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SHEAF COHOMOLOGY AND FREE RESOLUTIONS
OVER EXTERIOR ALGEBRAS

DAVID EISENBUD, GUNNAR FLØYSTAD, AND FRANK-OLAF SCHREYER

Abstract. We derive an explicit version of the Bernstein-Gel’fand-Gel’fand
(BGG) correspondence between bounded complexes of coherent sheaves on
projective space and minimal doubly infinite free resolutions over its “Koszul
dual” exterior algebra. Among the facts about the BGG correspondence that
we derive is that taking homology of a complex of sheaves corresponds to
taking the “linear part” of a resolution over the exterior algebra.

We explore the structure of free resolutions over an exterior algebra. For
example, we show that such resolutions are eventually dominated by their
“linear parts” in the sense that erasing all terms of degree > 1 in the complex
yields a new complex which is eventually exact.

As applications we give a construction of the Beilinson monad which ex-
presses a sheaf on projective space in terms of its cohomology by using sheaves
of differential forms. The explicitness of our version allows us to prove two con-
jectures about the morphisms in the monad, and we get an efficient method
for machine computation of the cohomology of sheaves. We also construct all
the monads for a sheaf that can be built from sums of line bundles, and show
that they are often characterized by numerical data.

Introduction

Let V be a finite-dimensional vector space over a field K, and let W = V ∗ be the
dual space. In this paper we will study complexes and resolutions over the exterior
algebra E =

∧
V and their relation to modules over S = sym W and sheaves on

projective space P(W ).
In this paper we study the Bernstein-Gel’fand-Gel’fand (BGG) correspondence

[BGG], usually stated as an equivalence between the derived category of bounded
complexes of coherent sheaves on P(W ) and the stable category of finitely gener-
ated graded modules over E. Its essential content is a functor R from complexes
of graded S-modules to complexes of graded E-modules, and its adjoint L. For
example, if M =

⊕
iMi is a graded S-module (regarded as a complex with just

one term), then as a bigraded E-module R(M) = HomK(E,M), with differen-
tial HomK(E,Mi)→ HomK(E,Mi+1) defined from the multiplication map on M .
Similarly, for a graded E-module P , we have L(P ) = S⊗K P . In fact (Proposition
2.1) R is an equivalence from the category of graded S-modules to the category
of linear complexes of free E-modules; here linear means essentially that the maps
are represented by matrices of linear forms. A similar statement holds for L.
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We show that finitely generated modules M go to left-bounded complexes that
are exact far to the right, and characterize the point at which exactness begins as
the Castelnuovo-Mumford regularity of M . A strong form of this is Theorem 3.7,
of which the following is a part:

Reciprocity Theorem. If M is a graded S-module and P is a graded E-module,
then R(M) is an injective resolution of P if and only if L(P ) is a free resolution
of M .

Let F be a coherent sheaf on projective space and take M =
⊕

d H0(F(d)). The
results above show that the complex R(M≥r) associated to the truncation of M is
acyclic for r >> 0. If we take a minimal free resolution of the kernel of the first
term in this complex, we obtain a doubly infinite exact free complex, independent
of r, which we call the Tate resolution T(F):

T(F) : · · · → T r−1 → T r = HomK(E,Mr)→ HomK(E,Mr+1)→ · · · .
It was first studied in Gel’fand [Gel]. Our first main theorem (Theorem 4.1) is that
the eth term of the Tate resolution is T e(F) =

⊕
j HomK(E,Hj(F(e−j))); that is,

it is made from the cohomology of the twists of F . This leads to a new algorithm for
computing sheaf cohomology. We have programmed this method in the computer
algebra system Macaulay2 of Grayson and Stillman [http://www.math.uiuc.edu/
Macaulay2/]. In some cases it gives the fastest known computation of the coho-
mology.

We apply the Tate resolution to study a result of Beilinson [Bei], which gives,
for each sheaf F on projective space, a complex

· · · →
n⊕
j=0

Hj(F(e− j))⊗K Ωj−ePn (j − e)→ · · · .

called the Beilinson monad , whose homology is precisely F and whose terms depend
only on the cohomology of a few twists of F .

Our second main result is a constructive version of Beilinson’s theorem [Bei],
which clarifies its connection with the BGG-correspondence (Theorem 6.1). See
Decker and Eisenbud [DE] for details and for an implementation of the BGG corre-
spondence and the computation of the Beilinson monad. (That paper also contains
an introduction to the uses of the Beilinson monad.)

Beilinson’s original paper sketched a proof that leads easily to a weak form of
the result, the “Beilinson spectral sequence”, which determines the sheaf F only
up to filtration. That version is explained in the book of Okonek, Schneider, and
Spindler [OSS]. Kapranov [Kap1] and Ancona and Ottaviani [AO] have given full
proofs. However, their use of the derived category makes it difficult to compute the
Beilinson monad effectively, and also makes it hard to obtain information about
the maps in the monad.

Our construction of the Beilinson monad leads to new results about its structure.
There are natural candidates for the linear components of the maps in the monad
for a sheaf F ; and given such a monad, there are natural candidates for most of the
maps in the monad of F(1). Our techniques allow us to prove that these natural
candidates really do occur (Corollary 6.2 and Corollary 6.3).

A remarkable feature of the theory of resolutions over the exterior algebra, not
visible for the corresponding theory over a polynomial ring, is that the linear terms
of any resolution eventually predominate. To state this precisely, we introduce the
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linear part of a free complex F over S or E. The linear part is the complex obtained
from F by taking a minimal free complex G homotopic to F, and then erasing all
terms of absolute degree > 1 from the matrices representing the differentials of G.
In fact, taking the linear part is functorial in a suitable sense: under the BGG
correspondence it corresponds to the homology functor (Theorem 3.4). Just as the
homology of a complex is simpler than the complex, one can often compute the
linear part of a complex even when the complex itself is mysterious.

Of course free resolutions may have maps with no linear terms at all, that is, with
linear part equal to zero. And they can have infinitely many maps with nonlinear
terms unavoidably present (this is even the case for periodic resolutions). But the
linear terms eventually predominate in the following sense:

Theorem 3.1. If F is the free resolution of a finitely generated module over the
exterior algebra E, then the linear part of F is eventually exact.

This predominance can take arbitrarily long to assert itself: the resolution of
the dual of the millionth syzygy of the residue field of E has a million linear maps
followed by a map with linear part 0, and linear dominance happens only at the
million and first term. In the case of a resolution of a monomial ideal, however,
Herzog and Römer [HR] have shown that the linear part becomes exact after at
most dimk V steps. It would be interesting to know more results of this sort.

Beilinson [Bei] also proved the existence of a different monad for a sheaf F ,
using the sheaves OP(i) for 0 ≤ i ≤ n = dim P(W ) in place of the Ωi(i). Bernstein-
Gel’fand-Gel’fand also introduced a “linear” monad using sums of line bundles and
only having maps given by matrices of linear forms. In the last section we show
that such a monad “partitions” the cohomology of the sheaf into a “positive” part
that appears as the homology of the corresponding complex of free S-modules and
a “negative” part that appears as the cohomology of the dual complex. We explain
how these and other free monads of a sheaf F arise from the Tate resolution T(F).
We show that many such monads are characterized by simple numerical data.

Basic references for the BGG correspondence are Gel’fand [Gel], and Gel’fand-
Manin [GM]). Much of the elementary material of this paper could be done for
an arbitrary pair of homogeneous Koszul algebras (in the sense of Priddy [Pri]) in
place of the pair of algebras S,E. We use a tiny bit of this for the pair (E,S).
See Buchweitz [Buc1] for a sketch of the general case and a statement of general
conditions under which the BGG correspondence holds. Buchweitz has also written
a general treatment of the BGG correspondence over Gorenstein rings [Buc2]. Ver-
sions of Beilinson’s theorem have been established for some other varieties through
work of Swan [Swa], Kapranov [Kap1], [Kap2], and Orlov [Orl]. Yet other derived
category equivalences have been pursued under the rubric of “tilting” (see Happel
[Hap]). Fløystad [Flo1] gives a general theory for Koszul pairs, and also studies
how far the equivalences can be extended to unbounded complexes.

The material of our paper grew from two independent preprints of Eisenbud
and Schreyer [ES1] and Fløystad [Flo2]. Since there was considerable overlap we
wrote a more complete joint paper, which also includes new joint results. The
original preprint by the second author has also been altered so that the notation
and terminology are more aligned with the present paper.

The material in this paper has been applied to study the cohomology of hyper-
plane arrangements (Eisenbud, Popescu, and Yuzvinsky [EPY]) and to constructing
counterexamples to the minimal free resolution conjecture for points in projective
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space (Eisenbud, Popescu, Schreyer, and Walter [EPSW]). The technique developed
here for the Beilinson monad has been used by Eisenbud and Schreyer to construct
complexes on various Grassmannians that can be used to compute and study Chow
forms [ES2]. In a direction related to Green’s proof of the linear syzygy conjecture
[EW], Eisenbud and Weyman have found a general analogue for the Fitting lemma
over Z/2-graded algebras, including the exterior algebra.

This paper owes much to the experiments we were able to make using the com-
puter algebra system Macaulay2 of Grayson and Stillman, and we would like to
thank them for their help and patience with this project. We are also grateful to
Luchezar Avramov for getting us interested in resolutions over exterior algebras.

1. Notation and background

Throughout this paper we write K for a fixed field, and V,W for dual vector
spaces of finite dimension v over K. We give the elements of W degree 1, so that
the elements of V have degree −1. We write E =

∧
V and S = Sym(W ) for

the exterior and symmetric algebras; these algebras are graded by their internal
degrees , whereby Symi(W ) has degree i and

∧j
V has degree −j. We think of E

as Ext•S(K,K) and S as Ext•E(K,K).
We will always write the index indicating the degree of a homogeneous compo-

nent of a graded module as subscripts. Thus if M =
⊕
Mi is a graded module over

E or S, then Mi denotes the component of degree i. We let M(a) be the shifted
module, so that M(a)b = Ma+b. We write complexes cohomologically, with upper
indices and differentials of degree +1. Thus if

F : · · · → F i → F i+1 → · · ·

is a complex, then F i denotes the term of cohomological degree i. We write F[a]
for the complex whose term of cohomological degree j is F a+j.

We will write ωS = S⊗K
∧v

W for the module associated to the canonical bundle
of P(W ); note that

∧v
W is a vector space concentrated in degree v, so that ωS

is noncanonically isomorphic to S(−v). Similarly, we set ωE := HomK(E,K) =
E⊗K

∧v
W , which is noncanonically isomorphic to E(−v). It is easy to check that

for any graded vector space D we have HomK(E,D) ∼= ωE⊗KD as left E-modules.
For any E-module P , we set P ∗ := HomK(P,K).

We often use the fact that the exterior algebra is Gorenstein and finite dimen-
sional over K, which follows from the fact that HomK(E,K) ∼= E as above. As a
consequence, the dual of any exact sequence is exact and the notions of free module,
injective module, and projective module coincide.

We also use the notion of Castelnuovo-Mumford regularity. The most convenient
definition for our purposes is that the Castelnuovo-Mumford regularity of a graded
S-module M =

⊕
iMi is the smallest integer r such that the truncation M≥r =⊕

i≥rMi is generated by Mr and has a linear free resolution—that is, all the maps
in its free resolution are represented by matrices of linear forms. See for example
Eisenbud-Goto [EG] or Eisenbud [Eis] for a discussion. The regularity of a sheaf F
on projective space (equal to the regularity of

⊕
d H0(F(d)) if this module is finitely

generated) can also be expressed as the minimal r for which Hi(F(r − i)) = 0 for
all i > 0.
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A free complex over E or a graded free complex over S is called minimal if all
its maps can be represented by matrices with entries in the appropriate maximal
ideal. For example, any linear complex is minimal.

2. The Bernstein-Gel’fand-Gel’fand correspondence

In this section we give a brief exposition of the main idea of Bernstein-Gel’fand-
Gel’fand [BGG]: a construction of a pair of adjoint functors between the categories
of complexes over E and over S. However, we avoid a peculiar convention, used
in the original, according to which the differentials of complexes over E were not
homomorphisms of E-modules.

Let ei and xi be dual bases of V and W respectively, so that
∑
i xi ⊗ ei ∈

W ⊗K V corresponds to the identity element under the isomorphism W ⊗K V =
HomK(W,W ). Let A and B be vector spaces. Giving a map A⊗KW →α B is the
same as giving a map A →α′ B ⊗K V (where the tensor products are taken over
K). For example, given α we set α′(a) =

∑
i ei ⊗ α(a⊗ xi).

We begin with a special case that will play a central role. We regard a graded
S-module M =

⊕
Md as a complex with only one term, in cohomological degree

0, and define R(M) to be the complex

· · · φ−→ HomK(E,Md)
φ−→ HomK(E,Md+1)

φ−→ · · · ,

φ : α 7→
[
e 7→

∑
i

xiα(eie)
]
.

Here HomK(E,Md) has cohomological index d, and a map α ∈ HomK(E,Md) has
degree t if it factors through the projection from E onto Ed−t. Note that the
complex R(M) is linear in a strong sense: the dth free module HomK(E,Md) ∼=
ωE⊗Md has socle in degree d; in particular, all the maps are represented by matrices
of linear forms.

Proposition 2.1. The functor R is an equivalence between the category of graded
left S-modules and the category of linear free complexes over E (those for which the
dth free module has socle in degree d).

Proof. A collection of maps µd : W ⊗K Md → Md+1 defines a module structure
on the graded vector space

⊕
Md if and only if it satisfies a commutativity and

associativity condition expressed by saying that, for each d, the composition of the
multiplication maps

W ⊗K (W ⊗K Md)→W ⊗K Md+1 →Md+2

factors through Sym2W ⊗KMd. Since
∧2

W is the kernel of W ⊗KW → Sym2W ,
this is the same as saying that the induced map

∧2W ⊗K Md → Md+2 is zero,
or again that the map φ2 : HomK(Ev,Md)→

∧2
V ⊗K HomK(Ev,Md+2) is zero.

This last is equivalent to R(M) being a complex. As the whole construction is
reversible, we are done. �

As a first step in extending R to all complexes, we consider the case of a module
regarded as a complex with a single term, but in arbitrary cohomological degree.
LetM be an S-module, regarded as a complex concentrated in cohomological degree
0. Then M [a] is a complex concentrated in cohomological degree −a, and we set

R(M [a]) = R(M)[a].
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Now consider the general case of a complex of graded S-modules

M : · · · →M i →M i+1 → · · · .
Applying R to each M i, regarded as a complex concentrated in cohomological
degree i, we get a double complex, and we define R(M) to be the total complex of
this double complex. Thus R(M) is the total complex of

· · · // HomK(E, (M i+1)j)

OO

// HomK(E, (M i+1)j+1)

OO

// · · ·

· · · // HomK(E, (M i)j)

OO

// HomK(E, (M i)j+1) //

OO

· · ·
OO OO

where the vertical maps are induced by the differential of M and the horizontal
complexes are the complexes R(M i) defined above. As E-modules we have

(RM)k =
∑
i+j=k

HomK(E, (M i)j),

where (M i)j is regarded as a vector space concentrated in degree j. Thus, as
a bigraded E-module, R(M) = HomK(E,M), and the formula for the graded
components is

R(M)ij =
∑
m

HomK(Em−j , (M i−m)m).

The functor R has a left adjoint L defined in an analogous way by tensoring
with S: on a graded E-module P =

∑
Pj the functor L takes the value

L(P ) : · · · → S ⊗K Pj → S ⊗K Pj−1 → · · · ,
where the map takes s⊗p to

∑
i xis⊗ eip and the term S⊗K Pj has cohomological

degree −j. If P is a complex of graded E-modules, then we can apply L to each
term to get a double complex, and we define L(P) to be the total complex of this
double complex, so that

L(P)k =
∑
i−j=k

S ⊗K (P i)j and L(P)ij =
∑
m

Sj−m ⊗K (P i+m)m.

To see that L is the left adjoint of R, we proceed as follows. First, if M and P
are left modules over S and E, respectively, then

HomS(S ⊗K P,M) = HomK(P,M) = HomE(P,HomK(E,M)).

If now M and P are complexes of graded modules over S and E, we must prove
that HomS(L(P),M) ∼= HomE(P,R(M)), where on each side we take the maps of
modules that preserve the internal and cohomological degrees and commute with
the differentials. As a bigraded module, L(P ) = S ⊗K P , and similarly for R.
Direct computation shows that these maps of complexes correspond to the maps of
bigraded K-modules

φ = (φij) ∈ Hombigraded vector spaces(P,M)
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such that φij : P ij →M i−j
j and

φd− dφ = (
∑
s

xs ⊗ es)φ,

where (
∑

s xs ⊗ es)φ takes an element p ∈ P ij to (−1)i
∑

s xsφ(esp). We have
proved:

Theorem 2.2 (Bernstein-Gel’fand-Gel’fand [BGG]). The functor L, from the cat-
egory of complexes of graded E-modules to the category of complexes of graded
S-modules, is a left adjoint to the functor R.

It is not hard to compute the homology of the complexes produced by L and R:

Proposition 2.3. If M is a graded S-module and P is a graded E-module, then
a) Hi(R(M))j = TorSj−i(K,M)j, and
b) Hi(L(P ))j = Extj−iE (K,P )j.

Proof. The j−ith free module in the free resolution ofK overE is (Symj−i(W ))∗⊗K
E, which is generated by the vector space (Symj−i(W ))∗ of degree i − j. We
can use this to compute the right-hand side of the equality in b): the jth graded
component of the module of homomorphisms of this into P may be identified with
Symj−i(W )⊗K Pi. The differential is the same as that of L(P ), and part b) follows.
Part a) is similar (and even more familiar, from Koszul cohomology). �

It follows that the exactness of R(M) or L(P ) is a familiar condition. First the
case of a module over the symmetric algebra:

Corollary 2.4. a) If M is a finitely generated graded S-module, then the truncated
complex

R(M)≥d : HomK(E,Md)→ HomK(E,Md+1)→ · · ·
is acyclic (that is, has homology only at HomK(E,Md)) if and only if M is d-
regular.

Proof. By Proposition 2.3 applied to M≥d, the given sequence is acyclic if and only
if M≥d has linear free resolution. �

Since any linear complex is of the form L(P ) for a unique graded E-module P ,
it is perhaps most interesting to interpret part b) of Proposition 2.3 as a statement
about linear complexes over S. The result below is implicitly used in Green’s [Gre]
proof of the linear syzygy conjecture.

We call a right bounded linear complex

G : · · · → G−2 → G−1 →φ G0

irredundant if it is a subcomplex of the minimal free resolution of coker(φ) (or
equivalently of any module whose presentation has linear part equal to φ). (Eisen-
bud and Popescu in [EPo] called this property linear exactness , but to follow this
usage would risk overusing the adjective “linear”.)

Corollary 2.5. Let G be a minimal linear complex of free S-modules ending on
the right with G0 as above, and let P ∗ be the E-module such that L(P ∗) = G.
The complex G is irredundant if and only the module P is generated by P0. The
complex G is the linear part of a minimal free resolution if and only if the module
P is linearly presented.
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Proof. Let φ : G−1 → G0 be the differential of G = L(P ∗), let

F : · · · → F−2 → F−1 φ−→ G0

be the minimal free resolution of coker(φ), and let κ : G→ F be a comparison map
lifting the identity on G0. (This comparison map is unique, because F is minimal
and G is linear.) By induction one sees that the comparison map is an injection if
and only if HiG−i = 0 for all i < 0, and it is an isomorphism onto the linear part
of F if and only if in addition HiG1−i = 0 for all i < 0. Proposition 2.3 shows that
the first condition is satisfied if and only if P ∗ injects into a direct sum of copies
of E, while both conditions are true if and only if the minimal injective resolution
begins with

0→ P ∗ → ωaE → ωE(−1)b

for some numbers a, b. Dualizing, we get the desired linear presentation

E(1)b → Ea → P → 0

of P . �

We now return to the BGG-correspondence. Both the functors L and R preserve
mapping cones and homotopies of maps of complexes. For mapping cones this is
immediate. For the second, note that two maps f, g : F → G of complexes are
homotopic if and only if the induced map from G to the mapping cone of f − g is
split. This condition is preserved by any additive functor that preserves mapping
cones.

Recall that a free resolution of a right bounded complex

M : · · · →M i−1 →M i →M i+1 → · · ·
of graded S-modules is a graded free complex F with a morphism F→M, homo-
geneous of degree 0, which induces an isomorphism on homology. We say that F
is minimal if K ⊗S F has trivial differential. Every right bounded complex M of
finitely generated modules has a minimal free resolution, unique up to isomorphism.
It is the minimal part of any free resolution.

The functors L and R give a general construction of resolutions.

Theorem 2.6. For any complex of graded S-modules M, the complex LR(M)
is a free resolution of M which surjects onto M; and for any complex of graded
E-modules G, the complex RL(G) is an injective resolution of G into which G
injects.

In fact we shall see that every free complex whose homology is M up to finite
length comes as L of a complex that agrees with R(M) in high degrees.

An immediate consequence is:

Corollary 2.7. The functors R and L define an equivalence

Db(S-mod) ∼= Db(E-mod).

Proof of Corollary 2.7. The derived category Db(S-mod) of bounded complexes of
finitely generated S-modules is equivalent to the derived category of complexes of
finitely generated S-modules with bounded cohomology (that is, having just finitely
many cohomology modules; see for example Hartshorne [Har], III, Lemma 12.3),
and similarly for E. The functors L and R carry bounded complexes into complexes
with bounded cohomology. This is clear for L, and for R it follows from Corollary
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2.4. Thus L and R are well defined, and by Theorem 2.6 LR and RL are both
equivalent to the identity. �

Proof of Theorem 2.6. The proofs of the two statements are similar, so we treat
only the first. (A slight simplification is possible in the second case, since finitely
generated modules over E have finite composition series.)

Because L is the left adjoint functor of R, there is a natural map LR(M)→M
adjoint to the identity map R(M) → R(M). We claim that this is a surjective
quasi-isomorphism.

To see that it is a surjection, consider a map φ : M → M′ such that the
composite LR(M) → M → M′ is zero. It follows that the adjoint composition
R(M) → R(M) → R(M′) is also zero, and since the first map is the identity, we
get R(φ) = 0. Since R is a faithful functor, φ = 0, proving surjectivity.

The functor L preserves direct limits because it is a left adjoint, while the functor
R preserves direct limits because E is a finite-dimensional vector space. Thus it
suffices to prove our claim in the case where M is a bounded complex of finitely
generated S-modules.

If M has the form
M : · · · →Md → 0→ · · · ,

then M admits Md[−d] (that is, the module Md considered as a complex concen-
trated in cohomological degree d) as a subcomplex, and the quotient is a complex
of smaller length. Using the “five lemma”, the naturality of the map LR(M)→M,
and the exactness of the functor LR, the claims will follow, by induction on the
length of the complex, from the case where M has the form M [−d] for some finitely
generated graded S-module M and integer d. This reduces immediately to the case
d = 0.

It thus suffices to see that LR(M) → M is a quasi-isomorphism when M is a
finitely generated graded S-module. Now R(M) is the linear complex HomK(E,M0)
→ HomK(E,M1) → · · · , so LR(M) is the total complex of the following double
complex:

· · · // S ⊗K HomK(K,M1)

OO

// 0

· · · // S ⊗K HomK(V,M0) //

OO

S ⊗K HomK(K,M0) //

OO

0.

In this picture the terms below what is shown are all zero. The terms of cohomo-
logical degree 0 in the total complex are those along the diagonal going northwest
from S ⊗K HomK(K,M0). The generators of S ⊗K HomK(K,M0) have internal
degree 0, while those of S ⊗K HomK(K,M1) have internal degree 1, etc.

The dth row of this double complex is S⊗K HomK(E,Md), which is equal to the
complex obtained by tensoring the Koszul complex

· · · → S ⊗K
∧2
W → S ⊗K W → S → 0

with Md. It is thus acyclic, its one cohomology module being Md, in cohomological
degree 0. The spectral sequence starting with the horizontal cohomology of the
double complex thus degenerates, and we see that the cohomology of the total
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complex LR(M) is a graded module with component of internal degree equal to
Md, concentrated in cohomological degree 0. Thus LR(M) is acyclic, and the
Hilbert function of H0(LR(M)) is the same as that of M . As LR(M) has no terms
in positive cohomological degree, and M is in cohomological degree 0, the surjection
LR(M)→M induces a surjection H0(LR(M))→M , and we are done. (One can
show that LR(M) is the tensor product, over K, of the Koszul complex and M ,
the action of S being the diagonal action, but the isomorphism is complicated to
write down.) �

Though the statement of Theorem 2.6 has an attractive simplicity, it is not very
useful in this form because the resolutions that are produced are highly nonminimal
(for example, the free resolutions produced over S are nearly always infinite). The-
orem 3.7 shows that a modification of this construction gives at least an important
part of the minimal free resolution.

3. The linear part of a complex

If A is a matrix over E, then we define the linear part , written lin(A), to be the
matrix obtained by erasing all the terms of entries of A that are of degree > 1. For
example, if a, b, c, d are linear forms of E, then the linear part of(

a 0
bc d

)
is

(
a 0
0 d

)
.

Taking the linear part is a functorial operation on maps (see Theorem 3.4 below),
but taking the linear part of a matrix does not always commute with change of
basis. For example, if a, b, c are linear forms,

d =
(
a 0
0 b

)
, and e =

(
1 c
0 1

)
,

then lin(de) 6= lin(d)e.
Suppose that e : G → H is a second map of free modules and that the compo-

sition ed = 0. It need not be the case that lin(e) lin(d) = 0; but if we assume in
addition that d(F ) is in the maximal ideal times G and e(G) is in the maximal ideal
times H , then lin(e) lin(d) = 0 does follow. Thus, if F is a minimal free complex
over E, we can define a new complex lin(F) by replacing each differential d of F by
its linear part, lin(d). Note that lin(F) is the direct sum of complexes F(i) whose
eth term is a direct sum of copies of E(e + i) and whose maps are of degree 1. In
general, we define the linear part of any free complex F to be the linear part of a
minimal complex homotopic to F.

Theorem 3.1. Let F be a free or injective resolution of a finitely generated module
over the exterior algebra E. The linear part of F is eventually exact.

Proof. We treat only the case where F is an injective resolution; by duality, the
statement for a free resolution is equivalent. By Theorem 3.4 the linear part of
F is the value of R on the S-module Ext•E(K,P ). Since any finitely generated S-
module has finite regularity (see Eisenbud and Goto [EG]), it suffices by Corollary
2.4 to show that Ext•E(K,P ) is a finitely generated S-module. This was done by
Aramova, Avramov, and Herzog [AAH]. For the reader’s convenience we repeat the
argument: we prove that Ext•E(K,P ) is a finitely generated S-module by induction
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on the length of P . If P = K, then Ext•E(K,P ) is free of rank 1 over S. If P ′ is a
proper submodule of P , then from the exact sequence

0→ P ′ → P → P/P ′ → 0

we get an exact triangle of S-modules:

Ext•E(K,P/P ′) //

((QQQQQQQQQQQQ
Ext•E(K,P ′)

wwoooooooooooo

Ext•E(K,P )

The two S-modules in the top row are finitely generated by induction, and thus
Ext•E(K,P ) is finitely generated too. �

If P is an E-module, then we write lin(P ) for the cokernel of lin(d), where d is
the map in a minimal free presentation of P . We can further define a family of
modules connecting P and lin(P ) as follows: Let d be a minimal free presentation
of P , choose a representation of d as a matrix, and let e1, . . . , ev be a basis of V .
Let d′ be the result of substituting tei for ei in the entries of d, and then dividing
each entry by t. The entries of d have no constant terms because d is minimal,
and it follows that d′ is a matrix over K[t] ⊗K E. Let P ′ be the cokernel of d′.
It has fibers P at t 6= 0 and lin(P ) at 0. The module P ′ may not be flat over
K[t], but the module P ′[t−1] is flat over K[t, t−1]: in fact, it is isomorphic to the
module obtained from the trivial family K[t, t−1] ⊗K P by pulling back along the
automorphism ei 7→ teic of E.

Corollary 3.2. If P is a finitely generated E-module, then any sufficiently high
syzygy Q of P is a flat deformation of its linear part lin(Q).

Proof. If Q is a sufficiently high syzygy, then by Theorem 3.1 the linear part of the
minimal resolution of Q is the resolution of lin(Q), so that (with the notation of
the preceding paragraph) this free resolution of Q lifts to a free resolution of lin(Q′)
over K[t]⊗K E. Thus Q′ is flat, and the result follows. �

Example 3.3. It is sometimes not so obvious what the linear part of the minimal
version of a complex will be, and in particular it may be hard to read from the
linear terms in a nonminimal version. For example, suppose that W has dimension
2 and that x, y ∈ W is a dual basis to a, b ∈ V . Consider the complex

M : 0→ S/(x, y2) x−→ S/(x2, y)(1)→ 0,

where the notation means that the class of 1 goes to the class of x.
Applying R to M, we get the double complex

0 // E(1) a // E // 0

0 //

OO

E

1

OO

b
// E(−1)

OO

// 0

whose total complex is

R(M) = F : 0→ E(1)⊕ E
( a 1

0 b
)

−→ E ⊕ E(−1)→ 0.
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Despite the presence of the linear terms in the differential of F, the minimal complex
F′ homotopic to F is

F′ : 0→ E(1) ab−→ E(−1)→ 0,

so the differential of lin(F) is 0.
Fortunately, we can construct the linear part of a complex directly and concep-

tually, without passing to a minimal complex or to matrices. First note that if
G is a minimal free complex over E, then giving its linear part is equivalent, by
Proposition 2.1, to giving the maps φi : HomE(K,Gi) → V ⊗K HomE(K,Gi+1)
corresponding to the linear terms in the differential of G. If F is a (possibly non-
minimal) free complex homotopic to G, then HomE(K,Gi) = Hi HomE(K,F). We
will construct natural maps ψi : Hi HomE(K,F) → V ⊗Hi+1 HomE(K,F), and
prove that ψi = φi.

We identify S with ExtE(K,K) and use the well-known ExtE(K,K)-module
structure on H•HomE(K,F). To formulate this explicitly, we make use of the
exact sequence

η : 0→ V → E/(V )2 → K → 0.

The extension class

η ∈ Ext1
E(K,V ) = Ext1

E(K,K)⊗K V = HomK(W,Ext1
E(K,K))

corresponds to the inclusion W = Sym1W ⊂ SymW . Since F is a free complex,
the sequence Hom(η,F) is an exact sequence of complexes, and we obtain the
homomorphism ψi : Hi HomE(K,F)→ V ⊗Hi+1 HomE(K,F) from the connecting
homomorphism

δi : W ⊗K Hi HomE(K,F) = Hi HomE(V,F)→ Hi+1 HomE(K,F).

Theorem 3.4. If F is a complex of free modules over E, then

lin(F) = R(H•HomE(K,F)),

where the S-module structure on H•HomE(K,F) is given by the Yoneda action of
ExtE(K,K).

Proof. We use the notation φi, ψi, δi introduced just before the theorem. From
the definition of ψi : Hi HomE(K,F) → V ⊗K Hi+1 HomE(K,F) we see that it
depends only on the homotopy class of F, so we may assume that F is minimal.
By Proposition 2.1 we may assume that

F i = HomK(E,Mi) = E ⊗K HomK(Ev,Mi).

Let 1⊗ a ∈ K ⊗K HomK(Ev,Mi) be a generator which is mapped by φi to
∑
vj ⊗

bj ∈ V ⊗K HomK(Ev,Mi+1). Let s = v0 ∧ v1 ∧ · · · ∧ vn ∈ Ev be a generator of
the socle of E. To prove ψi = φi we have to show that an element of the form
w ⊗ s ⊗ a ∈ W ⊗K Ev ⊗ HomK(Ev,Mi) = W ⊗K HomE(K,F i) = HomE(V, F i)
is mapped to {1 7→

∑
j sw(vj)⊗ bj} ∈ Ev ⊗K HomK(Ev,Mi+1) = HomE(K,F i+1)

under the connecting homomorphism δi.
The element w ⊗ s ⊗ a corresponds to {v 7→ sw(v) ⊗ a} in HomE(V, F i). We

must lift {v 7→ sw(v) ⊗ a} to an element of HomE(E/(V )2, F i). The image of
1 ∈ E/(V )2 will be an element c ∈ F i = E ⊗K HomK(Ev,Mi) which satisfies
v · c = s⊗w(v)a for all v ∈ V , and any such element defines a lifting. We can take
c = s¬w ⊗ a. The image of w ⊗ s⊗ a under the connecting homomorphism is the
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map {1 7→ d(c)} ∈ HomE(K,F i+1), where d : F i → F i+1 is the differential of F.
With

d(c) = s¬w ∧ d(a) = s¬w ∧ (
∑
j

vj ⊗ bj + higher terms) =
∑
j

sw(vj)⊗ bj

we arrive at the desired formula. �

To understand the linear parts of complexes obtained from the functor R, we
will employ a general result: if the vertical differential of a suitable double com-
plex splits, then the associated total complex is homotopic to one built from the
homology of the vertical differential in a simple way.

Lemma 3.5. Let F be a double complex

· · · // F i+1
j

OO

dhor // F i+1
j+1

//

OO

· · ·

· · · // F ij

dvert

OO

dhor

// F ij+1
//

dvert

OO

· · ·
OO OO

in some abelian category such that F ij = 0 for i � 0. Suppose that the vertical
differential of F splits, so that for each i, j there is a decomposition F ij = Gij ⊕
dvertG

i−1
j ⊕Hi

j such that the kernel of dvert in F ij is Hi
j ⊕ dvertGi−1

j , and such that
dvert maps Gi−1

j isomorphically to dvert(Gij). If we write σ : F ij → Hi
j for the

projection corresponding to this decomposition, and π : F ij → dvertG
i−1
j → Gi−1

j

for the composition of the projection with the inverse of dvert restricted to Gi−1
j ,

then the total complex of F is homotopic to the complex

· · · →
⊕
i+j=k

Hi
j

d−→
⊕

i+j=k+1

Hi
j → · · ·

with differential
d =

∑
`≥0

σ(dhorπ)`dhor.

Proof. We write dtot = dvert ± dhor for the differential of the total complex. Note
first that σ(dhorπ)`dhor takes Hi

j to Hi−`
j+1+`. Since F i−`j+1+` = 0 for ` >> 0, the sum

defining d is finite.
Let F denote F without the differential, that is, as a bigraded module. We will

first show that F is the direct sum of the three components

G =
⊕
i,j

Gij , dtotG, and H =
⊕
i,j

Hi
j ,

and that dtot is a monomorphism on G.
The same statements, with dtot replaced by dvert, are true by hypothesis. In

particular, any element of F is a sum of elements of the form g′ + dvertg + h with
g′ ∈ Gij , g ∈ Gi−1

j and h ∈ Hi
j for some i, j. Modulo G + dtotG + H this element
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can be written as dhor(g) ∈ F i−1
j+1 . As F st = 0 for s << 0, we may do induction on

i, and assume that dhorg ∈ G+ dtotG+H , so we see that F = G+ dtotG+H .
Suppose

g′ ∈ G =
⊕
i+j=`

Gij , g ∈ G =
⊕

i+j=`−1

Gij , h ∈ H =
⊕
i+j=`

Hi
j

and g′ + dtotg + h = 0; we must show that g = g′ = h = 0. Write g =
∑b
k=a g

k−1
`−k

with gst ∈ Gst . If b − a = −1, then dtot = 0, and the desired result is a special
case of the hypothesis. In any case, there is no component of g in Gb`−b−1, so the
component of dtotg in Gb`−b is equal to dvertgb−1

`−b . From the hypothesis we see that
dvertg

b−1
`−b = 0, so gb−1

`−b = 0, and we are done by induction on b−a. This shows that
F = G⊕ dtotG⊕H and that dtot is an isomorphism from G to dtotG.

The modules G⊕dtotG form a double complex contained in F that we will call G.
Since dtot : G → dtotG is an isomorphism, the total complex tot(G) is split exact.
It follows that the total complex tot(F) is homotopic to tot(F)/tot(G), and the
modules of this last complex are isomorphic to

⊕
i+j=k H

i
j . We will complete the

proof by showing that the induced differential on tot(F)/tot(G) is the differential
d defined above.

Choose h ∈ H i
j . The image of h under the induced differential is the unique

element h′ ∈ H such that dtoth ≡ h′ (mod G+ dG). Now

dtoth = dhorh ≡ σdhorh+ (dvertπ)dhorh (mod G).

However,

dvertπ ≡ dhorπ ≡ σ(dhorπ) + dvertπ(dhorπ) (mod G+ dtotG).

Continuing this way, and using again the fact that F ij = 0 for i << 0, we obtain

dtoth ≡
∑
`

σ(dhorπ)`dhorh (mod G+ dtotG),

as required. �

We apply Theorem 3.4 to complexes of the form R(M):

Corollary 3.6. If M is a left-bounded complex of graded S-modules, then

lin(R(M)) =
⊕
i

R(Hi(M)),

where Hi(M) is regarded as a complex of one term, concentrated in cohomological
degree i. A similar statement holds for the linear part of L(P) when P is a left-
bounded complex of graded E-modules.

Proof. As M is a left-bounded complex of finitely generated modules, the double
complex whose total complex is R(M) satisfies the conditions of Lemma 3.5. The
bigraded module underlying R(Hi(M)) is precisely the module H of Lemma 3.5,
and the differential is the map σdhor restricted to H . This is a linear map. But the
other terms in the sum d =

∑
` σ(πdhor)`dhor all involve two or more iterations of

dhor, and are thus represented by matrices whose entries have degree at least 2. �

Example 3.3, continued. Note that the homology of M is H•(M) = K(−1)⊕
K(1)[−1]. We may write lin(F′) = R(K(−1)) ⊕ R(K(1))[−1], as required by
Corollary 3.6.
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Here is the promised information about the minimal resolution of a module:

Theorem 3.7. a) Reciprocity: If M is a finitely generated graded S-module and
P is a finitely generated graded E-module, then L(P ) is a free resolution of M if
and only if R(M) is an injective resolution of P .
b) More generally, for any minimal bounded complex of finitely generated graded

S-modules M, the linear part of the minimal free resolution of M is L(H•(R(M)));
and for any minimal bounded complex of finitely generated graded E-modules P, the
linear part of the minimal injective resolution of P is R(H•(L(P))).

Proof. The two parts of b) being similar, we prove only the first statement. By
Theorem 2.6 the complex LR(M) is a free resolution. The complex R(M) is left-
bounded because F is bounded and contains only finitely generated modules. Thus
we may apply Corollary 3.6, proving the first statement.

For the reciprocity statement a), suppose that L(P ) is a minimal free resolu-
tion of M . By part b) the linear part of the minimal injective resolution of P is
R(H•(L(P ))). Since L(P ) is a resolution of M , this is R(M). All the terms of
cohomological degree d of this complex have degree −d, so there is no room for
nonlinear differentials, and the linear part of the resolution is the resolution. �

4. Sheaf cohomology and exterior syzygies

In this section we establish a formula for the free modules that appear in reso-
lutions over E. Because E is Gorenstein, it is natural to work with doubly infinite
resolutions:

A Tate resolution over E is a doubly infinite free complex

T : · · · → T d → T d+1 → · · ·
that is everywhere exact.

There is a Tate resolution naturally associated to a coherent sheaf F on P(W ),
defined as follows. Let M be a finitely generated graded S-module representing F ,
for example M =

⊕
ν≥0 H0(F(ν)). If d ≥ regularity(M), then by Corollary 2.4

the complex R(M≥d) is acyclic. Thus, if d > regularity(M), then, since R(M≥d) is
minimal, HomK(E,Md) minimally covers the kernel of the map HomK(E,Md+1)→
HomK(E,Md+2)

Fixing d > regularity(M), we may complete R(M≥d) to a minimal Tate resolu-
tion T(F) by adjoining a free resolution of

ker
[
HomK(E,Md)→ HomK(E,Md+1)

]
.

Since any two modules representing F are equal in large degree, the Tate resolution
is independent of which M and which large d is chosen, and depends only on the
coherent sheaf F . It has the form

T(F) : · · · → T d−2 → T d−1 → HomK(E,H0(F(d)))

→ HomK(E,H0(F(d+ 1)))→ · · · ,
where the Ti are graded free E-modules.

The main theorem of this section expresses the linear part of this Tate resolution
in terms of the S-modules

⊕
e Hj(F(e)) given by the (Zariski) cohomology of F .

We regard
⊕

eHj(F(e)) as a complex of S-modules concentrated in cohomological
degree j.
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Theorem 4.1. If F is a coherent sheaf on P(W ), then the linear part of the Tate
resolution T(F) is

⊕
j R(

⊕
e Hj(F(e))). In particular,

T e =
⊕
j

HomK(E,Hj(F(e− j))),

where Hj(F(e− j)) is regarded as a vector space of internal degree e− j.

A special case of the theorem appears without proof as Remark 3 after Theorem
2 in Bernstein-Gel’fand-Gel’fand [BGG]. The proof below could be extended to
cover the case of a bounded complex of coherent sheaves, replacing the cohomology
in the formula with hypercohomology. We will postpone the proof of Theorem 4.1
until the end of this section.

Rewriting the indices in Theorem 4.1, we emphasize the fact that we can compute
any part of the cohomology of F from the Tate resolution.

Corollary 4.2. For all j, ` ∈ Z, Hj(F(`)) = HomE(K,T j+`)−`.

Corollary 4.2 provides the basis for an algorithm computing the cohomology of
F with any computer program that can provide free resolutions of modules over
the symmetric and exterior algebras, such as the program Macaulay2 of Grayson
and Stillman [http://www.math.uiuc.edu/Macaulay2/]. For an explanation of
the algorithm in practical terms, see Decker and Eisenbud [DE].

To prove Theorem 4.1 we will use the reciprocity result Theorem 3.7. We actually
prove a slightly more general version, involving local cohomology. We write m for
the homogeneous maximal ideal SW of S, and for any graded S-module M we write
Hj

m(M) for the jth local cohomology module of M , regarded as a graded S-module.

Theorem 4.3. Let M be a graded S-module generated in degree d, and having linear
free resolution L(P ). Let F : · · · → F−1 → F 0 be the minimal free resolution of
P . The linear part of F is

lin(F) =
⊕
j

R(Hj
m(M)),

where Hj
m(M) is regarded as a complex with one term, concentrated in cohomological

degree j. In particular, we have

F−i =
⊕
j

HomK(E,Hj
m(M)−j−i).

Proof of Theorem 4.3. We compute the linear part of the free resolution of P by
taking the dual (into K) of the linear part of the injective resolution of P ∗. By Theo-
rem 3.7, the linear part of the injective resolution of P ∗ is R(H•(L(P ∗))). It follows
at once from the definitions that L(P ∗) = HomS(L(P ), S). By Theorem 3.7 once
more, L(P ) is the minimal free resolution of M , so H•(L(P ∗)) = Ext•S(M,S). Thus
the linear part of the free resolution of P is [RExt•S(M,S)]∗, where ExtjS(M,S) is
thought of as a module concentrated in cohomological degree j.

Because E∗ = ωE = E⊗
∧v

W , we have, for any graded vector space D, natural
identifications

(HomK(E,D))∗ = (E∗ ⊗K D)∗

= E∗ ⊗K
∧v

W ∗ ⊗K D∗

= HomK(E,D∗)⊗K
∧v
V.
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(Here all the duals of E-modules are Hom into K.) If D has the structure of
a graded S-module, then D∗ is again a graded S-module, and this becomes an
isomorphism of graded S-modules. If we think of D as a complex with just one
term, in cohomological degree d, then R(D)∗ = R(D∗ ⊗K

∧v
V ), where, to make

all the indices come out right, we must think of D∗ ⊗K
∧v

V = (D ⊗K
∧v

W )∗ as
a complex of one term concentrated in cohomological degree v − d.

If we take D = Ext`S(M,S), then, by local duality,

D∗ = (Ext`S(M,S)⊗K
∧v

W ⊗K
∧v

V )∗

= (Ext`S(M,ωS)⊗K
∧v

V )∗

= Hv−`
m (M)⊗

∧v
W.

Thus
R(Ext`S(M,S))∗ = R(Hv−`

m (M)⊗K
∧vW )⊗

∧vV
= R(Hv−`

m (M)),

where Hj
m(M) is regarded as a complex with just one term, of cohomological degree

−j, as required. �

Proof of Theorem 4.1. For each i = 0, . . . , v − 1 we write Hi for the cohomology
module

⊕∞
d=−∞Hi(F(d)). If we choose d ≥ regularity(H0

≥0) as in the construc-
tion of T(F), the module M := H0

≥d has a linear free resolution, so we may
apply Theorem 4.3. We deduce that the linear part of the free resolution of P :=
ker[HomK(E,H0(F(d))) → HomK(H0(F(d + 1)))] is lin(F) =

⊕
j R(Hj

m(M)). If
we insist that d > regularity(H0

≥0), then H0
m(M) = 0. From the exactness of the

sequence

0→ H0
m(M)→M →

∞⊕
d=−∞

H0(F(d))→ H1
m(M)→ 0

it follows that the local cohomology module H1
m(M)) agrees with the global co-

homology module H0 in all degrees strictly less than d, and of course we have
Hi = Hi+1

m (M). This concludes the proof. �

5. Powers of the maximal ideal of E

In this section we provide a basic example of the action of the functors L and R.
Among the most interesting graded S-modules are the syzygy modules that occur
in the Koszul complex. We write

Ωi = coker
[
S ⊗K

∧i+2
W → S ⊗K

∧i+1
W
]
,

where as usual the elements of W have internal degree 1, so that the generators of Ωi

have internal degree i+1. For example, Ω−1 = K while Ω0 = (W ) ⊂ S and Ωv−1 =
S ⊗

∧v
W , a free module of rank one generated in degree v. The sheafifications

of these modules are the exterior powers of the cotangent bundle on projective
space (see Eisenbud [Eis], Section 17.5, for more details). In this section we shall
show that under the functors L and R introduced in Section 2 the Ωi correspond
to powers of the maximal ideal m ⊂ E. To make the correspondence completely
functorial, we make use of the E-modules miωE , where ωE = HomK(E,K). Recall
that ωE is a rank one free E-module generated in degree v; its generators may be
identified with the nonzero elements of

∧v
W .
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Theorem 5.1. The minimal S-free resolution of Ωi is L(ωE/mv−iωE); the minimal
E-injective resolution of ωE/mv−iωE is R(Ωi).

Since Ωi is generated in degree i+1, the complex R(Ωi) begins in cohomological
degree i + 1, and we regard ωE/m

v−iωE as concentrated in cohomological degree
i+ 1.

Proof. The complex L(ωE) is the Koszul complex over S, so L(ωE/mv−iωE) is the
truncation

0→ S ⊗
∧vW → · · · → S ⊗

∧i+1W,

which is the resolution of Ωi, proving the first statement. The second statement
follows from Theorem 3.7. �

Since the K-dual of a minimal E-injective resolution is a minimal E-free resolu-
tion, we may immediately derive the free resolution of

m
i+1 = HomE(ωE/mv−iωE , ωE) = HomK(ωE/mv−iωE,K).

Corollary 5.2. The minimal E-free resolution of mj is

HomK(R(Ωj−1),K).

These resolutions can be made explicit using the Schur functors
∧i
j associated to

“hook” diagrams (see for example Buchsbaum and Eisenbud [BE] or Akin, Buchs-
baum, Weyman [ABW]). We may define

∧i
j (called Lij by Buchsbaum and Eisen-

bud) by the formula∧i
j(W ) = im

[∧i
W ⊗K symj−1 W →

∧i−1
W ⊗K symjW

]
.

Note that

∧i
j(W ) =


0 if i < 1 or j < 1,∧i

W if j = 1,
SymjW if i = 1.

Buchsbaum and Eisenbud use these functors to give (among other things) aGL(W )-
equivariant resolution

· · · → S ⊗K
∧2
j(W )→ S ⊗K

∧1
j (W )→ (W )j → 0

of the jth power (W )j of the maximal ideal of S. The
∧i
j also provide the terms in

the resolutions above:

Corollary 5.3. For i > 0 the minimal free resolution of mi has the form

· · · → E ⊗ (
∧i

2W )∗ → E ⊗ (
∧i

1W )∗ → mi → 0.

For i < v the minimal injective resolution of ωE/mv−iωE has the form

HomK(E,
∧i+1

1 (W ))→ HomK(E,
∧i+1

2 (W ))→ · · · .

Proof. From the exactness of the Koszul complex we see that (Ωi)j =
∧i+1
j−iW,

so the second statement follows from Theorem 5.1. The first statement follows
similarly from Corollary 5.2. �
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Using the exact sequence

0→ mv−iωE → ωE → ωE/m
v−iωE → 0,

we may paste together the injective and free resolutions considered above into the
Tate resolution T(ΩiP).

Corollary 5.4. There is an exact sequence

T(ΩiP) : · · · → HomK(E,
∧i+1

1 W )→ HomK(E,
∧i+1

2 W )→ HomK(E,K)

→ HomK(E, (
∧v−i

1 W )∗)→ HomK(E, (
∧v−i

2 W )∗)→ · · · ,

where HomK(E,K) = ωE is the term in cohomological degree i.

The following well-known result now follows from Corollary 5.4 by inspection.

Proposition 5.5. In the range 0 ≤ j ≤ v − 1 or 1 ≤ q ≤ v − 2,

Hq(OP(−j)⊗ ΩpP(p)) =

{
K, if p = q = j,

0, otherwise.

Proof. Writing the ranks of the free modules in the Tate resolution for ΩpP in
Macaulay notation, we find

(v − p)
(
v+1
v−p+1

) (
v
v−p
)

. . .

. . . . .

. . 1 . .

. . . . .

. . . . .

. . .
(
v
p+1

)
(p+ 1)

(
v+1
p+2

)
with the rank 1 module sitting in homological degree p and the ingoing and outgoing
map from it given by bases of the forms in

∧v−p
V and

∧p+1
V respectively. �

If we shift the rank 1 module into homological degree 0, then we have the Tate
resolution of Ωp(p). Following Beilinson ([Bei], Lemma 2), we can also compute
Hom(Ωi(i),Ωj(j)) for any i, j, which will play a major role in Section 6.

Proposition 5.6. If Ωi(i) are the S-modules defined in Section 5 and 0 ≤ i, j < v,
then

homS(Ωi(i),Ωj(j)) =
∧i−jV = homE(ωE(i), ωE(j)),

where in each case hom denotes the (degree 0) homomorphisms; for other values
of i, j the left-hand side is 0. The product of homomorphisms corresponds to the
product in

∧
V .

Proof. The modules Ωi(i) are 0 for i < 0 and i ≥ v. For 0 ≤ i < v they have
linear resolution, so we may apply Theorem 3.7. As they are 0 in degrees < 1
and generated in degree 1, we have H1R(Ωi(i)) = ωE(i)/mv−iωE(i) if v > i, by
Theorem 5.1. For 0 ≤ i, j < v, maps ωE(i)/mv−iωE(i)→ ωE(j)/mv−jωE(j) are in
one-to-one correspondence with maps ωE(i)→ ωE(j). Since ωE is a rank one free
E-module, these may be identified with elements of Ej−i =

∧i−j
V . �
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6. Beilinson’s monad

Beilinson’s paper [Bei] contains two main results. The first says that, given a
sheaf F on a projective space P = P(W ), there is a complex

B : · · · → B−1 → B0 → B1 → · · ·
with

Be =
⊕
j

Hj(F(e− j))⊗ Ωj−eP (j − e)

such that B is exact except at B0 and the homology at B0 is F .
We show that the complex B may be obtained by applying a certain functor

to the Tate resolution T(F) over E. Beilinson’s second main result gives another
monad, which we will treat in Theorem 8.1.

Given any graded free complex T over E, we may write each module of T as a
direct sum of copies of ωE(i) = HomK(E,K(i)) with varying i. We define Ω(T) to
be the complex of sheaves on P obtained by replacing each summand ωE(i) by the
sheaf ΩiP(i) and using the isomorphism of Hom in Proposition 5.6 to provide the
maps.

Theorem 6.1. If F is a coherent sheaf on P(W ) with associated Tate resolution
T(F), then the only homology of Ω(T(F)) is in cohomological degree 0, and is
isomorphic to F .

Proof. To simplify the notation we set T = T(F), and we let T be T modulo the
elements of internal degree ≥ 0. Let L be the double complex of sheaves that arises
by sheafifying the double complex of S-modules used to construct the complex
L(T); that is, if T e is the component of T of cohomological degree e, and T ej is its
component of internal degree j, then the double complex L has the form

L :

· · · // T ej+1 ⊗K O(j + 1)

OO

// T e+1
j+1 ⊗K O(j + 1)

OO

// · · ·

· · · // T ej ⊗K O(j) //

OO

T e+1
j ⊗K O(j) //

OO

· · ·
OO OO

Since T is exact, the rows are exact; since the columns are direct sums of sheafified
Koszul complexes over S, they are exact as well.

Choose an integer f >> 0 (greater than the regularity of F will be sufficient) and
let L′ be the double complex obtained from L by taking only those terms T ej ⊗KO(j)
with e < f and j > 0. If e << 0, then T e is generated in negative degrees, so the
double complex L′ is finite, and is exact except at the right (e = f − 1) and at
j = 1. An easy spectral sequence argument shows that the complex obtained as
the vertical homology of L′ has the same homology as the complex obtained as the
horizontal homology of L′.

If we write T e as a sum of copies of ωE(i) for various i, then the eth column of
L′ is correspondingly a sum of copies of the sheafification of L(ωE(i)/mv−iωE(i)).
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As in Theorem 5.1, the vertical homology of this column is correspondingly a sum
of copies of ΩiP(i); that is, it is Ω(T e). Thus the complex obtained as the vertical
homology of L′ is Ω(T).

As e goes to infinity, the degrees of the generators of T e become more and more
positive; thus for e large the eth column of L′ is the same as that of L, that is, it is
L(T e). Since f >> 0, the horizontal homology of L′ is the sheafification of L(H),
where H is the homology of T<f . As T is exact, H may also be written as the
homology of T≥f . Taking f > regularityF and using Theorem 3.7, we see that
L(H) is a free resolution of the module

⊕
e≥f H0(F(e)), whose sheafification is F ,

as required. �

Corollary 6.2. The map in the complex Ω(T(F)) corresponding to

Hj(F(j − i))⊗ Ωi−jP (i− j) −→ Hj(F(j − i+ 1))⊗ Ωi−j−1
P (i− j − 1)

corresponds to the multiplication map W ⊗K Hj(F(j − i)) −→ Hj(F(j − i+ 1)).

Proof. This follows from Theorem 4.1, since we have identified not only the modules
but the maps in the linear strands of the resolution. �

Corollary 6.3. The maps in the complex Ω(T(F)) correspond to the maps in the
complex Ω(T(F(1))) under the natural correspondence

homP(ΩiP(i),ΩjP(j)) =
∧i−jV = homP(Ωi+1

P (i+ 1),Ωj+1
P (j + 1))

whenever 0 ≤ i, i+ 1, j, j + 1 < v.

Proof. The Tate resolution T(F(1)) is obtained by simply shifting T(F). �

7. Examples

Example 7.1. Let C be an elliptic quartic curve in P3, and consider OC as a sheaf
on P3. Write ωE =

∧v
W ⊗ E, as usual. Computing cohomology, one sees that

T(OC) has the form

· · · −→ ω8
E(2) −→ ωE ⊕ ω4

E(1) −→d ω4
E(−1)⊕ ωE −→ ω8

E(−2) −→ · · · .

If C ⊂ P3 is taken to be Heisenberg invariant, say C = {x2
0 + x2

2 + λx1x3 =
x2

1 + x2
3 + λx0x2 = 0} for some λ ∈ A1

k, then d can be represented by the matrix
0 e0 e1 e2 e3

e0 −λe1e3 e2e3 0 e1e2 + λ2

2 e0e3

e1 e2e3 λe0e2 −e0e3 − λ2

2 e1e2 0
e2 0 −e0e3 − λ2

2 e1e2 λe1e3 e0e1

e3 e1e2 + λ2

2 e0e3 0 e0e1 −λe0e2

 .

Example 7.2. The rational normal curve. Let C ⊂ Pd be the curve parame-
trized by (s : t) 7→ (sd : sd−1t : . . . : td). We consider the line bundles Lk on C
associated to

⊕∞
m=0H

0(P1,O(k+md)) for k = −1, . . . , d− 2. The Tate resolution
T(Lk) has Betti numbers

∗ ∗ 3d− k − 1 2d− k − 1 d− k − 1 . . . . .
. . . . . k + 1 d+ k + 1 2d+ k + 1 ∗ ∗
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The [(k + 1) + (d− k− 1)]× (2d− k − 1) matrix near the middle and the matrices
surrounding it have in case d = 4 and k = 1 the following shapes:



0 e0 e0e2 e0e1

e0 e1 e1e2 + e0e3 e0e2

e1 e2 e1e3 + e0e4 e0e3

e2 e3 e1e4 e0e4

e3 e4 0 0
e4 0 0 0



,



0 0 e0e4 e1e4 e2e4 e3e4

0 0 e0e3 e1e3 + e0e4 e2e3 + e1e4 e2e4

0 e0 e1 e2 e3 e4

e0 e1 e2 e3 e4 0



and 
e0 e1 e2 e3 e4 0 0 0 0 0
0 e0 e1 e2 e3 e4 0 0 0 0
0 0 e0 e1 e2 e3 e4 0 0 0
0 0 0 e0 e1 e2 e3 e4 0 0
0 0 0 0 e0 e1 e2 e3 e4 0
0 0 0 0 0 e0 e1 e2 e3 e4

 .

All other matrices look similar to the last one.
In case k = −1 we obtain a d× d symmetric matrix of 2-forms:

e0e1 e0e2 e0e3 e0e4

e0e2 e1e2 + e0e3 e1e3 + e0e4 e1e4

e0e3 e1e3 + e0e4 e2e3 + e1e4 e2e4

e0e4 e1e4 e2e4 e3e4

 .

If we interpret 2-forms as coordinate functions

eij = eiej = ei ∧ ej ∈ H0(G(W, 2),O(1)) ∼= H0(P(
∧2
V ), /O(1))

on the Grassmannian of codimension 2 linear subspaces in P(W ), then the determi-
nant of the matrix above defines the Chow divisor of C ⊂ Pd, which is by definition
the hypersurface {Pd−2 ∈ G(W, 2)|Pd−2 ∩ C 6= ∅}. Eisenbud and Schreyer [ES1]
give a general computation of Chow forms along these lines.

Example 7.3. The Horrocks-Mumford bundle in P4. A famous Beilinson
monad was discovered by Horrocks and Mumford [HM]: Consider for P4 the Tate
resolution T(ϕ) of the matrix

ϕ =
(
e1e4 e2e0 e3e1 e4e2 e0e3

e2e3 e3e4 e4e0 e0e1 e1e2

)
.

By direct computation we find the Betti numbers

? . . . . . . . . . . . . . .
∗ ∗ 100 35 4 0 . . . . . . . . . .
. . . 0 2 10 10 5 0 . . . . . . . .
. . . . . . . 0 2 0 . . . . . . .
. . . . . . . . 0 5 10 10 2 0 . . .
. . . . . . . . . . 0 4 35 100 ∗ ∗
. . . . . . . . . . . . . . ?

.

To deduce that this Tate resolution comes from a sheaf, we use

Lemma 7.4. Let T be a Tate resolution over E. Suppose that (K ⊗E T 0)j = 0 for
all j < 0. Then (K ⊗E T l)m = 0 if l > 0 and m < l, or if l < 0 and m < l − n.
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Proof. Pictorially the statement says that vanishing in a single T e implies vanishing
in the indicated range:

? ?
... ? . . .

. . . ? 0−n ? . . .
...

...
...

. . . ? 0−2 ? . . .

. . . ? 0−1 ? . . .

. . . ? ∗ ? . . .

=⇒

0 0
... 0 . . .

. . . ? 0−n 0 . . .
...

...
...

. . . ? 0−2 0 . . .

. . . ? 0−1 0 . . .

. . . ? ∗ ? . . .

The first vanishing follows, because HomE(T, E) is also a minimal complex. For
the second we note for P = ker(T 0 → T 1) that Pj = 0 holds for all j < −v by our
assumption. By Corollary 5.3, (K ⊗E T l) = TorE−l−1(K,P ), which is a subquotient
of (Sym−l−1W )∗ ⊗K P . Thus this group vanishes in all degrees m < l− v+ 1. �

Example 7.3, continued. By applying Lemma 7.4 to a shift of T(ϕ) and
Hom(T(ϕ), E) we see that the T(ϕ) has terms only in the indicated range of rows;
in particular, the rows with the question marks contain only zeros. So T(ϕ) is
the Tate resolution of some sheaf F . Moreover F is a bundle, since the middle
cohomology has only finitely many terms. The 4th difference function of χ(F(m))
has constant value 2. So F has rank 2. It is the famous bundle on P4 discovered
by Horrocks and Mumford [HM]. In Decker and Schreyer [DS1] it is proved that
any stable rank 2 vector bundle on P4 with the same Chern classes equals F up to
projectivities.

8. Free monads

A free monad L for a coherent sheaf F is a finite complex

0→ L−N → · · · → L−1 → L0 → L1 → · · · → LM → 0

on Pn = P(W ) whose components Li are direct sums of line bundles and whose
homology is F :

H•(L) = H0(L) ∼= F .
The complex of twisted global sections of L is a complex L = Γ∗(L) of free S-
modules. If L is a minimal complex, then we speak of a minimal free monad. The
most familiar free monads are the sheafifications of the minimal free resolutions of
the modules

⊕
m≥m0

H0F(m) for various m0.
Free monads have been constructed by Horrocks [Hor], Barth [Bar], Bernstein,

Gel’fand and Gel’fand [BGG] and Beilinson [Bei], mainly for the study of vector
bundles on projective spaces. Rao [Rao] and Martin-Deschamps and Perrin [MP]
used free monads in their studies of space curves. Fløystad [Flo3] gave a complete
classification of a certain class of linear monads on projective spaces. The general
construction of free monads is the following:

Theorem 8.1. Let F be a coherent sheaf on Pn, and let T′ be a left-bounded com-
plex of finite free E-modules with T′≥r = T(F)≥r for some r. Let L = min L(T′) be
the minimalized complex of the BGG transform L(T′). Its sheafication L(T′) = L̃
is a free monad for F . Every minimal free monad L of F arises as L = L(T′) in
this way with T′ = min R(L).
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Proof. Suppose T′ satisfies the assumption. Since T′ is left-bounded and acyclic
for large degrees, L = min L(T′) is a finite complex by the second statement in
Corollary 3.6. The cohomology of the complex L can be computed by taking linear
parts:

⊕
iR(Hi(L)) = lin(R(L)) = lin(R(L(T′))) = lin(T′) by Corollary 3.6. So

Hj(L) is of finite length for j 6= 0, and sheafifying gives

H•(L) = H0(L) = (Γ≥rF )̃ = F .
Conversely, if L is a free monad for F and L = Γ∗L, then Hj(L) has finite length
for j 6= 0. Thus T′ = min R(L) is a left-bounded complex with T

′≥r = T(F)≥r by
Corollary 3.6, and min L(T′) = min L(min R(L)) = min LR(L) = minL = L. �

Example 8.2. Consider F = Op, the structure sheaf of a point in P1. Its Tate
resolution is periodic:

· · · e−→ ωE(1) e−→ ωE
e−→ ωE(−1) e−→ · · · .

If we take T′ to be the truncation

0 −→ ωE
e−→ ωE(−1) e−→ · · · ,

then the monad L(T′) is the sheafified free resolution

0 −→ O(−1) −→x O −→ 0.

If instead we take T′ to be the complex

0 −→ ωE −→ef ωE(−2) e−→ ωE(−3) e−→ · · · ,
then L(T′) is the free resolution of S/(x2, xy), which has sheafification L(T′) of the
form

0 −→ O(−3) −→ O(−2)2 −→ O −→ 0.
For the rest of this section we will study a class of free monads we call partition

monads (because they partition the cohomology of F into two simple pieces, which
occur as H•(L) and H•(L∗)). This class includes the sheafified free resolutions and
most of the other free monads found in the literature.

Definition 8.3. Partition monads. Given a weakly increasing sequence of inte-
gers

µ = (m0 ≤ m1 ≤ · · · ≤ mn),
we define Tµ(F) to be the subcomplex of T(F) given by

T eµ(F) =
⊕
i:e≥mi

HiF(e− i)⊗K ωE(i− e).

We shall also make use of the complementary complex Tµ defined by the exact
sequence

0→ Tµ → T→ Tµ → 0.

We set Lµ(F) := min L(Tµ(F)), and write Lµ(F) = L̃µ(F) for the monad which
is its sheafification.

Example 8.4. Free resolutions. Let m0 be any integer, and choose m1, . . . ,mn

greater than the Castelnuovo-Mumford regularity of F . The complex Tµ(F) is
R(
⊕

m≥m0
H0(F(m))). Thus by Theorem 2.6 the complex Lµ(F) is the minimal

free resolution of
⊕

m≥m0
H0(F(m)).
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Example 8.5. Linear monads. Consider the case m = m0 = m1 = · · · = mn.
In this case Tµ = T≥m is an injective resolution of Pm = ker(Tm → Tm+1), and
Lµ = L̃(Pm) has only linear maps.

Like free resolutions, partition monads enjoy a strong homotopy functoriality:

Proposition 8.6. The partition monad Lµ(F) is functorial in F up to homotopy
of complexes in such a way that if φ : F → G is a map, then φ = H0Lµ(φ).
Moreover, any map of complexes Lµ(F)→ Lµ(G) is determined up to homotopy by
the induced map F = H0(Lµ(F))→ H0(Lµ(G)) = G.

Proof. The first statement follows from the homotopy functoriality of T and L.
For the second statement, it suffices to show that every map Lµ(F) → Lµ(G) is
homotopic to a map of the form Lµ(φ). But every map Tµ(F)→ Tµ(G) is homo-
topic to a map Tµ(φ), and since Tµ(G) is an injective resolution, it is homotopic to
RLTµ(G). Using the adjointness of R and L, we see that, up to homotopy, indeed
every map is in the image of the the composite homomorphism

Hom(F ,G)→ Hom(Tµ(F),Tµ(G))

→ Hom(Tµ(F),RLTµ(G))

= Hom(LTmu(F),LTµ(G))

→ Hom(Lµ(F),Lµ(G)).

�

Proposition 8.7. The cohomology of the complexes Lµ and L∗µ = HomS(Lµ, S)
are given by

HiLµ =
⊕

d≥mi−i
HiF(d); Hn−iL∗µ =

⊕
d<mi−i

Hi(F(d))∗ ⊗
∧v
V,

where HiF(d) occurs in degree d and Hi(F(d))∗⊗
∧v

V occurs in degree −n−d−1.
In particular, for j < 0 we have HjLµ = HjL∗µ = 0.

Proof. Let Pµ be the complex

0→ Tm0
µ → · · · → Tmnµ → im(Tmnµ → Tmn+1

µ )→ 0,

so that the complex Tµ is an injective resolution of Pµ. By part b) of Theorem 3.7
the linear part of the injective resolution of Pµ is the sum of the linear complexes
R(HiL(Pµ)). Thus HiLµ = HiL(Pµ) =

⊕
e≥mi HiF(e − i), by the definition of

Tµ.
For the proof of the second formula we first observe that L∗µ = HomS(Lµ, S) =

min L(HomK(Pµ,K)). Since T(F) is exact, the induced map Tµ[−1] → Tµ is
a quasi-isomorphism. Moreover, this map factors through Pµ. Thus Tµ[−1] is
a projective resolution of Pµ, and HomK(Tµ,K)[1] is an injective resolution of
HomK(Pµ,K). The terms with Hi on the right-hand side of the desired equality
correspond to the (v− 1− i)th linear strand of Hom(Tµ,K)[1]. Again by Theorem
3.7, the second formula follows. �

Corollary 8.8. Any partition monad Lµ(F) satisfies Liµ = 0 for |i| > n.

Proof. If Liµ 6= 0 but Li+1
µ = 0, then Nakayama’s Lemma implies that Hi(Lµ) 6= 0,

and similarly for the dual. Proposition 8.7 completes the argument. �
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It is easy to give bounds on the line bundles that can occur in a partition monad.
Given the sequence µ = (m0 ≤ · · · ≤ mn), it will be convenient to extend the
definition of mi to all i ∈ Z by the formulas

mi =

{
m0 if i < 0,
mn if i > n.

Corollary 8.9. If O(−a) is a summand of the ith term of the partition monad
Lµ(F), then

mi ≤ a+ i ≤ mi+n,

where the definition of mi is extended to all i ∈ Z as above.

Proof. By Corollary 3.6

lin Lµ = lin L(Tµ(F)) =
⊕
e

L(HeTµ(F)),

so the ith term of Lµ is
⊕

eHe(Tµ)e−i ⊗ S(i− e). For the first inequality we have
to show that if He(Tµ)e−i 6= 0, then mi ≤ −(i− e) + i = e. Since

T eµ =
⊕

j:e≥mj

ωE(j − e)⊗HjF(e− j)

and ωE is zero in negative degrees, the condition (T eµ)e−i 6= 0 implies j−e+e−i≥ 0
for some j with e ≥ mj . Thus i ≤ j and mi ≤ mj ≤ e, as desired.

For the second inequality we argue similarly, using He(Tµ) ∼= He−1(Tµ). �

Note that if L is a monad for a sheaf F , then so is L⊕A, where A is an acyclic
complex—for example, the sheafification of the free resolution of a module of finite
length.

The main result of this section is that partition monads are characterized by the
conditions in Corollary 8.8 and Corollary 8.9 up to adding a direct sum of copies
of the sheafified free resolution of the residue class field of S. In most cases, these
summands cannot occur.

Theorem 8.10. Let L be a monad for a coherent sheaf F on Pn, and let µ =
(m0 ≤ · · · ≤ mn). If Li = 0 for |i| > n and the terms Li =

⊕
j O(−aij) satisfy

mi ≤ aij + i ≤ mi+n for all i, j, then L is isomorphic to the direct sum of Lµ(F)
and a sum A =

⊕n
i=1 L̃(ωriE (−mi)[−i]) of twisted Koszul complexes. Moreover, ri

can be nonzero only if mi−1 = mi. In particular, if the mi are strictly increasing,
or if we assume that no direct summand of L is a monad for F , then L ∼= Lµ(F).

Proof. Set L = Γ∗L, and letKi and Bi be the kernel and the image of the differential
di : Li → Li+1, respectively. We begin by identifying the homology of L. Note that
(Li)d = 0 for d < mi − i, so (HiL)d = 0 for d < mi − i too.

Since L is exact at L−i for i > 0, and L−n−1 = 0, we can use the sequences
0→ B−i−1 → L−i → B−i → 0 to show that H1B−i(d) = 0 for i ≥ 2 and all d. Thus
H0L−j(d) surjects onto H0B−j(d) for j ≥ 1 and all d. It follows that H−i(L) = 0
for i > 0, while H0(L) is the cokernel of

⊕
d H0B−1(d)→

⊕
dH0K0(d).

For 0 ≤ i < n the space Hi+1B−1(d) injects into HnBi−n(d). But HnBi−n
is the image of HnLi−n; the hypothesis on the aij implies that this cohomology
vanishes for d ≥ mi − i. In particular, H1B−1(d) = 0 for d ≥ m0, and it follows
that H0L =

⊕
d≥m0

H0F(d).
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We next prove that for each i > 0 there is a short exact sequence

(∗) 0→ kri(mi − i)→ Hi(L)→
⊕

d≥mi−i
HiF(d)→ 0,

where ri = 0 unless mi−1 = mi. In fact we shall identify this sequence with the
direct sum, over d ≥ mi − i, of the sequences

HiB−1(d)→ HiK0(d)→ HiF(d)→ Hi+1B−1(d),

which come from the sequence 0 → B−1 → K0 → F → 0 expressing the fact that
L is a monad for F .

We have already seen that Hi+1B−1(d) = 0 for d ≥ mi − i. It follows that
the right-hand term of (∗) is 0 for d ≥ mi − i, and the left-hand term is 0 unless
mi = mi−1, in which case it is kri , where ri = hiB−1(mi−1 − (i− 1)).

From the long exact sequences in cohomology—and, in case i = n = 1, the
hypothesis on the a1,j—we see that HiL =

⊕
d≥mi−iH

1Ki−1(d). For all 0 < i ≤ n
we have ⊕

d≥mi−i
H1Ki−1(d) =

⊕
d≥mi−i

HiK0(d).

These identifications and vanishing identify the two exact sequences as required.
Set T′ = min R(L) so that L = min L(T′) by Theorem 8.1. Since T′ is a

complex of free E-modules which coincides with the exact complex T(F) in large
cohomological degrees, we can construct a map of complexes T′ → T(F).

By Corollary 3.6 we have lin T′ =
⊕

i R(Hi(L)). By the first part of the proof,
the terms of lin T′ can be nonzero only in the range of (internal and cohomological)
degrees where lin Tµ is equal to T. Hence T′ is mapped to Tµ, and we obtain a
morphism of monads from the composition L = min L(T′) → L(T′) → L(Tµ) →
Lµ. The morphism of monads induces an isomorphism in homology F = H0(L)→
H0(Lµ) = F , because by Theorem 8.1 T′ and Tµ coincide in large cohomological
degrees.

The induced map Hi(L) → Hi(Lµ) is the surjection of the first part of the
proof. Hence the map T′ → Tµ is onto. Its kernel has terms ωriE (−mi)[−i], and
degree considerations show that it is a trivial complex. Because these terms occur
in degrees where Tµ coincides with the acyclic complex T, the differential of T′

carries the generators of these modules into boundaries of Tµ. Thus, after a change
of generators in T′, we see that T′ is the direct sum of Tµ and the trivial complex⊕n

i=1 ω
ri
E (−mi)[−i]. �

Example 8.11. Beilinson’s free monad. Beilinson’s free monad B for F with
terms

Bi =
⊕
p

Hi−p(Ωp(p)⊗F)⊗O(−p)

is the partition monad for µ = (0, 1, . . . , n). This follows from Theorem 8.10.

Example 8.12. Walter’s monads. Let c be an integer, and let F be a sheaf
such that

∑
e HiF(e) is finitely generated for i ≤ c. Choose

m0 < m1 < · · · < mc << 0 << mc+1 < · · · < mn

such that HiF(m− i) = 0 for m < mi and i ≤ c, and HiF(m− i) = 0 for m ≥ mi

and i > c. The monad W = W(F , c) = Lµ(F) does not depend on the precise
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values of the mi, and hence has only terms

0→Wc−n+1 → · · · → W0 → · · · → Wc → 0

by Proposition 8.9. By Theorem 8.10W(F , c) is the unique minimal free monad of
F with nonzero components only from c−n+1 up to c. ThusW(F , c) is the monad
constructed by Walter [Wal] with cohomology Hi(Γ∗W) =

∑
eHiF(e) for i =

0, . . . , c and zero otherwise.

Example 8.13. Consider a smooth rational surface X ⊂ P4 of degree d = 11 and
sectional genus 10. The existence of three families of rational surfaces with these
invariants is known; see Schreyer [Sch] or Decker and Schreyer [DS2]. The Tate
resolution of the ideal sheaf of these surfaces has shape

∗ ∗ 1 . . . . . . . . .
∗ ∗ 39 30 10 . . . . . . .
. . . . . . 2 . . . . . .
. . . . . . 1 5 5 . . . .
. . . . . . . . 5 32 ∗ ∗

with h0IX(6) = 32 as a reference point. We display four monads for IX . The first
two monads are monads with only 4 terms:

W(IX , 2) : O(−4)10 → O(−3)20 → O(−2)11 → O(−1)2,

W(IX , 1) : O(−6)2 → O(−5)10 → O(−4)10 → O(−2).

The first monad is linear because W(IX , 2) = L(T≥2). The two following monads
are somewhat more complicated and hence less convenient:

L(T≥4) : O(−7)1 → O(−6)7 → O(−5)20 → O(−4)20 → O(−3)5,

W(IX , 0) :
O(−9)5 → O(−8)20 → O(−7)26 → O(−6)7

⊕
O(−5)5.

These monads, up to twist, are Beilinson monads for IX(m) for m = 1, 2, 3 and
5, respectively. The construction of such surfaces in [Sch] was done by a computer
search for monads of shape W(IX , 1).

Remark 8.14. The degree of smooth rational surfaces in P4 is bounded, according
to Ellingsrud and Peskine [EPe]. Smooth rational surfaces with sectional genus
π > 0 (this excludes the cubic scroll and the projected Veronese surface) have
a linear Walter monad. Indeed, by Severi’s theorem H1(IX(1)) = 0 and hence
W(IX , 2) = L(T≥2). The numerical type of these monads is

O(−4)π → O(−3)2π+s−2 → O(−2)π+2s−3 → O(−1)s

with s = h1OX(1) = π − d+ 3.
The conjectured bound is d ≤ 15. Perhaps even d ≤ 11 is true. However, at

present the best known bound is d ≤ 52; see Decker and Schreyer [DS2].
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