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FITTING’S LEMMA FOR Z/2-GRADED MODULES

DAVID EISENBUD AND JERZY WEYMAN

Abstract. Let φ : Rm → Rd be a map of free modules over a commutative
ring R. Fitting’s Lemma shows that the “Fitting ideal,” the ideal of d × d
minors of φ, annihilates the cokernel of φ and is a good approximation to the

whole annihilator in a certain sense. In characteristic 0 we define a Fitting
ideal in the more general case of a map of graded free modules over a Z/2-
graded skew-commutative algebra and prove corresponding theorems about the
annihilator; for example, the Fitting ideal and the annihilator of the cokernel
are equal in the generic case. Our results generalize the classical Fitting Lemma
in the commutative case and extend a key result of Green (1999) in the exterior
algebra case. They depend on the Berele-Regev theory of representations of
general linear Lie superalgebras. In the purely even and purely odd cases we
also offer a standard basis approach to the module coker φ when φ is a generic
matrix.

Introduction

The classical Fitting Lemma (Fitting [Fit]) gives information about the annihi-
lator of a module over a commutative ring in terms of a presentation of the module
by generators and relations. More precisely, let

φ : Rm → Rd

be a map of finitely generated free modules over a commutative ring R, and for
any integer t ≥ 0 let It(φ) denote the ideal in R generated by the t × t minors
of φ. Fitting’s result says that the module cokerφ is annihilated by Id(φ), and
that if φ is the generic map—represented by a matrix whose entries are distinct
indeterminates—then the annihilator is equal to Id(φ). Thus Id(φ) is the best
approximation to the annihilator that is compatible with base change. Moreover,
Id(φ) is not too bad an approximation to ann cokerφ in the sense that Id(φ) ⊃
(ann cokerφ)d, or more precisely (ann cokerφ)It(φ) ⊂ It+1(φ) for all 0 ≤ t < d. In
this paper we will prove corresponding results in the case of Z/2-graded modules
over a skew-commutative Z/2-graded algebra containing a field K of characteristic
0. Let R be a Z/2-graded skew-commutative K-algebra: that is, R = R0 ⊕ R1 as
vector spaces, R0 is a commutative central subalgebra, RiRj ⊂ Ri+j (mod 2), and
every element of R1 squares to 0. Any homogeneous map φ of Z/2-graded free
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R-modules may be written in the form

φ : Rm ⊕Rn(1)
(X A
B Y )
−−−−−→ Rd ⊕Re(1),

where X,Y are matrices of even elements of R, and A,B are matrices of odd ele-
ments. We will define an ideal IΛ(d,e) and show that it is contained in the annihilator
of the cokernel of φ, with equality in the generic case where the entries of the ma-
trices X,Y,A,B are indeterminates (that is, R is a polynomial ring on the entries
of X and Y tensored with an exterior algebra on the entries of A and B). In the
purely even and purely odd cases our results are characteristic-free, but in general
we give examples to show that the annihilator can look quite different—for example,
it might be generated by forms of different degrees—in positive characteristic.

Now let K be a field, and let U = U0⊕U1 and V = V0⊕V1 be Z/2-graded vector
spaces of dimensions (d, e) and (m,n) respectively. We consider the generic ring

S = S(V ⊗ U) := S(V0 ⊗ U0)⊗ S(V1 ⊗ U1)⊗ ∧(V0 ⊗ U1)⊗ ∧(V1 ⊗ U0),

where S denotes the symmetric algebra and ∧ denotes the exterior algebra, and the
generic, or tautological , map

Φ : S ⊗ V → S ⊗ U∗.

This map Φ is defined by the condition that Φ|V = 1⊗ η : V → V ⊗K U ⊗K U∗ ⊂
R ⊗K U∗, where η : K → U ⊗K U∗ is the dual of the contraction U∗ ⊗K U → K.
We will make use of this notation throughout the paper. We will compute the
annihilator of the cokernel of Φ. Of course if we specialize Φ to any map of free
modules φ over a Z/2-graded ring, preserving the grading, then we can derive
elements in the annihilator of the cokernel of φ by specializing the annihilator of
the cokernel of Φ.

In the classical case, where V and U have only even parts (e = n = 0), the
annihilator is an invariant ideal for the action of the product of general linear
groups GL(V ) × GL(U). Such invariant ideals have been studied by DeConcini,
Eisenbud, and Procesi in [DEP] and have a very simple arithmetic. In the general
case, Berele and Regev [BR] have developed a highly parallel theory, using the
Z/2-graded Lie algebra g = gl(V )× gl(U) in place of GL(V )×GL(U). They show
that the generic ring S is a semisimple representation of g (even though not all
the representations of g are semisimple) and that the irreducible summands of S of
total degree t are parametrized by certain partitions of the integer t, just as in the
commutative case. The Berele-Regev theory is described in detail below, in Section
1 of this paper.

If Λ is a partition, we write IΛ for the ideal of S generated by the irreducible
representation corresponding to Λ. If φ is a matrix representing any map of Z/2-
graded free modules over a Z/2-graded skew-commutative K algebra R, then there
is a unique ring homomorphism α : S → R such that φ = α(Φ), and we write
IΛ(φ) := α(IΛ(Φ))R for the ideal generated by the image of IΛ = IΛ(Φ). If e =
n = 0, so that the ring S is a polynomial ring, the classical Fitting Lemma (see
for example Eisenbud [Eis, Prop. 20.7]) shows that the annihilator of coker Φ is
the ideal of d× d minors Id(Φ). In representation-theoretic terms, this is the ideal
generated by the representation

∧dV0 ⊗ ∧dU0 ⊂ Symd(V0 ⊗ U0),
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the irreducible representation associated to the partition with one term (d). In our
notation, Id(Φ) = I(d) = I(d)(Φ). On the other hand, if d = n = 0, so that the ring
S is an exterior algebra, Green [Gre, Proposition 1.3] shows that the representation

Se(V0)⊗ ∧eU1 ⊂ ∧e(V0 ⊗ U1)

is at least contained in the annihilator of coker Φ. This is the representation as-
sociated to the partition (1e) = (1, 1, . . . , 1) with e parts (see Appendix 1 for a
characteristic-free treatment). Here is the common generalization of these results,
which is the main result of this paper:

Theorem 1. Suppose that K is a field of characteristic 0, and let

φ : Rm ⊕Rn(1)
(X A
B Y )
−→ Rd ⊕Re(1)

be a Z/2-graded map of free modules over a Z/2-graded skew-commutative K-algebra
R.

a) When R = S and φ = Φ, the generic map defined above, the annihilator of
the cokernel of Φ, is IΛ(d,e)(Φ), where Λ(d, e) is the partition (d+1, d+1, . . . , d+1, d)
of (d+ 1)(e+ 1)− 1 into e+ 1 parts. In general we have IΛ(d,e)(φ) ⊂ ann coker(φ).

b) If x1, . . . , xe ∈ ann coker(φ), then x1 . . . xe ∈ IΛ(0,e)(φ). Moreover, if 0 ≤ s ≤
d− 1, and x1, . . . , xe+1 ∈ ann coker(φ), then x1 . . . xe+1IΛ(s,e)(φ) ⊂ IΛ(s+1,e)(φ).

The proof is given in sections 2 and 3 below. An alternate approach through
standard bases is given in Appendix 3 in the purely even and purely odd cases,
and this approach is characteristic-free. In the classical case (e = n = 0) we can
also describe the annihilator of coker Φ by saying that it is nonzero only if m ≥ d,
and then it is generated, as a gl(V ) × gl(U)-ideal, by an m × m minor of Φ. To
simplify the general statement, we note that a shift of degree by 1 does not change
the annihilator of the cokernel of Φ, but has the effect of interchanging m with n
and d with e.

Corollary 2. With notation as above, the annihilator of the cokernel of Φ is
nonzero only if

a) m > d (or symmetrically n > e) or
b) m = d and n = e.

In each of these cases the annihilator is generated as a g-ideal by one element Z of
degree de+ d+ e defined as follows:

In case a) when m > d,

Z = Z1 ·X(1, . . . , d | 1, . . . , d),

where X(1, . . . , d | 1, . . . , d) is the d × d minor of X corresponding to the first d
columns and Z1 =

∏
j≤e,k≤d+1 bj,k is the product of all the elements in the first

d+ 1 columns of B (and symmetrically if n > e).
In case b),

Z = W1 · · ·We · det(X),
where Ws is the (d+ 1)× (d+ 1) minor of Φ containing X and the entry ys,s, that
is,

Ws = det(X)ys,s +
∑

1≤i,≤d
± det(X (̂i, ĵ))ai,sbs,j.

Corollary 2 follows from intermediate results in the proof of Theorem 1(a). We
next give some examples of Theorem 1(a) and Corollary 2.
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Example 1. Suppose that d = n = 0, so that the presentation matrix B has only
odd degree entries. A central observation of Green [Gre] is that the “exterior mi-
nors” of Φ are in the annihilator of coker Φ (see Appendix 1 for a direct proof of
Green’s result that is different from the one given by Green, and can serve as an
introduction to the proof we give for Theorem 1(a) in general). The element Z of
Corollary 2 is the product of the elements in the first column of Φ. Quite generally,
it is not hard to see that the product of all elements in a K-linear combination of
the columns of B is an exterior minor in Green’s sense. The representation corre-
sponding to the partition (1, . . . , 1) of e is generated by

(
m+e−1

e

)
such products; so(

m+e−1
e

)
exterior minors generate the annihilator in the generic case. For example,

taking m = 2 and e = 2, the annihilator of the cokernel of the generic matrix(
b1,1 b1,2
b2,1 b2,2

)
where the variables all have odd degree, is minimally generated by the three exterior
minors

b1,1b2,1, b1,2b2,2, (b1,1 + b1,2)(b2,1 + b2,2).

Example 2. Now suppose that our generic matrix has size 2×2 with the first row
even and the second row odd (m = 2, n = 0, d = e = 1):(

x1,1 x1,2

b1,1 b1,2

)
.

In this case our result shows that the cokernel has annihilator equal to the product

(x1,1, x1,2)(b1,1b1,2, x1,1b1,2 − x1,2b1,1),

which is minimally generated by 4 elements. The element Z is x1,1b1,1b1,2.

Example 3. As a final 2×2 example, consider the case m = n = d = e = 1, which
for simplicity we write as (

x a
b y

)
.

Here the annihilator of the cokernel is again minimally generated by 4 elements,
namely

axy, bxy, (xy − ab)x, (xy + ab)y.

The element Z is (xy+ab)x. In Appendix 2 we will explain the action of g on these
elements.

Positive characteristics. As we have remarked, Theorem 1 is characteristic-free
in the purely even or odd cases (and in these cases coker Φ is free over Z). But
already with m = n = d = e = 1 as in Example 3, the annihilator is different in
characteristic 2: in characteristic zero the annihilator is generated by forms of degree
3, but in characteristic 2 the algebra R is commutative, and so the determinant xy−
ab is in the annihilator as well. The annihilator can differ in other characteristics as
well. Macaulay2 computations show that the case d = 1, e = p− 1, m = 2, n = 0
is exceptional in characteristic p for p = 3, 5 and 7. Perhaps the same holds for
all primes p. The cokernel of the generic matrix over the integers can also have
Z-torsion. For example, Macaulay2 computation shows that if d = 1, e = 2, m =
3, n = 1, then the cokernel of ΦZ has 2-torsion.
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Our interest in extending the Fitting Lemma was inspired by Mark Green’s paper
[Gre]. Green’s striking use of his result on annihilators to prove one of the Eisenbud-
Koh-Stillman conjectures on linear syzygies turns on the fact that if N is a module
over a polynomial ring S = K[X1, . . . , Xm], then T := TorS∗ (K,M) is a module over
the ring R = Ext∗S(K,K), which is an exterior algebra. Green in effect translated
the hypothesis of the linear syzygy conjecture into a statement about the degree 1
part of the R-free presentation matrix of the submodule of T representing the linear
part of the resolution of N , and then showed that the exterior minors generated a
certain power of the maximal ideal of the exterior algebra, which was sufficient to
prove the conjecture. Green’s result only gives information on the annihilator in the
case where the elements of the presentation matrix are all odd. Elements of even
degree in an exterior algebra can behave (if the number of variables is large) very
much like variables in a polynomial ring, at least as far as expressions of bounded
degree are concerned. Thus to extend Green’s work it seemed natural to deal with
the case of Z/2-graded algebras.

This work is part of a program to study modules and resolutions over exterior
algebras; see Eisenbud-Fløystad-Schreyer [ES], and Eisenbud-Popescu-Yuzvinsky
[EPY] for further information.

We would never have undertaken the project reported in this paper if we had
not had the program Macaulay2 (www.math.uiuc.edu/Macaulay2) of Grayson and
Stillman as a tool; its ability to compute in skew commutative algebras was invalu-
able in figuring out the pattern that the results should have and in assuring us that
we were on the right track.

1. Berele-Regev theory

For the proof of Theorem 1 we will use the beautiful results of Berele and Regev
[BR] giving the structure of R as a module over g. For the convenience of the reader
we give a brief sketch of what is needed. We make use of the notation introduced
above: U = U0 ⊕ U1 and V = V0 ⊕ V1 are Z/2-graded vector spaces over the field
K of characteristic 0 with dimU = (d, e) and dimV = (m,n).

The Z/2-graded Lie algebra gl(V ) is the vector space of Z/2-graded endomor-
phisms of V = V0 ⊕ V1. Thus

gl(V ) = gl(V )0 ⊕ gl(V )1,

where gl(V )0 is the set of endomorphisms preserving the grading of V and gl(V )1

is the set of endomorphisms of V shifting the grading by 1. Additively,

gl(V )0 = EndK(V0)⊕ EndK(V1),

gl(V )1 = HomK(V0, V1)⊕HomK(V1, V0).

The commutator of the pair of homogeneous elements x, y ∈ gl(V ) is defined by
the formula

[x, y] = xy − (−1)deg(x) deg(y)yx.

By a gl(V )-module we mean a Z/2-graded vector space M = M0 ⊕M1 with a
bilinear map of Z/2-graded vector spaces ◦ : gl(V )×M →M satisfying the identity

[x, y] ◦m = x ◦ (y ◦m)− (−1)deg(x) deg(y)y ◦ (x ◦m))

for homogeneous elements x, y ∈ gl(V ),m ∈M .
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In contrast to the classical theory, not every representation of the Z/2-graded
Lie algebra gl(V ) is semisimple. For example, its natural action on mixed tensors
V ⊗k ⊗ V ∗⊗l is in general not completely reducible. However, its action on V ⊗t

decomposes just as in the ungraded case:

Proposition 1.1. The action of gl(V ) on V ⊗t is completely reducible for each
t. More precisely, the analogue of Schur’s double centralizer theorem holds, and
the irreducible gl(V )-modules occurring in the decomposition of V ⊗t are in 1-1
correspondance with irreducible representations of the symmetric group Σt on t
letters. These irreducibles are the Schur functors

Sλ(V ) = e(λ)V ⊗t

where e(λ) is a Young idempotent corresponding to a partition λ in the group ring
of the symmetric group Σt.

This notation is consistent with the notation above in the sense that the d-th
homogeneous component of the ring S(V ) is Sd(V ) where d represents the partition
(d) with one part.

Here we use the symbol Sλ to denote the Z/2-graded version of the Schur
functor Sλ; the latter acts on ungraded vector spaces. Recall that the func-
tor ∧λ is by definition the same as the functor Sλ′ , where λ′ denotes the par-
tition that is conjugate to λ. (For example, the conjugate partition to (2) is
(1, 1).) We will extend this by writing

∧λ := Sλ′ for the Z/2-graded version.
The partition (d) with only one part will be denoted simply d; so, for example,
S2(V ) =

∧(1,1)
V = S2(V0) ⊕ (V0 ⊗ V1) ⊕ ∧2V1 and similarly

∧2
V = S(1,1)V =

∧2V0 ⊕ V0 ⊗ V1 ⊕ S2(V1). In each case the decomposition is as representations of
the subalgebra gl(V0)× gl(V1) ⊂ gl(V ). Similar decompositions hold for all Sd and∧d

V . (If we were not working in characteristic zero, we would use divided powers
in place of symmetric powers in the description of

∧
V .)

Proposition 1.1 implies that the parts of the representation theory of gl(V )×gl(U)
that involve only tensor products of V and U and their summands are parallel to the
representation theory in the case V1 = U1 = 0, which is the classical representation
theory of a product of the two general linear Lie algebras gl(V0)× gl(U0).

The proposition also implies that the decompositions into irreducible represen-
tations of tensor products of the Sλ(V ), as well as the decompositions of their
symmetric and exterior powers, correspond to the decompositions in the even case:
we just have to replace the ordinary Schur functors S,∧ by their Z/2-graded ana-
logues S,

∧
.

The formulas giving equivariant embeddings or equivariant projections may also
be derived from the corresponding formulas in the even case by applying the prin-
ciple of signs: The formulas in the even case involve many terms where the basis
elements are permuted in a prescribed way. The basis elements have degree 0. To
write down a Z/2-graded analogue of such a formula, we simply allow the basis
elements to have even or odd degree and we adjust the signs of terms in such a
way that changing the order of two homogeneous elements x and y of V in the
Z/2-graded analogue of the formula will cost the additional factor (−1)deg(x) deg(y).

There is a Z/2-graded analogue of the Cauchy decomposition, which follows as
just described from Proposition 1.1 together with the corresponding result in the
even case (proven in Macdonald [Mac], Chapter 1, and in DeConcini, Eisenbud,
and Procesi [DEP]). Recall that g = gl(V )× gl(U).
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Corollary 1.2. The t-th component St(V ⊗ U) of S(V ⊗ U) decomposes as a g-
module as

St(V ⊗ U) =
⊕

λ,|λ|=t
Sλ(V )⊗ Sλ(U).

Another application of the same principle shows that to describe the annihilator
of the cokernel of Φ, and what generates it, it suffices to describe which represen-
tations SλV ⊗ SλU it contains:

Corollary 1.3. If I ⊂ S(V ⊗ U) is a g-invariant ideal, then I is a sum of sub-
representations SλV ⊗SλU . Moreover, the ideal generated by SλV ⊗SλU contains
SµV ⊗ SµU if and only if µ ⊃ λ.

Although it is not so simple to describe the vectors in St(V ⊗ U) that lie in a
given irreducible summand, we can, as in the commutative case, define a filtration
that has these irreducible representations as successive factors. We start by defining
a map ρt :

∧t
V ⊗

∧t
U ↪→ St(V ⊗ U) as the composite
t∧
V ⊗

t∧
U → ⊗tV ⊗ ⊗tU → St(V ⊗ U)

where the first map is the tensor product of the two diagonal maps (here we use the
sign conventions for Z/2-graded vector spaces) and the second map simply pairs
corresponding factors. Thus

ρt(v1 ∧ . . . ∧ vt ⊗ u1 ∧ . . . ∧ ut) =
∑
σ∈Σt

±(v1 ⊗ uσ(1)) · . . . · (vt ⊗ uσ(t))

where the sign ± is the sign of the permutation σ adjusted by the rule that
switching homogeneous elements x, y from either V or U means we multiply by
(−1)deg(x) deg(y). For example, if V and U were both even, the image of this map
would be the span of the t× t minors of the generic matrix; when V is even and U
is odd, the image is the span of the space of “exterior minors” as in Green [Gre].

For any partition λ = (λ1, . . . , λs) we define Fλ to be the image of the composite
map

m ◦ (ρλ1 ⊗ . . .⊗ ρλs) :
λ1∧
V ⊗

λ1∧
U ⊗ . . .⊗

λs∧
V ⊗

λs∧
U → S|λ|(V ⊗ U)

where m denotes the multiplication map in S(V ⊗ U).
As in the even case, we order partitions of t by saying λ < µ if and only if λ′i > µ′i

for the smallest number i such that λ′i 6= µ′i. Finally, we define the subspaces

F<λ =
∑

|µ|=|λ|, µ<λ
Fµ ⊂ F≤λ =

∑
|µ|=|λ|, µ≤λ

Fµ.

In the classical case, F≤λ is spanned by certain products of minors of the generic
matrix. The straightening law of Dubillet, Rota, and Stein [DRS] shows that we
get a basis if we choose only “standard” products of these types, and the successive
quotients in the filtration are the irreducible representations of GL(V ) × GL(U).
The analogue in our Z/2-graded case is

Proposition 1.4. The subspaces F≤λ define a g-invariant filtration on S|λ|(V ⊗U).
The quotient F≤λ/F<λ is isomorphic to

∧λ
V ⊗

∧λ
U = Sλ′V ⊗ Sλ′U .
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There is also one element of each irreducible representation that is easy to de-
scribe: the highest weight vector. To speak of highest weight vectors we must
choose ordered bases {u1, . . . , ud} and {u′1, . . . , u′e} of U0 and U1, and ordered bases
{v1, . . . , vm} and {v′1, . . . , v′n} of V0 and V1.

Proposition 1.5. Let λ = (λ1, . . . , λs) be a partition, and let w1
i ∈

∧λi(V ) and
w2
i ∈

∧λi(U) be the elements

w1
i =

{
v1 ∧ · · · ∧ vλi , if λi ≤ m,
v1 ∧ · · · ∧ vm ∧ v′(λi−m)

i , otherwise,

w2
i =

{
u1 ∧ · · · ∧ uλi , if λi ≤ d,
u1 ∧ · · · ∧ ud ∧ u′(λi−d)

i , otherwise.

The element

cλ =
s∏
i=1

ρλi(w
1
i ⊗ w2

i ) ∈ S(V ⊗ U)

is the highest weight vector from the irreducible component
∧λ

V ⊗
∧λ

U = Sλ′V ⊗
Sλ′U , where λ′ is the conjugate partition to λ.

The Berele-Regev theory allows us to give explicit generators for the annihilator,
generalizing the ordinary minors of Φ in the commutative case. More generally, we
can give generators for arbitrary Jλ.

We start with a double tableau (S, T ), that is, two sequences of tensors vi,1 ∧
. . . ∧ vi,λi ∈

∧λi V and ui,1 ∧ . . . ∧ ui,λi ∈
∧λi U (1 ≤ i ≤ s). We imagine that the

elements vi,j ∈ V correspond to the i-th row of the tableau S of shape λ, and the
elements ui,j ∈ U correspond to the i-th row of another tableau T of shape λ. We
define

ρ(S ⊗ T ) =
∏

1≤i≤s
ρλi(vi,1 ∧ . . . ∧ vi,λi ⊗ ui,1 ∧ . . . ∧ ui,λi).

We think of λ as a Ferrers diagram. If S is a tableau of shape λ and σ is a
permutation of the boxes in λ, then σ(S) is another tableau of shape λ (here we
write σ as a product of transpositions, and introduce a minus sign whenever we
interchange two elements of odd degree). Let P (λ) be the group of permutations
of the boxes in λ that preserve the columns of λ.

Proposition 1.6. The representation
∧λ

V ⊗
∧λ

U ⊂ R is generated by elements

π(S, T ) =
∑

σ∈P (λ)

ρ(σS ⊗ T ),

or, equivalently, by
π′(S, T ) =

∑
σ∈P (λ)

ρ(S ⊗ σT )

where S and T range over all tableaux of shape λ.

Proof. We show that the π(S, T ) generate
∧λ

V ⊗
∧λ

U ; the proof for π′ is similar.
Since ρ(S, T ) is antisymmetric in the elements appearing in each row of S, the
element

∑
σ∈P (λ) ρ(σ(S), T ) is the gl(V )-linear projection of ρ(S, T ) to the

∧λ V -

isotypic component of R. By Corollary 1.2 we have R =
⊕

λ

∧λ V ⊗∧λ U ; so this
isotypic component is

∧λ
V ⊗

∧λ
U ⊂ R. �
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To find a minimal set of generators for Jλ inside this generating set, choose bases
{ui},{u′i}, {vi},{v′i} as above, and order the bases of U and V by u1 < · · · < ud <
u′1 < · · · < u′e and v1 < · · · < vm < v′1 < · · · < v′n. A double tableau (S, T )
whose entries ui,j and vi,j come from these bases is called standard if the following
conditions are satisfied:

vi,j < vi,j+1 if vi,j is even, vi,j ≤ vi,j+1 if vi,j is odd,
vi,j ≤ vi+1,j if vi,j is even, vi,j < vi+1,j if vi,j is odd,

and similarly for the ui,j .

Proposition 1.7. The ideal Jλ is minimally generated by the elements π(S, T )
where (S, T ) ranges over the set of double standard tableaux of shape λ.

Proof. Berele and Regev proved that the standard tableaux form a basis of
∧λ

U .
�

2. Proof of Theorem 1(a)

In this section U and V are Z/2-graded vector spaces of dimensions (d, e) and
(m,n) respectively, and Φ is the generic map, defined tautologically over R =
S(V ⊗ U).

We write Λ(d, e) for the partition with e+1 parts ((d+1)e, d) = (d+1, . . . , d+1, d);
that is, Λ(d, e) corresponds to the Ferrers diagram that is a (d + 1) × (e + 1)
rectangle minus the box in the lower right-hand corner. For example, Λ(2, 3) may
be represented by the Ferrers diagram

Λ(2, 3) = .

For any partition λ we denote by Iλ the ideal inR generated by the representation∧λ
V ⊗

∧λ
U . With this notation, Theorem 1(a) takes the form

Theorem 1(a). The annihilator of the cokernel of Φ is equal to IΛ(d,e).

Theorem 1(a) implies that the representations appearing in the annihilator of
coker Φ depend only on the dimension of U , not the dimension of V , as long as
the dimension of V0 is large (Corollary 2.2), and we begin by proving this. For
the precise statement, we will use the following notation: Let V ′ be another Z/2-
graded vector space, and let Φ′ be the generic map R′ ⊗ V ′ → R′ ⊗ U∗ where
R′ = S(V ′ ⊗ U). If V is a summand of V ′, so that V ′ = V ⊕W , then the ring
R = S(V ⊗ U) can be identified with a subring of R′. We want to compare the
annihilators of the modules coker Φ and coker Φ′.

Proposition 2.1. If V is a Z/2-graded summand of V ′, then ann coker Φ = R ∩
ann coker Φ′. More precisely,

a) coker Φ is an R-submodule of coker Φ′, and
b) coker Φ′ is a quotient of (coker Φ)⊗R′.

Proof. The first statement follows easily from a) and b).
For the proof of a) and b) we may write V ′ = V ⊕W , and we make use of the N-

grading of R′ for which V ⊗U has degree 0 and W ⊗U has degree 1. (This grading



4460 DAVID EISENBUD AND JERZY WEYMAN

has nothing to do with the Z/2-grading used elsewhere in this paper!) The map Φ′

is homogeneous of degree 0 if we twist the summands of its source appropriately,

Φ′ : R′ ⊗W (−1)⊕R′ ⊗ V →(Φ′1,Φ
′
0) R′ ⊗ U∗.

So we have an induced N-grading on coker Φ′. Since Φ′0 = Φ, we see that (coker Φ′)0

= coker Φ. Since the elements of R have degree 0, this is an R-submodule, as
required for a).

For b) it suffices to note that coker Φ′ is obtained from (coker Φ)⊗R′ by factoring
out the relations corresponding to W ⊗R′. �

Corollary 2.2. With U, V, V ′,Φ,Φ′ as above, suppose that V is such that Iλ 6= 0
in S(V ⊗ U). If Iλ ⊂ ann coker Φ, then Iλ ⊂ ann coker Φ′.

Proof. The inclusion R = S(V ⊗ U) ⊂ R′ = S(V ′ ⊗ U) carries
∧λ

V ⊗
∧λ

U into∧λ
V ′ ⊗

∧λ
U . The conclusion now follows from Proposition 2.1 a) and b). �

Proof of Theorem 1(a). We first show that IΛ(d,e) is contained in the annihilator
of M := coker Φ. By Corollary 2.2, it is enough, given U , to produce one nonzero
element from

∧Λ(d,e)
V ⊗

∧Λ(d,e)
U ⊂ S(V ⊗ U) that annihilates the cokernel of

Φ for some space V . By Corollary 2.2 it suffices to prove this result in the case
m = d+ 1, n = 0, that is, dim V = (d+ 1, 0).

Let u1, . . . , ud be a basis of U0, let u′1, . . . , u
′
e be a basis of U1, and let v1, . . . , vd+1

be a basis of V = V0. We denote the variables from the U0 ⊗ V0 block by xi,k
(1 ≤ i ≤ d, 1 ≤ k ≤ d + 1), and the variables from the U1 ⊗ V0 block by bj,k
(1 ≤ j ≤ e, 1 ≤ k ≤ d+ 1). Thus:

Φ =
(
X
B

)
, X = (xi,k), B = (bj,k).

Let
Z = Z1 ·X(1, . . . , d | 1, . . . , d)

where Z1 =
∏
j,k bj,k is the product of all the entries of B and X(1, . . . , d | 1, . . . , d)

is the d× d minor of the matrix X corresponding to the first d columns.
We now show that Z annihilates M . Indeed, by the classical Fitting Lemma we

know that X(1, . . . , d | 1, . . . , d) annihilates the even generic module M/(V ⊗U1)M .
Thus every basis element uk multiplied by X(1, . . . , d | 1, . . . , d) can be expressed
modulo the image of Φ as a linear combination of u′1, . . . , u

′
e with coefficients of

positive degee in the variables bj,k. Since these variables are odd, Zuk = 0 in M .
To see that Zu′l is also 0 in M , we use the classical Fitting Lemma again on

the first d columns of the matrix of Φ to see that for any 1 ≤ i ≤ d the element
X(1, . . . , d | 1, . . . , d)ui can be expressed, modulo the image of Φ, as a linear combi-
nation of the bs,tu′j . On the other hand, if we multiply the last column of the matrix
of Φ by the product Z ′1 of all the bj,k except for the bl,d+1, we get an expression
for Z1u

′
l, modulo the image of Φ, as a linear combination of Z ′1u1 . . . , Z

′
1ud. Thus

Zu′l = X(1, . . . , d | 1, . . . , d)Z1u
′
l = 0 in M , as required.

Next we prove that the element Z is a weight vector (not generally a highest
weight vector) and lies in

∧Λ(d,e)
V ⊗

∧Λ(d,e)
U . Indeed, X(1, . . . , d | 1, . . . , d) is a

weight vector in
∧d

V ⊗
∧d

U . The element Z1 is a weight vector in the represen-
tation

∧(d+1)e V ⊗
∧(d+1)e U . The product is thus contained in the ideal F≤Λ(d,e).

The element Z has degree (e + 1)(d + 1) − 1, but it involves only d + 1 elements
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from V = V0. By Proposition 1.5 its weight can occur only in representations∧λ
V ⊗

∧λ
U ⊂ Sλ(V ⊗ U) with λ having all parts ≤ d + 1. Since Λ(d, e) is the

only partition λ with at most e + 1 parts having |λ| = (d+ 1)(e + 1)− 1 and each
λi ≤ d + 1, we are done. This argument shows that IΛ(d,e) is contained in the
annihilator of the cokernel of Φ.

Now let µ be a partition not containing Λ(d, e). To complete the proof of The-
orem 1(a), we must show that the ideal Iµ does not annihilate M = coker Φ or,
equivalently, that the highest weight vector cµ does not annihilate M .

Since µ does not contain Λ(d, e), it does not contain one of the extremal boxes of
Λ(d, e). By shifting the gradings of V, U by 1 we do not alter the annihilator of the
generic map, but we change the notation so that all partitions are changed to their
conjugates. Thus we may assume that µe ≤ d. By Corollary 2.2 we may further
assume that n = 0, so that V = V0, and that m >> 0. To prove the theorem, we
will carry out an induction on d.

If d = 0, we must show that the annihilator of the cokernel of Φ is contained in
I(1e); or, equivalently, that it contains no Iλ where λ has fewer than e parts. Set

Z1 =
∏

1≤j≤e−1,1≤k≤m
bj,k.

By Proposition 1.5, Z1 is the highest weight vector in
∧me−1

V ⊗
∧me−1

U . The
element Z1u

′
e is not in the image of Φ, because the coefficient of u′e in any element

from the image of Φ is in the ideal generated by be,1, . . . , be,m, while Z1 is not in
this ideal. Since Z1 does not annihilate M , no Iλ such that λ has < e parts can
annihilate M .

In case d > 0 the matrix of Φ will contain an even variable x1,1. To complete
the induction we will invert this variable and use �
Lemma 2.3. a) Over the ring R1 = R[x−1

1,1] the map Φ can be reduced by row and
column operations to the form

Φ′ ⊕ id : (V ′ ⊗K R1)⊕R1 → U ′∗ ⊗K ⊕R1

where V is a Z/2-graded vector space of dimension (m−1, n) and U is a Z/2-graded
vector space of dimension (d−1, e). Moreover, the ring R′ generated over K by the
entries of Φ′ is isomorphic to S(V ′ ⊗ U ′), and R1 is a flat extension of R′.

b) The localization of the ideal Iµ at x1,1 is isomorphic to the extension of the
ideal J ′ν from R′ where ν is the partition obtained from µ by subtracting 1 from each
nonzero part.

Proof of Lemma 2.3. Column and row reduction give the following formulas for the
entries of Φ′:

x′i,k = xi,k −
x1,kxi,1
x1,1

, a′i,l = ai,l −
a1,lxi,1
x1,1

,

b′j,k = bj,k −
x1,kbj,1
x1,1

, y′j,l = yj,l −
a1,lbj,1
x1,1

.

Consequently,

R1 = R′[x1,1, x
−1
1,1][x1,2, . . . , x1,m, a1,1, . . . , a1,n, x2,1, . . . , xd,1, b1,1, . . . , be,1]

in the sense of Z/2-graded algebras. This proves part a).
To prove part b), we first observe that the localization of the ideal I(t)(Φ) gives

the ideal I(t−1)(Φ′). Indeed, the ideal I(t)(Φ) is generated by Z/2-graded analogues
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of t×t minors of Φ. After localization it becomes the ideal I(t)(Φ′⊕idR1) generated
by the Z/2-graded analogues of t× t minors of Φ′ ⊕ idR1 . Let us call the row and
column of the matrix Φ′⊕idR1 corresponding to the summand R1 the distinguished
row and column. Every Z/2-graded analogue of a t× t minor of Φ′⊕ idR1 is either a
(t− 1)× (t− 1) minor of Φ′ (in case it contains the distinguished row and column),
zero (if it contains the distinguished row but not the distinguished column, or vice
versa), or a t× t minor of Φ′ if it does not contain the distinguished row or column.

To show that the result generalizes to an arbitrary partition µ, we order the
bases so that the distinguished row and column come first. We saw in Proposition
6 that the highest weight vectors in

∧µ V ⊗∧µ U are the products of minors of the
matrix Φ on some initial subsets of rows and columns of Φ. So after localization
each factor will contain both the distinguished row and the distinguished column
of Φ′ ⊕ idR1 . �

Completion of the Proof of Theorem 1(a). Now suppose that d > 0 and n = 0.
We may of course assume that m 6= 0, so that the matrix of Φ contains the even
variable x1,1. It is enough to prove that IµM 6= 0 after inverting x1,1. The ideal
Iµ will localize to the ideal J ′ν where ν is equal to µ with all parts decreased by 1.
The graded vector space U of dimension (d, e) will change to the Z/2-graded vector
space U ′ of dimension (d − 1, e). The desired conclusion follows by induction on
d. �

3. Proof of Theorem 1(b)

If φ : Rm → Rd is a matrix representing a map of free modules over a commuta-
tive ring, then, as we noted in the introduction, there are inclusions ann(M)·Ii(φ) ⊂
Ii+1(φ) for 0 ≤ i < d, and thus, by induction, ann(M)d ⊂ Id(φ); see for example
Eisenbud [Eis]. To prove these inclusions, one first notes that the cokernel of φ is
the same as the cokernel of

ψ : V0 ⊗R ⊕ U∗0 ⊗R→ U∗0 ⊗R
where ψ = (φ, a · Id). Thus Ij(φ) = Ij(ψ) and Ij+1(φ) = Ij+1(ψ) ⊃ a · Ij(φ). We
will carry out the same approach in the Z/2-graded case.

In this section we work with an arbitrary map

φ : V ⊗R→ U∗ ⊗R
of Z/2-graded free modules over a Z/2-graded commutative ring R. The first step
is to show that, just as in the classical case, the ideal Iλ(φ) depends only on the
cokernel of φ and on the number and degrees of the generators chosen.

Lemma 3.1. If α : V ′ ⊗R→ V ⊗R, then

Iλ(φα) ⊂ Iλ(φ).

In particular, if ψ : V ′ ⊗ R → U∗ ⊗ R has the same cokernel as φ, then Iλ(φ) =
Iλ(ψ).

Proof. The second statement follows from the first, because each of the maps φ and
ψ factors through the other.

To prove the first statement, we use the notation of Proposition 1.6. For any
map W ⊗R→ U∗⊗R, and any tableaux S and T of elements in W and U , both of
shape λ, we let π′ψ(S, T ) be the result of specializing the element π′(S, T ) defined
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for the generic map Φ when Φ is specialized to ψ. By Proposition 1.6, it is enough
to show that when W = V ′ the element π′φα(S, T ) is in Iλ(φ). We have

ρl(v′1 ∧ . . . v′l ⊗ u1 ∧ . . . ul)

=
∑

i1<···<il

ρl(v′1 ∧ . . . v′l ⊗ v∗i1 ∧ . . . v
∗
il)ρl(vi1 ∧ . . . vil ⊗ u1 ∧ . . . ul)

where v1, . . . , vm+n and v∗1 , . . . , v
∗
m+n are dual bases of V and V ∗. Using this

identity to rewrite the formula for π′φα(S′, T ), where S′ is a tableau of shape λ with
entries in V ′ and T is a tableau of shape λ with entries in U , we see that π′φα(S′, T )
is a linear combination of elements of the form π′φ(S, T ), where S is a tableau of
shape λ with entries in V . �

Lemma 3.1 implies, in particular, that two presentations of the same module
with the same numbers of even and odd generators have the same ideals Iλ(φ).
Similar arguments show that we can allow for presentations with different numbers
of generators as long as we change the partitions suitably: if we add d′ even and e′

odd generators, then we have to expand λ by adding d′ columns of length equal to
the length of the first column and e′ rows of length equal to the length of the first
row of the resulting partition (or vice versa). In this sense the ideals Iλ(φ) depend
only on the cokernel of φ.

The main result of this section is the following.

Theorem 3.2. Let R,U, V, φ be as in the beginning of the introduction, and let
M = cokerφ.

a) Let s be an integer, 0 ≤ s ≤ d− 1. If x1, . . . , xe+1 ∈ AnnRM , then

x1 . . . xe+1IΛ(s,e)(φ) ⊂ IΛ(s+1,e)(φ).

b) If x1, . . . , xe ∈ AnnRM , then x1 . . . xe ∈ IΛ(0,e)(φ).

As in the classical case, we derive

Corollary 3.3. Let M be a Z/2-graded module over a Z/2-graded ring R, with
the presentation φ : V ⊗ R → U∗ ⊗ R. Assume that dimU = (d, e), dimV =
(m,n). Let x1, . . . , x(d+1)(e+1)−1 be homogeneous elements from AnnRM . Then
x1 . . . x(d+1)(e+1)−1 ∈ IΛ(d,e)(φ).

Proof of Theorem 3.2. We begin with part b). We work with a presentation (φ, ψ) :
V ⊗ R ⊕W ⊗ R → U∗ ⊗ R where W is a Z/2-graded vector space of dimension e
with the i-th generator wi going to xi times the i-th generator ui of U∗. The parity
of the generators of W is adjusted so that ψ is of degree 0. Now, taking a double
tableau (S, T ) of the shape (1e) with wi and ui in the i-th row, and applying the
definition above, we see that the generator π(S, T ) is just x1 . . . xe.

To prove part a) we distinguish two cases. In the case s < d − 1 we use the
presentation (φ, ψ) : V ⊗ R ⊕W ⊗ R → U∗ ⊗ R where W is a Z/2-graded vector
space of dimension e+1 with the i-th generator wi going to xi times the (s+i+2)-th
generator ui of U∗. The parity of the generators of W is adjusted so that ψ is of
degree 0. We can assume without loss of generality that φ := Φ is generic. Then
it is enough to prove that cΛ(s,e)x1 . . . xe+1 ∈ IΛ(s+1,e), where cΛ(s,e) is the highest
weight vector defined as in Proposition 1.5.

We pick a tableau (S, T ) of shape Λ(s+ 1, e) as follows. The entries vi,j , ui,j in
the i-th row are the same as in the canonical tableau, except the last ones. The
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last entry in the tableau v in the i-th row is wi, and the last entry in the i-th row
is us+2. The element π′(S, T ) is easily seen to be cΛ(s,e)x1 . . . xe+1.

In the case s = d− 1 we use the presentation (φ, ψ) : V ⊗R⊕W ⊗R→ U∗ ⊗R
where W is a Z/2-graded vector space of dimension e+1 with the the i-th generator
wi going to xi times the (d+i)-th generator ui of U∗ for 1 ≤ i ≤ e and we+1 going to
xe+1 times ud. The parity of the generators of W is adjusted so that ψ is of degree
0. We can assume without loss of generality that φ := Φ is generic. Then it is
enough to prove that cΛ(d−1,e)x1 . . . xe+1 ∈ IΛ(d,e), where cΛ(d−1,e) is the canonical
tableau.

We pick a tableau (S, T ) of shape Λ(s+ 1, e) as follows. The entries vi,j , ui,j in
the i-th row are the same as in the canonical tableau, except the last ones. The
last entry in the tableau v in the i-th row is wi, and the last entry in the i-th row
is ud+i for 1 ≤ i ≤ e, and ud for the (e + 1)-st row. The element π′(S, T ) is easily
seen to be cΛ(d−1,e)x1 . . . xe+1. �

4. The resolution of a generic Z/2-graded module

In this section we work over the generic ring R = S as in the introduction, and
we conjecture the form of a minimal free resolution over R of the cokernel C of the
generic map Φ. This resolution is a natural generalization of the one constructed
in [BE] in the commutative case. We work over a field K of characteristic 0. We
define some Z/2-graded free R-modules Fi as follows:

F0 = U∗ ⊗R, F1 = V ⊗R,

Fi =
⊕

|α|+|β|=i−2

SΘ(d,e,α,β)V ⊗ SΛ(d,e,α,β)U ⊗R

where Λ(d, e, α, β) = (d+1+β1, d+1+β2, . . . , d+1+βe, e, α′1, . . . , α
′
s), Θ(d, e, α, β) =

(d+ 1 + α1, d+ 1 + α2, . . . , d+ 1 + αe, e+ 1, β′1, . . . , β
′
s), and we sum over all pairs

of partitions α, β with at most e parts.

Conjecture 4.1. There exists an equivariant differential di : Fi → Fi−1, linear
for i ≥ 3 or i = 1 and of degree |Λ(d, e)| for i = 2, that makes F• into a minimal
R-free Z/2-graded resolution of C.

In the even case (U1 = V1 = 0) the desired complex is the Buchsbaum-Rim
resolution (see, for example, Buchsbaum and Eisenbud [BE]). We have checked the
conjecture computationally, using Macaulay2, in a few more cases.

Appendix 1. Elementary proof of a special case

In this appendix we consider the case where the entries of Φ are all of odd
degree, and give the most transparent proof we know of Theorem 1(a), the fact
that a certain ideal I annihilates coker Φ. The result and its proof in this case are
characteristic-free. The ideal I has a simple description as the “ideal of exterior
minors” in the sense of Green [Gre], and Proposition A1.1 was originally proved
by him in that paper in a different way. We give a simple way of generating the
ideal of exterior minors, which works whenever the ground field K is infinite. This
appendix will also serve as an introduction to the proof of Theorem 1(a). A different
method of treating the purely odd and purely even cases, which we do not know
how to generalize, is given in Appendix 3.
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More precisely, we do the special case of Theorem 1(a) where d = n = 0 (the other
case where Φ has odd matrices, namely where e = m = 0, differs just by shifting
degrees). Here U = U1 and V = V0, so that the matrix Φ consists of a single block,
with odd degree entries, and we wish to show that the ideal I = IΛ(0,e) = I(1e)
annihilates the cokernel of Φ.

In this special d = n = 0 case the ring S = S(V ⊗ U) is the ordinary exterior
algebra ∧(V ⊗ U). For simplicity, we work throughout this appendix with the
ordinary Schur functors ∧t and St in place of their super analogues

∧t and St.
Over the integers the representation Se(V )⊗∧eU is not a summand of ∧(V ⊗U),

but its saturation is easy to identify as De(V ) ⊗ ∧e(U), where De(V ) is the e-th
homogeneous component of the divided power algebra. It is perhaps simplest to
think of De(V ) as the dual representation of Se(V ∗), and with this as definition
we can define the embedding ι : De(V ) ⊗ ∧e(U) ⊂ ∧e(V ⊗ U) as the dual of the
surjection π : ∧e(V ∗⊗U∗)→ Se(V ∗)⊗∧e(U∗), which comes in turn by extending
the identity map ∧(V ∗⊗U∗)1 = (S(V ∗)⊗∧(U∗))1,1 to an algebra homomorphism
∧(V ∗⊗U∗)→ S(V ∗)⊗∧(U∗), using the fact that the elements of (S(V ∗)⊗∧(U∗))1,1

square to 0 and anticommute. Explicitly, the map π can be specified by its action
on pure vectors, which is

π : (v̂1 ⊗ û1) ∧ · · · ∧ (v̂e ⊗ ûe) 7→ (v̂1 · · · v̂e)⊗ (û1 ∧ · · · ∧ ûe).
We write ai,j = vj ⊗ ui for the exterior variables. Theorem 1(a) may be stated for
the case d = n = 0 as follows.

Proposition A1.1. Let E be the exterior algebra on variables ai,j, i = 1, . . . , e, j =
1, . . . ,m, over a field K of arbitrary characteristic, and let

Φ =

a1,1 · · · a1,m

...
. . .

...
ae,1 · · · ae,m


be the e×m generic matrix over E. The cokernel of Φ is annihilated by the element
b = b1 ∧ b2 ∧ · · · ∧ be where

β =

b1...
be


is any K-linear combination of the columns of Φ. If K is infinite, then these
elements generate the representation

De(V )⊗ ∧e(U) ⊂ ∧e(V ⊗ U).

Proof. First consider the case m = dimV = 1, where Φ has just one column, and
let {v1} be a basis for V . Let u1, . . . , ue be a basis of U and let ui be the image of ui
in coker Φ. In this case V ⊗U has dimension e, and so ∧e(V ⊗U) is 1-dimensional,
equal to De(V )⊗ ∧e(U), and generated by the product a1,1 ∧ · · · ∧ ae,1.

We have
∑
ai,1ui = 0. Thus

(a1,1 ∧ · · · ∧ ae,1)ue = (a1,1 ∧ · · · ∧ ae−1,1) ∧ ae,1ue
= −

∑
i6=e

(a1,1 ∧ · · · ∧ ae−1,1) ∧ ai,1ui = 0,

since ai,1 ∧ ai,1 = 0.
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In the general case dimV = m, we note that the cokernel of the augmented
matrix a1,1 · · · a1,m b1

...
. . .

...
...

ae,1 · · · ae,m be


is the same as the cokernel of Φ, and thus is a quotient of the cokernel of the matrix
β. By the case m = 1, the module cokerβ is annihilated by b1 ∧ · · · ∧ be; so its
quotient coker Φ is too.

Finally, we must show that, if K is infinite, the products b corresponding to
columns β generate the representation ι(De(V )⊗∧eU). Let v ∈ V be the element
corresponding to the linear combination of the columns b, and let V ′ ⊂ V be
the 1-dimensional space spanned by v. The element b generates the image of the
composite map

De(V ′)⊗ ∧eU → De(V )⊗ ∧eU →ι ∧e(V ⊗ U).

We must show that the images of all such maps span ι(De(V ) ⊗ ∧eU). The space
∧eU is 1-dimensional. Thus it suffices to show that the images of all De(V ′) in
De(V ) span De(V ). (Note that this would fail for Se(V ) in place of De(V ) in
characteristic p if e = p.)

Dually, it suffices to show that the intersection of the kernels of the maps
Se(V ∗) → Se(V

′∗) induced by all 1-dimensional projections V ∗ → V
′∗ is zero.

Such a projection is a point in the projective space P(V ), and the kernel is the
set of polynomials of degree e vanishing at the point. The desired assertion follows
because only the zero polynomial vanishes at all the points of P(V ) when K is
infinite. �

Appendix 2. Comments on the action of g

It may at first be surprising that the generators given in Examples 1-3 of the
Introduction are permuted by the action of g. So we will make the action explicit
in one case, Example 3 (the other cases are similar and simpler).

When we think of R = S(V ⊗U) as a g-module, we think of g acting on the left.
But we may identify U ⊗ V with Hom(V, U∗)∗ = Hom(U∗, V ), and thus identify R
with the coordinate ring of the space Hom(V, U∗). In this identification it is natural
to think of the Lie algebra g = gl(V ) × gl(U) as gl(V ) × gl(U∗), with the gl(U∗)
acting on the right. To make this identification, we use the supertranspose, which
is the anti-isomorphism

gl(U)→ gl(U∗);
(
U0,0 U0,1

U1,0 U1,1

)
7→
(
U t0,0 U t1,0
−U t0,1 U t1,1

)
.

Now consider the case presented in Example 3 of the Introduction, whose nota-
tion we use. To see the action of g, let us act by two elements of the Lie algebra
on the element axy. First we act with the element v0,1 from gl(V ), changing an
odd element to an even one. We get a sum of terms, each of which is axy with one
changed factor; we can replace a by x or y by b. Thus we get terms xxy and axb.
The first comes with positive sign (v0,1 acts from the left and we replaced the first
factor, and so there are no switches), the second term comes with negative sign (we
replaced y by b, and so had to switch v0,1 with a). Thus we get x(xy − ab).
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Let us also act on axy by the Lie algebra element u1,0 from gl(U∗) exchanging
an even element with an odd one. We get a sum of terms where each term is axy
with one factor changed; we can change x to b and a to y. We get terms yxy and
aby. Both come without sign, since u1,0 acts from the right and x, y have even
degree. Thus we get (xy + ab)y.

Appendix 3. A standard basis approach to the generic module

In this appendix we describe a general method for analyzing the cokernel of the
generic matrix by giving a standard basis in the case where all the variables of S
are even or all are odd. It would be very interesting to give a generalization to the
situation where there are both even and odd variables. In the cases treated here,
the method, and the results, are characteristic-free.

To explain the method in the most familiar setting, we begin with the even case—
the classical case of the cokernel of a matrix whose entries are distinct variables of
a commutative polynomial ring. The standard basis approach to the ring S itself in
this case is due to Doubillet, Rota, and Stein [DRS]; see also DeConcini, Eisenbud,
and Procesi [DEP]. The standard basis for the generic module in the even case
was obtained by Bruns and Vetter [BV] and by Bruns [Bru]. This standard basis
was shown to be a Gröbner basis by Onn [Onn]. We give the proof based on
representation theory because it exends to the odd case. Then we sketch the odd
case, which is quite parallel. Throughout this appendix we think of tableaux as
being filled with numbers, not with elements of the numbered basis as before.

The even case. Consider vector spaces V = Km, U = Kd and the generic map
Φ : V ⊗KS → U∗⊗KS of free modules over the polynomial ring S = SymK(V ⊗U).
We will give a good basis for the module coker Φ. Let {u1, . . . , ud}, {v1, . . . , vm} be
bases of U, V respectively. Let {u∗1, . . . , u∗d} be the dual basis of U∗. Write Φ(vj) =∑d
i=1 xi,ju

∗
i . The ring S can be identified with the commutative polynomial ring

K[xi,j ]1≤i≤d,1≤j≤m. Recall that a double tableau of shape λ, where λ = (λ1 ≥ · · · ≥
λr ≥ 0), is a pair of tableaux

P = (P1, . . . , Pr), Q = (Q1, . . . , Qr)

with Pj = (pj,1, . . . , pj,λj ) and Qj = (qj,1, . . . , qj,λj ) satisfying 1 ≤ pi,j ≤ d and
1 ≤ qi,j ≤ m (and thus λ1 ≤ min(m, d)). Corresponding to the double tableau
(P,Q) is the product M1 · · ·Mr ∈ S, where Mj is the signed minor of the generic
matrix Φ = (xi,j)1≤i≤d,1≤j≤m involving the rows indexed by P and the columns
indexed by Q. We will henceforward think of the double tableau as elements of S.
Thus, for example, (p1, . . . , pr) | (q1, . . . , qr) denotes an r × r minor of Φ.

The tableau P is standard if pi,j < pi,j+1 for all i, j and pi,j ≤ pi+1,j for all
i, j. Similarly we define the standardness of Q, and a double tableau (P,Q) is
standard if both P and Q are standard. The algebra S has a basis consisting of
(the elements corresponding to) the double standard tableaux. A K-basis of the free
module U∗⊗S is given by the products (P,Q)u∗i where (P,Q) is a standard double
tableau and 1 ≤ i ≤ d. Thus we can construct a basis for coker Φ by taking an
appropriate subset.

Definition. A product (P,Q)u∗i is admissible if the double tableau (P,Q) is stan-
dard and the first row of P does not contain the interval [1, i]. Notice that the
additional condition is really a condition on P and u∗i , and if it is satisfied, we will
say that Pu∗i is admissible.
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Proposition A3.1. The images of the admissible products in coker Φ form a K-
basis.

Proof. We first show that the admissible products span coker Φ. Order the bases
by setting u1 < . . . < ud, u∗d < . . . < u∗1, v1 < . . . < vm. Order the products
(P,Q)u∗i (where (P,Q) is a double tableau, not nessesarily standard) by reading
lexicographically, first the element u∗i , then P by rows and then Q by rows. It
suffices to show that if a product is not admissible, it is a combination of earlier
products.

The (i, j)-th entry of Φ may be written as (i|j). Thus the relations
∑d
i=1(i|j)u∗i =

0 hold in coker Φ. We will use a generalization:

Lemma A3.2. In coker Φ,

d∑
i=1

(a1, . . . , an−1, i, an+1, . . . , ar | b1, . . . , br)u∗i = 0.

Proof. Use the Laplace expansion with respect to the n-th row of each minor.
Now assume that the product (P,Q)u∗i is not admissible. Use the relation from

Lemma A3.2 for n = i, taking a1, . . . , ai−1, ai+1, . . . , ar and b1, . . . , br to be the
first row of P minus i and the first row of Q, respectively. We may assume that
the rows of P and Q are ordered, so that a1 = 1, . . . , ai−1 = i − 1. The relation
shows that in coker Φ the element (P1|Q1)u∗i is a linear combination of u∗i+1, . . . , u

∗
d

with polynomial coefficients, because the other terms involve minors with repeated
rows. These are earlier terms in our order. We multiply this relation by the other
rows of (P,Q), and we see that (P,Q)u∗i is a linear combination of earlier terms in
the same way.

It remains to show that the admissible products are linearly independent over
K. It is enough to prove this over Z, and thus it is enough to prove the linear
independence over Q. We will show that in a given degree the dimension of the
module coker Φ is at least equal to the number of admissible products. To do this
we use the representation theory of GL(U).

We label the irreducible representation SλU of GL(U) by its highest weight.
This means they are labeled by the sequences λ = (λ1, . . . , λd) of integers such that
λ1 ≥ . . . ≥ λd, but we do not assume λd ≥ 0. Irreducible representations of SL(U)
correspond to weights λ with λd = 0 and are called Schur functors. We have

S(λ1+1,...,λd+1)U = SλU ⊗ ∧dU.

With this notation ∧iU = S(1i,0d−i)U and ∧iU∗ = S(0d−i,(−1)i)U ; in particular,
the naturally isomorphic representations ∧iU = ∧d and U ⊗ ∧d−iU∗ both have
highest weight (1i, 0d−i). The representation with general λn can be expressed as a
Schur functor tensored with an integer power of ∧dU . We can now express coker Φ
as a representation:

Proposition A3.3. If K is a field of characteristic zero, then the decomposition
of coker Φ into irreducible representations of GL(V )×GL(U) is

coker Φ =
⊕

λ=(λ1,...,λd−1)

SλV ⊗ S(λ1,...,λd−1,−1)U.
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Proof of Proposition A3.3. The free module U∗ ⊗ S decomposes as

U∗ ⊗ S =
⊕

λ=(λ1,...,λd), λd≥0

SλV ⊗ SλU ⊗ U∗.

Let us look at the isotypic component of SλV . Using Pieri’s formula, we can
decompose SλU ⊗ U∗. Using the isomorphism U∗ = ∧d−1U ⊗ ∧dU∗, we get

SλU ⊗ U∗ =
⊕

i such that λi>λi−1

Sλ1,...,λi+1λi−1,λi−1...,λdU.

The representation V ⊗ S contains only representations SλU of GL(U) with all
entries of λ nonnegative. On the other hand, if λd = 0, then SλU ⊗U∗ contains the
representation Sλ1,...,λd−1,−1U . Thus this representation must occur in coker Φ.

The following lemma concludes the proof of Proposition A3.3 and also gives the
linear independence necessary to finish the proof of Proposition A3.1.

Lemma A3.4. The dimension of S(λ1,...,λd−1,−1)U is equal to the number of the
products Pu∗i where P is a standard tableau of shape λ and the first row of P does
not contain the interval [1, i].

Proof. The representation S(λ1,...,λd−1,−1)U has the same dimension as

S(λ1,...,λd−1,−1)U ⊗
d∧
U = S(λ1+1,...,λd−1+1,0)U.

This is equal to the number of standard tableaux of shape (λ1 + 1, . . . , λd−1 + 1, 0).
On the other hand, the admissibility condition on the product Pu∗i is the same

as the standardness condition on the tableau of shape λ starting with the row
1, 2, . . . , i − 1, i + 1, . . . , d and continuing with the rows of P . Thus the num-
ber of admissible products Pu∗i is equal to the dimension of the representation
Sλ1,...,λd−1,−1U in SλU ⊗ U∗. �

This also completes the proofs of Lemma A3.2 and Proposition A3.1. �

Corollary A3.5. a) The ideal Id generated by d×d minors of Φ annihilates coker Φ.
b) coker Φ is a torsion free module over the determinantal ring S/Id.

Proof. To prove a), consider the relation from Lemma A3.2 with r = d,

{a1, . . . , an−1, an+1, . . . , ad} = {1, 2, . . . , n− 1, n+ 1, . . . , d}.
It says that

(1, 2, . . . , d | b1, . . . , bd)u∗i = 0.
To prove b) we define an embedding of coker Φ into a free S/Id-module. We

define the homomorphism

Ψ : coker Φ→ ∧d−1V ∗ ⊗ ∧dU∗ ⊗ S/Id
by setting

Ψ(u∗i ) =
d∑
i=1

(a1, . . . , ad−1 |b1, . . . , bd−1)u∗a1
∧ . . . ∧ u∗ad−1

∧ u∗i ⊗ v∗b1 ∧ . . . ∧ v
∗
bd−1

.

Consider the complex

V ⊗ S/Id Φ⊗1−−−→ U∗ ⊗ S/Id Ψ−→ ∧d−1V ∗ ⊗ ∧dU∗ ⊗ S/Id.
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One shows easily that Ψ(Φ⊗1) = 0 (the coefficient of every image is a combination
of d × d minors, so is zero in S/Id). To prove the exactness of our complex, we
notice that it is enough to prove the exactness over Q. Indeed, our straightening
law showed that the cokernel of Φ⊗ 1 is a free module over Z.

To prove the exactness over Q we use representation theory methods by decom-
posing to irreducibles. Let us look at our complex, and for a partition ν let us look
at the GL(V )-isotypic component of SνV , with ν = (ν1, . . . , νd−1). It is enough to
look at such components, since no other representations occur in the middle term
of the complex. We get the following complex:

Sν/(1)U → U∗ ⊗ SνU →
d∧
U∗ ⊗ S(ν1+1,...,νd−1+1).

The cokernel of the first map consists of the sole irreducible representation

S(ν1,...,νd−1,−1)U

which occurs in the right-hand-side term. It is therefore enough to show that the
map Ψ is nonzero on our isotypic component. The best way to do it is to see that
the image of Ψ on the corresponding highest weight vector is nonzero. This highest
weight vector is, however, easy to calculate, since it equals (Cν , Cν)u∗d where Cν is
the canonical tableau of shape ν having (1, 2, . . . , ν′i) in the i-th row. �

Remarks. Bruns and Vetter ([BV], chapter 13) show that coker Φ is torsion free over
S/Id by a different argument. What is more, they show that coker Φ is reflexive
over S/Id. This can also be proved by our method, by extending our sequence by
one term:

V ⊗ S/Id Φ⊗1−→U∗ ⊗ S/Id
Ψ−→∧d−1 V ∗ ⊗ ∧dU∗ ⊗ S/Id Θ−→∧d V ∗ ⊗ ∧dU∗ ⊗ U∗ ⊗ S/Id

where Θ is defined on generators by the map

∧d−1V ∗ ⊗ ∧dU∗ → ∧d−1V ∗ ⊗ ∧dU∗ ⊗ V ∗ ⊗ V ⊗ U∗ ⊗ U
→ ∧dV ∗ ⊗ ∧dU∗ ⊗ U∗ ⊗ (V ⊗ U),

and then identifying V ⊗ U with S1. We prove the exactness of the extended
complex in the same way as above. This shows that coker Φ is a second syzygy over
S/Id, and therefore reflexive. The dual module of coker Φ turns out to be

∧m−d+1(coker Φ∗).

The odd case. The results in this case are very similar; so we only sketch the
proofs.

Again, let K be a field of arbitrary characteristic. Consider the vector spaces
V = Kn, U = Kd. We consider the odd generic map Φ : V ⊗K E → U∗ ⊗K E of
free modules over the exterior algebra E = ∧•K(V ⊗ U). We are interested in the
generic module coker Φ.

Let {u1, . . . , ud}, {v1, . . . , vn} be bases of U, V respectively. Let {u∗1, . . . , u∗d} be
the dual basis of U∗.

Let us write Φ(vj) =
∑d
i=1 ai,ju

∗
i . The ring E can be identified with the exterior

algebra ∧•[ai,j ]1≤i≤d,1≤j≤n.
It is shown in Akin, Buchsbaum, and Weyman [ABW] that E has a basis con-

sisting of double standard tableaux, where now the notion of double standard
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tableaux is interpreted as follows: Suppose that (P,Q) is a double tableau of
shape λ, where λ = (λ1, . . . , λr), and P = (P1, . . . , Pr), Q = (Q1, . . . , Qr) with
Pj = (pj,1, . . . , pj,λj ), Qj = (qj,1, . . . , qj,λj ), for 1 ≤ pi,j ≤ d, 1 ≤ qi,j ≤ m.
The corresponding element of E is the product M1 . . .Mr where Mj is an exte-
rior minor of the generic matrix X̃ = (ai,j)1≤i≤d,1≤j≤n corresponding to the rows
Pj = (pj,1, . . . , pj,λj ) and (maybe repeated) columns Qj = (qj,1, . . . , qj,λj ). Recall
that P is standard if pi,j < pi,j+1 for all i, j and pi,j ≤ pi+1,j for all i, j. The stan-
dardness of Q is defined by the conditions qi,j ≤ qi,j+1 for all i, j and qi,j < qi+1,j

for all i, j. (P,Q) is standard if both P and Q are standard.
From the representation-theoretic point of view, the map given by exterior minors

of size s is the embedding

DsV ⊗ ∧sU → ∧s(V ⊗ U),

which is the specialization of our ρs to the odd case. Here DsV is the divided power
of V .

The K-basis of the free module U∗ ⊗ E is given by products (P,Q)u∗i where
(P,Q) is a standard double tableau and 1 ≤ i ≤ d.

Definition. A product (P,Q)u∗i is admissible if the double tableau (P,Q) is stan-
dard and the first row of P does not contain the interval [1, i]. Notice that the
additional condition is really a condition on P and u∗i . So we can also talk about
admissible products Pu∗i .

In the sequel we denote the exterior minor of X corresponding to the rows
a1, . . . , ar and columns b1, . . . , br by (a1, . . . , ar|b1, . . . , br).

Proposition A3.1′. The admissible products form a K-basis of coker Φ.

Proof. The proof proceeds as in the even case. The representation-theoretic content
is identical; only the representation on the V side changes from SλV to Sλ′V . The
essential point is that in coker Φ we have relations on the u∗i that are analogous to
those in Lemma A3.2: �

Lemma A3.2′. In coker Φ we have the relations
d∑
j=1

(a1, . . . , an−1, j, an+1, . . . , ar|b1, . . . , br)u∗j = 0.

Proof. By linearity and the argument at the end of the proof of Proposition A1.1,
it suffices to treat the case where b1 = b2 = · · · = br. But, again as in A1.1, we
have

(a1, . . . , an−1, j, an+1, . . . , ar|b1, . . . , b1) = (a1|b1) ∧ (a2|b1) ∧ · · · ∧ (ar|b1).

So the given relation is a multiple of the relation
∑d
j=1(j|b1)u∗j = 0 given by column

number b1 of Φ. �

Corollary A3.5′. a) The ideal I(d) generated by d × d exterior minors of Φ an-
nihilates coker Φ. Moreover, u∗d generates a free E/I(d)-module in coker Φ. So the
annihilator of coker Φ is exactly I(d).

b) coker Φ is a second syzygy over the ring E/I(d).

Proof. To prove a), consider the relation from Lemma A3.2′ with r = d,

{a1, . . . , au−1, au+1, . . . , ad} = {1, 2, . . . , i− 1, i+ 1, . . . , d}.
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It says that
(1, 2, . . . , d |b1, . . . , bd)u∗i = 0.

The last statement of a) follows because (P |Q)u∗d is admissible for every standard
double tableau of shape λ with λ1 < d, while E/I(d) is spanned by those with
λ1 < d.

To prove b) we define an embedding of coker Φ into a free E/I(d)-module. We
define the homomorphism

Ψ : coker Φ→ Sd−1V
∗ ⊗ ∧dU∗ ⊗ E/I(d)

by setting

Ψ(u∗i ) =
∑

(a1, . . . , ad−1 |b1, . . . , bd−1)u∗a1
∧ . . . ∧ u∗ad−1

∧ u∗i ⊗ v∗b1 . . . v
∗
bd−1

.

Consider the complex

V ⊗ E/I(d)
Φ⊗1−→U∗ ⊗ E/I(d)

Ψ−→Sd−1V
∗ ⊗ ∧dU∗ ⊗ E/I(d).

One shows easily that Ψ(Φ⊗1) = 0 (the coefficient of every image is a combination
of d× d minors, hence zero in E/I(d)). To prove the exactness of our complex, we
notice that this exactness is clear over Q by counting representations in an isotypic
component of SλV . But our straightening law showed that the image of Φ ⊗ 1 is
a free module over Z and that (U∗ ⊗ E/I(d))/ Im(Φ ⊗ 1) is also free over Z. This
proves the exactness of our complex, and so coker Φ is torsion free.

We can extend our sequence to a longer sequence

V ⊗ E/I(d)
Φ⊗1−→U∗ ⊗ E/I(d)

Ψ−→Sd−1V
∗ ⊗ ∧dU∗ ⊗ E/I(d)

Θ−→SdV ∗ ⊗ ∧dU∗ ⊗ U∗ ⊗ E/I(d)

where Θ is defined on generators by the map

Sd−1V
∗ ⊗ ∧dU∗ → Sd−1V

∗ ⊗ ∧dU∗ ⊗ V ∗ ⊗ V ⊗ U∗ ⊗ U
→ SdV

∗ ⊗ ∧dU∗ ⊗ U∗ ⊗ (V ⊗ U)

and then identifying V ⊗U with E1. The exactness of the longer complex is proven
in the same way as the analogous result in the even case. �
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