V contained in X, and then the lines kv1, . . . , kvs all lie on X.
Let z1, . . . , zn be a minimal generating set of M chosen so that zi maps to vi

for 1 ≤ i ≤ s, and let φ be a presentation matrix with respect to z1, . . . , zn. Set Ji

equal to the ith row ideal of φ. We claim ht(Ji) ≤ r for 1 ≤ i ≤ s.
Let A = R[T1, . . . , Tn] be a polynomial ring, let m denote the maximal ideal

of R, and for 1 ≤ i ≤ s consider the prime ideals Qi = (m, T1, . . . , T̂i, . . . , Tn) of
A. Mapping Tj to zj for 1 ≤ j ≤ n, we obtain presentations Sym(M) ∼= A/a and
R ∼= A/b, where a ⊂ b are A-ideals. As X contains the line kvi, we have b ⊂ Qi

for 1 ≤ i ≤ s. Thus ht(aQi) ≤ ht(bQi) ≤ bight(b) = r. Let πi: AQi −→ R(Ti)
be the R[Ti]-epimorphism whose kernel is generated by the AQi-regular sequence
T1, . . . , T̂i, . . . , Tn. Since ht(πi(aQi)) + n − 1 = ht(πi(aQi), T1, . . . , T̂i, . . . , Tn) =
ht(aQi , T1, . . . , T̂i, . . . , Tn) ≤ ht(aQi) + n− 1, it follows that ht(πi(aQi)) ≤ ht(aQi).
But πi(aQi) = JiR(Ti), which gives ht(Ji) ≤ r.
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We finish the section with two immediate consequences of Theorem 2.6. Both
are first height estimates for ideals of minors of matrices, stated more conveniently
in terms of Fitting ideals of modules.

COROLLARY 2.7. Let R be a regular local ring with perfect residue field k, let
M be a finitely generated R-module of rank e, and write r = µ(M)− e, s = s(M).
For every 1 ≤ i ≤ s,

ht(Fitti−1(M)) ≤ ir.

Proof. There exists a flat local homomorphism R→ S where S is a regular
local ring with algebraically closed residue field K [G, (10.3)]. Since S is flat over
R and k is perfect, one has that (R(MS) ⊗S K)/

√
0 ∼= ((R(M) ⊗R k)/

√
0) ⊗k K

and therefore s(M) = s(MS). We replace R and M by S and MS, and assume that
k is algebraically closed.

By Theorem 2.6 there exists a minimal presentation matrix of M that has i
row ideals J1, . . . , Ji of height at most r. As Fitti−1(M) ⊂ J1 + · · · + Ji and R
is a regular local ring, we conclude that ht(Fitti−1(M)) ≤ ir (see [S, Chap. V,
Thm. 3]).

COROLLARY 2.8. Let R be a polynomial ring over a field, let M be a torsion
free graded R-module of rank e minimally generated by n homogeneous elements
of the same degree, and write r = n− e. For every 1 ≤ i ≤ n, ht(Fitti−1(M)) ≤ ir.
In particular, for every submodule U of M generated by t < n elements, ht(U :R
M) ≤ (t + 1)r.

Proof. We may assume that the ground field is perfect. Writing m for the
irrelevant maximal ideal of R we observe that s(Mm) = s(M) = n by Remark 2.5.
Furthermore U :R M ⊂

√
Fittt(M). The assertions now follow from Corollary 2.7.

3. Heights of determinantal ideals. The classical theorem of Bruns [B,
Cor. 1] states that in a Noetherian ring R, the height of the (proper) ideal of i by
i minors of an n by m matrix of rank r (with i ≤ r) cannot exceed the “generic”
value N(i, r, m, n) defined as follows: let X be a generic n by m matrix and set
N(i, r, m, n) := ht(Ii(X))−ht(Ir+1(X)) = (r− i + 1)(m + n− r− i + 1). This is exactly
the height of the ideal of i by i minors of the image of X in the ring R[X]/Ir+1(X)
(note the image of X has rank r in this ring). However, if we also insist that the
base ring R be regular and the rank r of the matrix not be maximal, then it is by
no means clear that this maximum is ever attained. The main results known for
the regular case are due to Bruns [B, Thm. 3] and Faltings [F, Kor. 2], and their
results apply only to the case i = r. In Corollary 3.6.1 below we establish a bound
for the height of the (proper) ideal of i by i minors of an n by m matrix of rank r
over a regular ring that is roughly (r− i)( max{m, n}− i + 1) + max{m− i + 1, n}.
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A second, related problem is to estimate the height of the (proper) ideal of
i by i minors modulo the ideal of i + 1 by i + 1 minors. Again, the best general
bound is N(i, i, m, n) = m + n − 2i + 1, but one may expect better results if R is
regular and the rank r of the matrix is not maximal. We address this issue in
Corollary 3.9.1, where the bound max{m− i + 1, n} + r − i is established.

Both problems are special cases of the following, more general question:
How can one estimate the height of the ideal of i by i minors of a matrix of
rank r̄ that can be “lifted” to a matrix of rank r over a ring R? Theorem 3.1, the
main result of this section, gives such a bound involving the difference r − r̄ of
the ranks and the embedding codimension of R. The proof of this result relies
on the work of Section 2 about row ideals of small height. The theorem gives
particularly strong estimates if the matrix can be lifted in such a way that the
increase in the rank is outweighed by a decrease in the embedding codimension
of the ambient ring.

THEOREM 3.1. Let R be an equidimensional universally catenary Noetherian
local ring, let ϕ be an n by m matrix of rank r with entries in R, and let I be an
R-ideal. Assume that M = Coker(ϕ) has a rank, and write � = �(M), R̄ = R/I, ϕ̄ =
ϕR̄, r̄ = rank(ϕ̄). Let i ≤ r̄ be an integer so that Ii(ϕ̄) �= R̄. Set δ = r − r̄ and
ε = maxP{ecodim(RP)}, where the maximum is taken over all prime ideals P of R
not containing Ii(ϕ).

(1)

ht(Ii(ϕ̄)) ≤ max{( min{n− �, r̄} − i + 1)(m− i + 1 + max{0, n− �− r̄}),

(r̄ − i)( max{m, n + ε} − i + δ + 1) + � + δ + ecodim(R)}

≤ (r̄ − i)( max{m, n + ε} − i + δ + 1)

+ max{m− i + 1, � + ecodim(R)} + δ.

(2) If the R̄-module M̄ = MR̄ is not a direct sum of a free module and a torsion
module, M̄P̄ is free for every prime P̄ of R̄ with depth(R̄P̄) ≤ 1, and MP is of linear
type for every associated prime P of I, then

ht(Ii(ϕ̄)) ≤ (r̄ − i)( max{m, n + ε} − i + δ + 1) + � + δ + ecodim(R).

Before proving the theorem we wish to make several comments. First notice
that ε = 0 in case R is regular locally on the punctured spectrum. If the R̄-
module M̄ is a direct sum of a torsion module and a free module then trivially
ht(Ii(ϕ̄)) ≤ (r̄ − i + 1)(m − i + 1). It is also obvious that one can replace the
bound of part (1) by the better formula of (2) whenever i ≥ n − � + 1. Finally,
the estimates of Theorem 3.1 are sharp for ϕ a generic matrix with entries in the
localization of a polynomial ring over a regular ring and I = Ir̄+1(ϕ), if n ≤ m or
i = 1.
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Proof of Theorem 3.1. We first prove that the second inequality of (1) is
true, namely that

max{( min{n− �, r̄} − i + 1)(m− i + 1 + max{0, n− �− r̄}),

(r̄ − i)( max{m, n + ε} − i + δ + 1) + � + δ + ecodim(R)}

≤ (r̄ − i)( max{m, n + ε} − i + δ + 1) + max{m− i + 1, � + ecodim(R)} + δ.

We prove that each term in the maximum on the left-hand side of the inequal-
ity is at most the right-hand side. This is clear for the second term. It remains to
see why

( min{n− �, r̄} − i + 1)(m− i + 1 + max{0, n− �− r̄})

≤ (r̄ − i)( max{m, n + ε} − i + δ + 1) + max{m− i + 1, � + ecodim(R)} + δ.

By possibly lessening the right-hand side and increasing the left-hand side, it is
enough to prove that

(r̄ − i + 1)(m− i + 1 + max{0, n− �− r̄}) ≤ (r̄ − i)(m− i + δ + 1) + m− i + 1 + δ

= (r̄ − i + 1)(m− i + δ + 1),

and for this it suffices to prove that max{0, n− �− r̄} ≤ δ = r− r̄. Clearly 0 ≤ δ.
The inequality n− �− r̄ ≤ r− r̄ is equivalent to the inequality n− r ≤ �, which
is always true, since n− r = e = rank(M) ≤ � (see the remarks at the beginning
of Section 1).

We use induction on n to prove the first inequality of Theorem 3.1. Suppose
that n = 1. As 1 ≤ i ≤ r̄ ≤ r ≤ n, we conclude that i = r̄ = r = n = 1.
In particular, rank(M) = n − r = 0, hence M is a torsion module and therefore
� = 0, since we always factor out torsion to compute the analytic spread. Now
the inequality reads:

ht(I1(ϕ̄)) ≤ max{m, ecodim(R)}.

By the Krull height theorem, the height of I1(ϕ̄) is at most its number of gener-
ators, which is bounded by m, proving the case n = 1.

We may suppose that the entries of ϕ lie in the maximal ideal of R. We claim
that we may further assume that I = P is a prime ideal. Let P be a minimal prime
of I having maximal dimension. We write rP for the rank of ϕR/P. If rP < i then
Ii(ϕ) ⊂ P, hence ht(Ii(ϕ̄)) = 0. In this case the first inequality of (1) holds since
the right-hand side is nonnegative. Thus we may assume that i ≤ rP. The ring
R being catenary we have that ht(Ii(ϕ̄)) ≤ ht(Ii(ϕR/P)). Hence the left-hand side
of the first inequality of (1) cannot decrease as we replace ϕ̄ by ϕR/P. We prove
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that as a function of r̄, the right-hand side of (1) is nonincreasing as we decrease
r̄ to i. Since i ≤ rP ≤ r̄ this will prove our claim.

The right-hand side of (1) is a maximum of two terms. Decreasing r̄ by one
changes the second term, (r̄ − i)( max{m, n + ε} − i + δ + 1) + � + δ + ecodim(R),
to (r̄ − i− 1)( max{m, n + ε} − i + δ + 2) + � + δ + 1 + ecodim(R). Subtracting the
second from the first gives the value max{m, n + ε} + r− 2r̄ + 1, which is always
nonnegative. The first term, ( min{n− �, r̄}− i + 1)(m− i + 1 + max{0, n− �− r̄}),
can only increase if n−�− r̄ ≥ 0. Then as r̄ decreases by 1, max{0, n−�− r̄} will
increase by 1. However, in this case min{n − �, r̄} will be r̄ and will decrease
by 1. Then the product has the form (r̄ − i + 1)(m − i + 1 + (n − � − r̄)), and
when we replace r̄ by r̄ − 1 we obtain (r̄ − i)(m − i + 1 + (n − � − r̄) + 1). But
(r̄ − i + 1)(m − i + 1 + (n − � − r̄)) ≥ (r̄ − i)(m − i + 1 + (n − � − r̄) + 1), since
m + n− � + 1 ≥ 2r̄ by our assumption that n− �− r̄ ≥ 0.

Thus we may suppose that R̄ is a domain, hence equidimensional. We use
the notation of Theorem 2.2 and in addition set aj = 0 whenever j ≤ n − �. For
0 ≤ j ≤ n let φj be the j by m matrix consisting of the first j rows of φ, and
define

t = min{j | Ii(φ) ⊂
√

(Ii(φj), I, aj)Q}.

We apply Theorem 2.2 with Λ = ∅ if t ≤ n−� and Λ = {t} if t ≥ n−�+1. Let
Jt be the tth row ideal of the matrix φS, and write B̄ = B/IB, S̄ = S/IS, J̄t = JtS̄.
By Theorem 2.2, R ⊂ B ⊂ S and R̄ ⊂ B̄ ⊂ S̄ are flat local extensions, S
and S̄ are equidimensional and catenary, and ecodim(SP) ≤ ε for every prime P
of S not containing Ii(ϕ) · Jt. Notice that Ii(φS̄) ⊂

√
Ii((φt)S̄) according to the

definition of t. In particular we may assume i ≤ t, as otherwise Ii(ϕ̄) ⊂ Ii(ϕS̄) =
Ii(φS) is nilpotent and then ht(Ii(ϕ̄)) = 0. Moreover Ii(φS̄) �⊂

√
Ii((φt−1)S̄); for

otherwise Ii(ϕ̄) ⊂
√

Ii((φt−1)B̄) since B̄ ⊂ S̄ is a flat local extension, and then
Ii(φ) ⊂

√
(Ii(φt−1), I, at−1)Q, contradicting the choice of t. Again by Theorem 2.2,

ht(Jt) ≤ r−n + � if t ≥ n− �+ 1. Furthermore as Ii((φt−1)S) + IS is extended from
B and S is flat over B, Lemma 2.3.2 implies that

ht(Jt + Ii((φt−1)S) + IS) ≤ ht(Jt) + ht(Ii((φt−1)S) + IS) + ecodim(R).

Thus by our equidimensionality conditions,

ht(J̄t + Ii((φt−1)S̄)) ≤ ht(Jt) + ht(Ii((φt−1)S̄)) + ecodim(R).

Since S̄ is a flat local extension of R̄ and

Ii(ϕS̄) = Ii(φS̄) ⊂
√

Ii((φt)S̄) ⊂
√

J̄t + Ii((φt−1)S̄),
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we conclude that

ht(Ii(ϕ̄)) = ht(Ii(ϕS̄)) ≤ ht(Jt) + ht(Ii((φt−1)S̄)) + ecodim(R).

To simplify notation we will henceforth write φ,φj, φ̄, φ̄j instead of φS, (φj)S,φS̄, (φj)S̄.
With this we have √

Ii(φ̄t−1) �
√

Ii(φ̄t)(3.2)

ht(Ii(ϕ̄)) = ht(Ii(φ̄t)) ≤ ht(Jt) + ht(Ii(φ̄t−1)) + ecodim(R).(3.3)

Case 1. t ≤ n − �. In this case the first equality of (3.3) gives ht(Ii(ϕ̄)) ≤
ht(Ii(φ̄n−�)). Therefore ht(Ii(ϕ̄)) ≤ (n− �− i + 1)(m− i + 1), and according to [B,
Cor. 1],

ht(Ii(ϕ̄)) ≤ (r̄ − i + 1)(m + n− �− r̄ − i + 1).

Now the first inequality of (1) follows.

Case 2. t ≥ n − � + 1. In this case ht(Jt) ≤ r − n + �, and therefore (3.3)
yields

ht(Ii(ϕ̄)) ≤ r − n + � + ht(Ii(φ̄t−1)) + ecodim(R).(3.4)

By (3.2) there exists a prime ideal P of S with Ii(φt−1) + IS ⊂ P and Ii(φt) �⊂ P.
Since Ii(φt) is contained in Ii−1(φt−1), in Ii(ϕ)S, and in Jt + Ii(φt−1), one automat-
ically has Ii−1(φt−1) �⊂ P as well as Ii(ϕ) · Jt �⊂ P. By the latter, ecodim(SP) ≤ ε.
Set s = max{j|Ij(φ) �⊂ P}. Clearly 1 ≤ i ≤ s ≤ r̄. Recall that Ii−1(φt−1)P = SP

and Ii(φ̄t−1)P �= S̄P. Thus without changing the ideal Ii(φ̄t−1)P, we may perform
elementary row and column operations over SP to assume that

φSP
=




1i−1 0

φ′ φ′′

0

0 1s−i+1




,

where φ′,φ′′ have entries in the maximal ideal of SP. Notice that the n − s by
m − s matrix φ′ has rank r − s and φ̄′ has rank r̄ − s, with φ̄′, φ̄′′ standing for
φ′S̄P

,φ′′S̄P
.
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Since Ii(φ̄t−1)P ⊂ I1(φ̄′)+I1(φ̄′′) �= S̄P and S̄P is equidimensional and catenary,
we obtain

ht(Ii(φ̄t−1)) ≤ ht(Ii(φ̄t−1)P) ≤ µ(I1(φ̄′′)) + ht(I1(φ̄′))

≤ (s− i + 1)(n− s) + ht(I1(φ̄′)).

Thus by (3.4),

ht(Ii(ϕ̄)) ≤ r − n + � + (s− i + 1)(n− s) + ht(I1(φ̄′)) + ecodim(R).(3.5)

If r̄ − s ≥ 1 we may apply the induction hypothesis to the matrix φ′. Using
the weaker second inequality of (1) yields

ht(I1(φ̄′)) ≤ ((r̄ − s)− 1)( max{m− s, (n− s) + ε} − 1 + δ + 1)

+ max{(m− s)− 1 + 1, (n− s) + ε} + δ

= (r̄ − s)( max{m, n + ε} − s + δ).

This inequality also holds if r̄ − s = 0, since then Ii(Φ̄′) = 0. Now by (3.5),

ht(Ii(ϕ̄)) ≤ r − n + � + (s− i + 1)(n− s) + (r̄ − s)( max{m, n + ε} − s + δ)

+ ecodim(R)

≤ r − n + � + n− i + (r̄ − i)( max{m, n + ε} − i + δ) + ecodim(R),

because i ≤ s ≤ r̄ and n− s ≤ max{m, n + ε} − i + δ. It follows that

ht(Ii(ϕ̄)) ≤ (r̄ − i)( max{m, n + ε} − i + δ + 1) + � + δ + ecodim(R),

proving the first inequality of (1) in Case 2 as well.

To show part (2) first notice that the R̄-module M̄ has a rank, as can be
seen from the Abhyankar-Hartshorne connectedness lemma (see [Ha1, 2.2]). The
natural map Sym(M)→ Sym(M̄) induces an epimorphism R(M)→ R(M̄) since
M is of linear type locally at every associated prime of I. Therefore �(M) ≥ �(M̄).
On the other hand �(M̄) ≥ rank(M̄)+1 by Proposition 1.3. Therefore � ≥ n− r̄+1,
and (2) follows from (1).

COROLLARY 3.6. Let R be an equidimensional universally catenary Noetherian
local ring, and let ϕ be an n by m matrix of rank r with entries in R. Assume that
M = Coker(ϕ) has a rank and write � = �(M). Let i ≤ r be an integer such that
Ii(ϕ) �= R. Set ε = maxP{ecodim(RP)}, where the maximum is taken over all prime
ideals P of R not containing Ii(ϕ).
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(1)

ht(Ii(ϕ)) ≤ max{(n− �− i + 1)(m− i + 1), (r − i)( max{m, n + ε} − i + 1)

+ � + ecodim(R)}

≤ (r − i)( max{m, n + ε} − i + 1) + max{m− i + 1, � + ecodim(R)}.

(2) If M is not a direct sum of a free module and a torsion module, and MP is
free for every prime P of R with depth(RP) ≤ 1, then

ht(Ii(ϕ)) ≤ (r − i)( max{m, n + ε} − i + 1) + � + ecodim(R).

Proof. Apply Theorem 3.1 with I = 0 and use the fact that � ≥ rank(M).

In the setting of Corollary 3.6, part (1) could also be deduced from (2)
whenever M is free locally in depth one: for if M is a direct sum of a free
module and a torsion module, then obviously ht(Ii(ϕ)) ≤ (r − i + 1)(m− i + 1).

COROLLARY 3.7. Let R be an equidimensional universally catenary Noetherian
local ring, and let ϕ be an n by m matrix of rank r with entries in R. Assume that
M = Coker(ϕ) has a rank and write � = �(M).

(1) [B, Thm. 3] If M is not free, then ht(Ir(ϕ)) ≤ max{m−r+1, �+ecodim(R)}.
(2) [F, Kor. 2] If R is S2 and M is not a direct sum of a free module and a torsion

module, then ht(Ir(ϕ)) ≤ � + ecodim(R).

Proof. Set i = r in Corollary 3.6. This gives (1) immediately. To prove (2)
notice that MP is free for every prime P of R with depth(RP) ≤ 1 unless the
height of Ir(ϕ) is at most one. On the other hand 1 ≤ rank(M) ≤ �.

COROLLARY 3.8. Let R be a universally catenary Noetherian local ring of di-
mension d satisfying S2, and let M be a finitely generated R-module having a rank.
Let Λ be the set of all prime ideals Q of R such that the RQ-module MQ is not a
direct sum of a free module and a torsion module. If Λ is nonempty then

d ≤ max
Q∈Λ
{µ(MQ) + ecodim(RQ) + dim(R/Q)}.

Proof. First note that R is equidimensional. We may factor out the torsion of
M to assume that M is torsion free. Notice this does not change the set Λ. Choose
Q minimal in Λ. Then MP is free for all primes P � Q. If ϕ is a matrix minimally
presenting MQ we let r be the rank of ϕ. Our choice of Q shows that

√
Ir(ϕ)RQ =

QRQ. Furthermore Corollary 3.7.2 gives ht(Ir(ϕ)RQ) ≤ µ(MQ) + ecodim(RQ).
Hence d − dim(R/Q) = dim(RQ) = ht(Ir(ϕ)RQ) ≤ µ(MQ) + ecodim(RQ), from
which the corollary follows.
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COROLLARY 3.9. Let R be an equidimensional universally catenary Noetherian
local ring, and let ϕ be an n by m matrix of rank r with entries in R. Assume that
M = Coker(ϕ) has a rank and write � = �(M). Let i ≤ r be an integer such that
Ii(ϕ) �= R.

(1) ht(Ii(ϕ)/Ii+1(ϕ)) ≤ max{m− i + 1, � + ecodim(R)} + r − i.
(2) If i ≥ n− � + 1, then

ht(Ii(ϕ)/Ii+1(ϕ)) ≤ � + r − i + ecodim(R)

and in particular

ht(Ii(ϕ)) ≤ (r − i + 1)(� + ecodim(R)) +

(
r − i + 1

2

)
.

Proof. Apply Theorem 3.1.1 with I any minimal prime of Ii+1(ϕ) that does
not contain Ii(ϕ). Notice that r̄ = i. Iterate to get the last statement.

The reader may want to compare Corollary 3.9.2 to Corollary 2.7. The sig-
nificance of both formulas is that they do not involve m. The above result leads
to improved height bounds for Ii(ϕ) if one knows a priori that for some j ≥ i,
the height of Ij(ϕ) is “smaller than expected”. Applying this observation to ideals
one obtains:

COROLLARY 3.10. Let R be an equidimensional universally catenary Noetherian
local ring with residue field k, and let J be an R-ideal with grade(J) > 0. Write
g = ht(J), � = �(J), n = µ(J), and m = dimkTorR

1 (k, J). Let i be an integer with
g− 1 ≤ i ≤ n− 1.

(1) If i ≤ �− 1, then

ht(Fitti(J)) ≤ (i− g + 1)(� + g− 1 + ecodim(R)) +

(
i− g + 1

2

)
+ g.

(2) If i ≥ �, then

ht(Fitti(J)) ≤ (�− g)(� + g− 1 + ecodim(R)) +

(
�− g

2

)
+ g

+(i− � + 1) max
{

m− n +
� + 3i

2
,

3� + i
2
− 1 + ecodim(R)

}
.

Proof. Notice that ht(Fittg−1(J)) ≤ g and argue as in the proof of Corol-
lary 3.9.
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EXAMPLE 3.11. Let R be a regular local ring, and let J be a proper R-ideal with
g = ht(J) and � = �(J).

(1) (Non-complete-intersection locus, [Hu, 1.1]) If J is not a complete inter-
section then ht(Fittg(J)) ≤ � + 2g− 1.

(2) (Non-almost-complete-intersection locus) If ExtgR(J, R) = 0, JQ is a com-
plete intersection for every prime ideal Q of R containing J with dim(RQ) = g, and
J is not an almost complete intersection, then ht(Fittg+1(J)) ≤ 2� + 3g− 1.

Proof. We may assume that the residue field of R is infinite. In (1) we may
suppose that ht(Fittg(J)) ≥ g + 1. But then J satisfies Gg+1, and hence � ≥ g + 1
by [CN]. The assertion follows from Corollary 3.10.1. Likewise in (2) one can
assume that ht(Fittg+1(J)) ≥ g + 2. Thus J satisfies Gg+2, and therefore � ≥ g + 2
according to [CEU, 4.4 and 3.4(a)] and Proposition 1.2. Again we may apply
Corollary 3.10.1.

4. A family of examples. We present a class of n by m matrices of rank r
which show that the inequalities of Corollary 3.6 are fairly sharp for all values
of i, r, m, n. Unlike the examples given in the introduction, these matrices have
no generalized zeros.

EXAMPLE 4.1. Let i, r, m, n be integers with 1 ≤ i ≤ r ≤ n ≤ m and let ϕ be
the product of a generic n by r matrix with a generic r by m matrix. One has

ht(Ii(ϕ)) =




(r−i+1)(n−i+1) if m ≥ n + r − i + 1

(r−i+1)(n−i+1)− (r+n−m−i+1)2

4 if r + n− m− i + 1 > 0
and even

(r−i+1)(n−i+1)− (r+n−m−i+1)2−1
4 if r + n− m− i + 1 > 0

and odd.

Proof. We may assume that the ambient ring R is obtained by adjoining
the entries of the two generic matrices to a ring k. The height of Ii(ϕ) cannot
decrease when k is replaced by the residue field of any minimal prime of k, and
it cannot increase if we pass to the residue field of P∩ k for some minimal prime
P of Ii(ϕ) having minimal height. Thus it suffices to consider the case where k
is a field, and we may even assume that k is algebraically closed.

Let X be the closed subset of Pr(m+n)−1
k = P( Homk (km, kr) × Homk (kr, kn))

defined by the homogeneous ideal Ii(ϕ). Notice that X = {[(α,β)] | rank(βα) ≤
i− 1}, where α ∈ Homk (km, kr) and β ∈ Homk (kr, kn). For 0 ≤ s ≤ r− i + 1 set
Xs = {[(α,β)] | rank(α) ≤ s + i− 1, rank(β) ≤ r− s, rank(βα) ≤ i− 1}. As X is
the union of the closed subsets Xs, our formula will follow once we have shown
that

dim Xs = (r − s)(n + s) + (s + i− 1)(m− i + 1) + (i− 1)r − 1.
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In doing so we even show that Xs is irreducible and we construct an explicit
desingularization (see also [HU, the proof of 3.16] and [ACGH, Chapter II,
Section 2]). Let Y be the flag variety Fl(s, s + i− 1; kr) = {(U, V) | U ⊂ V ⊂ kr},
where U and V are subspaces of dimension s and s + i − 1, respectively. In
Y × Pr(m+n)−1

k consider the closed subset Z = {((U, V), [(α,β)]) | Image(α) ⊂ V ,
Ker(β) ⊃ U}. The projections onto the first and second factor of Y × Pr(m+n)−1

k
yield surjective morphisms

Z

✴�
�
�
�
�

f
❙
❙
❙
❙
❙

g

✇

Y Xs.

It is known that Y is irreducible of dimension s(r− s) + (i− 1)(r− s− i + 1). The
fibers of f over all closed points (U, V) of Y are isomorphic to P( Homk (km, V)×
Homk (kr/U, kn)) ∼= P

m(s+i−1)+n(r−s)−1
k , hence are irreducible of constant dimen-

sion. Since, furthermore, Z ⊂ Y × Pr(m+n)−1
k , it follows that Z is irreducible (see

[E, Exercise 14.3]). One necessarily has

dim Z =dim Y+dimPm(s+i−1)+n(r−s)−1
k = (r−s)(n+s)+(s+i−1)(m−i+1)+(i−1)r−1,

as can be seen, for instance, from the lemma of generic flatness (see [E, 14.4]).
On the other hand, since Z is irreducible and g is surjective, Xs is irreducible
as well. As {[(α,β)] | rank(α) ≤ s + i − 2 or rank(β) ≤ r − s − 1} ∩ Xs is a
closed proper subset of Xs, it follows that for every closed point [(α,β)] in some
dense open subset of Xs, the fiber of g over [(α,β)] consists of the single point
((Ker(β), Image(α)), [(α,β)]). Thus again by generic flatness, dim Xs = dim Z,
which proves our assertion.

5. Some results on symmetric matrices. We prove the conjecture of Prob-
lem 1 in the extremal cases i = 1 and i = n− 1 if the ring is regular.

PROPOSITION 5.1. Let (R, m) be a regular local ring with residue field k, and let
ϕ be a symmetric n by n matrix of rank r with entries in m.

(1) ht(I1(ϕ)) ≤ rn−
(

r
2

)
.

(2) If char k �= 2 and r = n− 1 ≥ 1, then

ht(In−1(ϕ)) ≤ 2.

Proof. To prove (1) we apply Theorem 2.1 to the module M = Coker(ϕ).
One has �(M) ≥ rank(M) = n− r. By the theorem there exists a local homomor-
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phism R→ S with S a localization of a polynomial ring over R, and an invertible
n by n matrix T over S so that n− r row ideals J1, . . . , Jn−r of Ψ = TϕT∗ have

height at most r. By the symmetry of ϕ, µ(I1(Ψ)/(J1 + · · ·+Jn−r)) ≤
(

r + 1
2

)
.

Therefore ht(I1(ϕ)) = ht(I1(ϕ)S) = ht(I1(Ψ)) ≤ ht(J1 + · · · + Jn−r) +

(
r + 1

2

)
≤

(n−r)r+

(
r + 1

2

)
= rn−

(
r
2

)
, where the last inequality uses the subadditivity

of height in regular local rings ([S, Chap. V, Thm. 3]).

To prove (2) we suppose that ht(In−1(ϕ)) ≥ 3. Since 2 is a unit in R we may
assume that ϕ11, the (1, 1) entry of ϕ, does not lie in mI1(ϕ). Having rank n− 1,
the matrix ϕ fits into an exact sequence

0 −→ R
ψ−→ Rn ϕ−→ Rn∗.

As ht(I1(ψ)) ≥ ht(In−1(ϕ)) ≥ 3, the complex

F.: 0 −→ R
ψ−→ Rn ϕ−→ Rn∗ ψ∗−→ R∗

is exact by the Buchsbaum-Eisenbud acyclicity criterion, see [BE1, Theorem].
Thus I1(ψ) = I1(ψ∗) ⊂ I1(ϕ). Furthermore I1(ψ∗) is a Gorenstein ideal of height
3, and hence according to [BE2, 2.1], there is an exact sequence

G.: 0 −→ R
ψ−→ Rn χ−→ Rn∗ ψ∗−→ R∗

with χ alternating.
The identity map on Coker(ψ∗) lifts to a morphism of complexes α.: F. −→

G. where α0 = id and α1 = id. Notice that α3 is multiplication by some u ∈ R.
As F.∗ and G.∗ are acyclic complexes of free modules, there exists a morphism
of complexes β.: G.∗ −→ F.∗ with β−3 = α∗3 = u · id and β−2 = u · id. One
has that α.∗ and β. are homotopic, hence α. and β.∗ are homotopic. Thus α2 ≡
u · id mod(I1(ϕ) + I1(ψ)). Since ϕ = χ ◦ α2, it follows that

ϕ ≡ u · χ mod(I1(χ)I1(ϕ) + I1(χ)I1(ψ)),

hence

ϕ ≡ u · χ mod I1(ϕ)2.

But this is impossible because χ11 = 0, whereas ϕ11 �∈ mI1(ϕ).
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