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EXTERIOR ALGEBRA METHODS FOR THE
MINIMAL RESOLUTION CONJECTURE

DAVID EISENBUD, SORIN POPESCU, FRANK-OLAF SCHREYER, and
CHARLES WALTER

Abstract
If r ≥ 6, r 6= 9, we show that the minimal resolution conjecture (MRC) fails for a
general set of γ points in P

r for almost (1/2)
√

r values of γ . This strengthens the
result of D. Eisenbud and S. Popescu [EP1], who found a unique such γ for each r in
the given range. Our proof begins like a variation of that of Eisenbud and Popescu,
but uses exterior algebra methods as explained by Eisenbud, G. Fløystad, and F.-
O. Schreyer [EFS] to avoid the degeneration arguments that were the most difficult
part of the Eisenbud-Popescu proof. Analogous techniques show that the MRC fails
for linearly normal curves of degree d and genus g when d ≥ 3g − 2, g ≥ 4,
re-proving results of Schreyer, M. Green, and R. Lazarsfeld.

1. Introduction
From the Hilbert function of a homogeneous ideal I in a polynomial ring S over a
field k, one can compute a lower bound for the graded Betti numbers

βi, j = dimk TorS
i (S/I, k) j

because these numbers are the graded ranks of the free modules in the minimal free
resolution of I . The graded Betti numbers are upper semicontinuous in families of
ideals with constant Hilbert function, and in many cases this lower bound is achieved
by the general member of such a family. The statement that it is achieved for a par-
ticular family T is called the minimal resolution conjecture (MRC) for T , following
A. Lorenzini, who made the conjecture for the family of ideals of sufficiently general
sets of γ points in P

r (all r, γ ).
The MRC for a general set of γ points in P

r has received considerable attention
(see Eisenbud and Popescu [EP1] for full references and discussion). In particular, it
is known that the MRC is satisfied if r ≤ 4 (see F. Gaeta [G1], [G2], A. Geramita
and Lorenzini [GL], E. Ballico and Geramita [BG], C. Walter [W], F. Lauze [L])
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380 EISENBUD, POPESCU, SCHREYER, and WALTER

or γ � r (see A. Hirschowitz and C. Simpson [HS]), but computer evidence pro-
duced by Schreyer, extended also by M. Boij in his 1994 thesis and by S. Beck and
M. Kreuzer in [BK], suggested that it might fail for certain examples starting with 11
points in P

6. Indeed, Eisenbud and Popescu [EP1] proved that if r ≥ 6, r 6= 9, then
the MRC fails for a general set of

γ = r +
⌊
(3 +

√
8r + 1)/2

⌋

points in P
r .

This family of counterexamples to the minimal resolution conjecture begins with
Schreyer’s suggested 11 points in P

6, and it seems to have contained all the examples
in print in 1999. However, the thesis of Boij, completed in 1994 but published only in
[B], contains computations suggesting one further counterexample: 21 points in P

15.
In this paper we simplify and extend the idea of Eisenbud and Popescu to prove

the existence of infinitely many new counterexamples, including the one suggested
by Boij. We prove the following.

THEOREM 1.1
The MRC fails for the general set of γ points in P

r whenever r ≥ 6, r 6= 9, and

r + 2 +
√

r + 2 ≤ γ ≤ r + (3 +
√

8r + 1)/2,

and also when (r, γ ) = (8, 13) or (15, 21).

Thus we get about (
√

2 − 1)
√

r counterexamples in P
r for each r ≥ 6, r 6= 9.

Our proof not only gives more, but it also avoids the subtle degeneration argument
used by Eisenbud and Popescu. In the presentation below we skip some of the steps
presented in Eisenbud and Popescu [EP1], and we fully treat only the new ideas, so it
may be helpful to the reader to explain their strategy and the point at which it differs
from ours. Their proof can be divided into three steps, starting from a set 0 of γ

general points in P
r .

Step I. Their crucial first step is to consider the Gale transform of 0 ⊂ P
r , which is

a set 0′ of γ points in P
s with γ = r + s + 2 determined “naively” as follows. If the

columns of the ((r +1)×γ )-matrix M represent the points of 0, then a ((s +1)×γ )-
matrix N representing 0′ is given by the transpose of the kernel of M (see [EP1] for a
precise definition). The free resolution of the canonical modules of the homogeneous
coordinate rings of 0 and 0′ are related, and using this relation and the fact that (under
our numerical hypotheses) the ideal of 0′ is not 2-regular, they construct a map φ0

from a certain linear free complex F•(µ) to the dual of the resolution of the ideal I0
of 0. For the r and γ considered in Theorem 1.1, straightforward arithmetic shows
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that the injectivity of the top degree component of φ0 would force the graded Betti
numbers of I0 to be too large for the MRC to hold. (We recall the definition of F•(µ)

in Sec. 3.)

Step II. They show that φ0 is an injection of complexes if F•(µ) has a property some-
what weaker than exactness called linear exactness or irredundancy (see Def. 2.1).

Step III. For a generic set of points 0, they show that F•(µ) is irredundant by a subtle
degeneration argument: they degenerate the general set 0 to lie on a special curve C ,
and the argument finishes with a study of a refined stability property of the tangent
bundle of the projective space restricted to C in a certain embedding of C connected
with the Gale transform of the points.

In our new proof, Step I remains unchanged, but Step II is replaced by a more precise
statement, which requires us to verify a weaker condition in Step III; this weak condi-
tion can be verified without any degeneration argument, making the replacement for
Step III much simpler. More precisely, the injectivity of φ0 is needed only for a suf-
ficiently large irredundant quotient of the complex F•(µ), and we give a criterion for
this weaker condition using exterior algebra methods. The new criterion is checked
in Step III with an argument inspired by Green’s proof in [Gr2] of the linear syzygy
conjecture. The generality of 0 enters via work of Kreuzer [K] showing that certain
multiplication maps of the canonical module of the cone over 0 are 1-generic in the
sense of Eisenbud [E].

In Section 2 we introduce and study the irredundancy of linear complexes using
the Bernšteı̆n-Gel’fand-Gel’fand (BGG) correspondence. In Section 3 we construct
the complex whose irredundancy is the key to the failure of the MRC. Finally, in
Section 4 we briefly explain how Gale duality allows this theory to be applied to sets
of points, and we give the arithmetic part of the proof. As another application of our
techniques, we recover the result on curves of Schreyer (unpublished) and of Green
and Lazarsfeld [GrL] (see Th. 4.1).

Notation. Throughout this paper k denotes an arbitrary field. Let V be a finite-
dimensional vector space over k. We work with graded modules over S := Sym(V )

and E := ∧V ∗. We think of elements of V as having degree 1 and elements of V ∗ as
having degree −1. We write m for the maximal ideal generated by V in S.

2. Linear complexes and exterior modules
In this section we illustrate the exterior algebra approach to linear free resolutions
with some basic ideas used in the rest of the paper, and with a new proof of the linear
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382 EISENBUD, POPESCU, SCHREYER, and WALTER

rigidity theorem of Eisenbud and Popescu [EP1].

Definition 2.1
A complex of graded free S-modules

F• : · · · φ3- F2
φ2- F1

φ1- F0

is a called a standard linear free complex if Fi is generated in degree i for all i . (Note
that all the differentials φi are then represented by matrices of linear forms.)

A linear free complex is any twisted (or shifted) standard linear free complex (i.e.,
a right-bounded complex of free modules Fi , so that for some integer s the generators
of Fi are all in degree s + i for all i).

We say that a linear free complex F• is irredundant (see [EFS]) or linearly exact
(see [EP1]) if the induced maps

Fi+1/mFi+1 → mFi/m
2 Fi

are monomorphisms for i > 0.

One sees immediately that a standard linear free complex F• as above is irredundant
if and only if Hi (F•)i = 0 for all i > 0.

As explained in [EFS], irredundancy can be conveniently rephrased via the BGG
correspondence as follows. If P is a graded E-module, we define a linear free S-
complex F• = L(P) with free modules Fi = S ⊗k Pi generated in degree i and
differentials

φi : Fi → Fi−1, 1 ⊗ p 7→
∑

xi ⊗ ei p ∈ S ⊗ Pi−1,

where {xi } and {ei } are (fixed) dual bases of V and V ∗. Up to twisting and shifting,
every linear free complex of S-modules arises from a unique E-module in this way.
The linear complex L(P) is standard if Pi = 0 for all i < 0.

Given a graded E-module P , we write P∗ for the dual graded E-module P∗ =
Homk(P, k). We take k in degree zero, so that (P∗)i is the dual vector space to P−i .

PROPOSITION 2.2
If

F• = L(P) : · · · - F2 - F1 - F0

is a standard linear free complex of S-modules, then F• is irredundant if and only if
P∗ is generated as an E-module in degree zero.

Thus any linear free complex F• = L(P) as in Proposition 2.2 has a unique maximal
irredundant quotient F ′

•, which is functorial in F•, constructed as follows. If Q is



“112i2˙06”
2002/3/18
page 383

i

i

i

i

i

i

i

i

EXTERIOR ALGEBRA METHODS FOR THE MRC 383

the E-submodule of P∗ generated by P∗
0 , then F ′

• := L(Q∗). Alternatively, F ′
• =

L(P/N ), where N is the submodule with graded pieces Ni = {n ∈ Pi | ∧i V ∗ · n =
0}. Observe that we have F ′

0 = F0.
The next lemma is the basic tool that allows us to deduce that a minimal free

resolution is large. A weaker version of the result was implicit in [EP1].

LEMMA 2.3
Suppose that α• : F• → G• is a map from an irredundant standard linear free
complex to a minimal free complex. If α0 is a split monomorphism, then αi is a split
monomorphism for all i ≥ 0.

Proof
By induction, it suffices to prove that α1 is a split monomorphism. Since both F• and
G• are minimal (i.e., the differentials are represented by matrices of elements of m),
there is a commutative diagram

F1/mF1 - mF0/m
2 F0

G1/mG1

α1

?

- mG0/m
2G0

?

whose vertical maps are induced by α• and whose horizontal maps are induced by the
differentials of F• and G•.

Since α0 makes F0 a summand of G0, the right-hand vertical map is a monomor-
phism. Because F• is irredundant, the top map is a monomorphism. It follows that the
map α1 : F1/mF1 → G1/mG1 induced by α1 is a monomorphism, and since G1 is
free, this implies that α1 is split.

Lemma 2.3 may be applied to give a lower bound on Betti numbers.

PROPOSITION 2.4
Suppose that α• : F• → G• is a map from a standard linear complex to a minimal
free resolution. There exists a map β• : F• → G• which is homotopic to α• and
such that β• factors through the maximal irredundant quotient F ′

• of F•. Further, if
α0 : F0 → G0 is a split monomorphism, then the rank of G i is at least as big as the
rank of F ′

i for all i .

Proof
Let γ• : F• → F ′

• be the natural map to the maximal irredundant quotient. The image



“112i2˙06”
2002/3/18
page 384

i

i

i

i

i

i

i

i
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of F ′
1 in F ′

0 = F0 is contained in that of F1, so there is a map β1 : F ′
1 → G1 lifting

α0 : F ′
0 → G0. Since G• is acyclic, we may continue to lift, and so inductively we get

a map of complexes β ′
• : F ′

• → G•. We take β• = β ′
•γ•, and thus we have β0 = α0.

Since F• is a free complex and G• is acyclic, this implies that α• is homotopic to β•.
The second statement follows by applying Lemma 2.3 to the map β ′

•.

In [EP1] a rigidity result for irredundancy is required. The proof given there is just a
reference to the result on the rigidity of Tor proved by M. Auslander and D. Buchs-
baum in [AB]. The exterior method yields a novel proof of this result (which we do
not need in the sequel).

PROPOSITION 2.5
Let R be a graded commutative or anticommutative ring, and let M be a graded R-
module that is generated by M0. If R′ ⊂ R is a graded subring such that R ′

1 · M0 =
M1, then M is generated by M0 as an R′-module also.

Proof
We show by induction on n that R ′

1 · Mn = Mn+1, the initial case n = 0 being the
hypothesis. If R′

1 · Mn−1 = Mn , then R′
1 · Mn = R′

1 · (R1 Mn−1) = R1 · (R′
1 Mn−1) =

R1 · Mn = Mn+1, where the second equality holds by the (anti)commutativity as-
sumption and the third by the induction hypothesis.

COROLLARY 2.6 (Linear rigidity)
Let S = k[x0, . . . , xr ] be a polynomial ring, and let

F• : · · · - F2 - F1 - F0

be an irredundant standard linear free complex. Let S ′ = S/I be a graded quotient
of S. The complex G• := S′ ⊗S F• is irredundant if and only if H1(G•) is zero in
degree 1.

Proof
The irredundancy of G• involves information about only S ′

0 and S′
1, so we may assume

that S′ is a polynomial ring S′ = Sym(V ′) with V ′ = V/I1. Write E ′ = ∧(V ′∗) ⊂
E = ∧(V ∗) for the corresponding exterior algebras. If F• = L(P), then the complex
G• over S′ corresponds to the same graded vector space P , regarded as an E ′-module
by restriction of scalars. Consider now the truncated complex

K• : · · · - 0 - 0 - G1 - G0.

The hypothesis H1(G•)1 = 0 implies that H1(K•)1 = 0 and hence, by Proposi-
tion 2.2, that P∗

1 = V ′∗ · P∗
0 . On the other hand, P∗ is generated as an E-module
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by P∗
0 since F• is an irredundant standard linear complex. So, by Proposition 2.5, we

also have P∗ = E ′ · P∗
0 . By Proposition 2.2, this suffices.

Remark 2.7
A similar “linear rigidity” result for complexes over the exterior algebra can also be
deduced from Proposition 2.5 applied this time for R a polynomial ring.

3. The complexes F•(µ)

We apply Proposition 2.2 and Lemma 2.3 to a family of linear complexes F•(µ)

(which were called E−1(µ) in [EP1]). It is convenient here to define them in terms of
the functor L.

Let U , V , and W be finite-dimensional vector spaces of dimensions u, v, and w,
respectively. Let A :=

∑
l ∧l W ∗⊗Syml(U

∗), and let Q :=
∑

l ∧l+1W ∗⊗Syml(U
∗).

Then A is an anticommutative graded algebra, and Q is a graded A-module. If µ :
W ⊗ U → V is a pairing, then the dual µ∗ : V ∗ → W ∗ ⊗ U∗ extends to a map of
algebras µ̃ : E = ∧(V ∗) → A. We regard Q as an E-module via µ̃, and we consider
the corresponding linear free complex F•(µ) := L(Q∗) over S = Sym(V ):

F•(µ) : 0 → ∧wW ⊗ Dw−1(U ) ⊗ S(−w + 1)

→ · · · → ∧2W ⊗ U ⊗ S(−1) → W ⊗ S,

where Dm(U ) denotes the m-graded piece of the divided power algebra.
Though we do not need the formula, it is easy to give the differentials explicitly:

δl(µ) : Fl(µ) → Fl−1(µ) is the composite of the tensor product of the diagonal
maps of the exterior and divided powers algebras,

∧l+1W ⊗ DlU ⊗ S(−l) - ∧l W ⊗ W ⊗ Dl−1U ⊗ U ⊗ S(−l),

and the map induced by the pairing µ,

∧l W ⊗ W ⊗ Dl−1U ⊗ U ⊗ S(−l) - ∧l W ⊗ Dl−1U ⊗ S(−l + 1).

Note that if V = W ⊗ U and µ is the identity map, then Q is generated as an
E-module by Q0, so the complex F•(µ) is irredundant by Proposition 2.2. The proof
in [EP1] shows that F•(µ) remains exact when µ is specialized to a certain pairing
coming from the canonical module of a generic set of γ points in P

r for suitable γ, r .
Here we are instead interested in knowing whether F•(µ) has an irredundant quotient
complex with the same first and last terms as F•(µ). This condition turns out to be a
lot easier to analyze!

Following Eisenbud [E], we say that µ : W ⊗U → V is 1-generic if µ(a ⊗b) 6=
0 for all nonzero vectors a ∈ W and b ∈ U . We say that µ is geometrically 1-generic
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if the induced pairing µ ⊗ k is 1-generic, where k is the algebraic closure of k. If
µ is geometrically 1-generic, then by a classic and elementary result of Hopf the
dimensions u, v, w of the three vector spaces satisfy the inequality v ≥ u + w − 1.

The main result of this section is the following.

THEOREM 3.1
If the pairing µ : W ⊗ U → V is geometrically 1-generic and if W 6= 0 and
U 6= 0, then F•(µ) and its maximal irredundant quotient F ′

•(µ) have the same last
term Fw−1 = F ′

w−1; that is,

F ′
•(µ) : ∧w W ⊗ Dw−1(U ) ⊗ S(−w + 1)

- F ′
w−2

- · · · - F ′
1

- W ⊗ S.

Proof
We use notation as above. Let Q ′ be the submodule of Q generated by Q0, and set
P = Q∗, P ′ = Q′∗, so that F• = L(P) and F ′

• = L(P ′). By Proposition 2.2, the
conclusion of the theorem is equivalent to the statement that the E-multiplication
map

m : Ew−1 ⊗k P0 - P−w+1

∧w−1V ∗ ⊗ W ∗

wwww
- ∧wW ∗ ⊗ Symw−1(U

∗)

wwwww

is surjective. Via the natural identification W ∗ ⊗ ∧wW ∼= ∧w−1W , this is equivalent
to the map

m′ : ∧w−1V ∗ ⊗k ∧w−1W - Symw−1(U
∗)

induced by µ being surjective. A straightforward computation shows that the image
of m′ is the space generated by the ((w − 1) × (w − 1))-minors of the linear map of
free Sym(U∗)-modules

µ̄ : W ⊗ Sym(U ∗) - V ⊗ Sym(U∗)(1)

associated to µ, and the next lemma shows that under the 1-genericity assumption
these minors span Symw−1(U

∗). This proves the theorem.

LEMMA 3.2
If µ : W ⊗ U → V is a geometrically 1-generic pairing of finite-dimensional vector
spaces and if d is an integer such that d ≤ dim W , then the (d × d)-minors of the
associated linear map µ̄ : W ⊗ Sym(U ∗) → V ⊗ Sym(U ∗)(1) of free Sym(U ∗)-
modules span Symd(U∗).
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Proof
It is enough to prove the lemma for an algebraically closed base field k, so that the
Nullstellensatz holds. Also, u, v, w continue to be the dimensions of the three vector
spaces.

We first show that, for an arbitrary subspace W ′ ⊂ W of dimension d, the (d×d )-
minors of the restricted map

µ̄′ : W ′ ⊗ Sym(U∗) - V ⊗ Sym(U∗)(1),

regarded as polynomial functions on U , have a common zero only at the origin 0 ∈ U .
For µ̄′ is essentially a (v × d )-matrix whose entries are linear functions on U , so its
(d × d )-minors have a common zero at a point b ∈ U if and only if the matrix’s
columns, when evaluated at b, are not linearly independent. But this means that there
is a 0 6= a ∈ W ′ such that µ(a ⊗ b) = 0, which gives b = 0 by 1-genericity.

A general position argument shows that, for a general projection V -- V ′ with
dim V ′ = d + u − 1, the only common zero of the (d × d )-minors of the composite
map

µ̄′′ : W ′ ⊗ Sym(U∗) - V ′ ⊗ Sym(U∗)(1)

is still 0 ∈ U . (One may argue that the dual of µ̄′ may be regarded as a surjective map
O

v -- O
d(1) of vector bundles on P

u−1, and a rank d vector bundle generated
by global sections on a (u − 1)-dimensional space can always be generated by just
d + u − 1 of them (see, e.g., Eisenbud and E. Evans [EE] or J.-P. Serre [S]).)

The expected codimension of the locus defined by the (d×d )-minors of the ((d+
u−1)×d )-matrix representing µ̄′′ is u, which is equal to the actual codimension. Thus
the Eagon-Northcott complex resolving the minors of µ̄′′ is exact, and it follows that
there are

(d+u−1
d

)
linearly independent such minors. Since this is also the dimension

of Symd(U∗), we see that the minors span Symd(U∗), as required.

We say that a map of complexes α• : F• → G• is a degreewise split injection if
each αi : Fi → Gi is a split injection (this is weaker than being a split injection of
complexes); in this case, we say that F• is a degreewise direct summand of G•.

The irredundant complexes F ′
•(µ) arise in geometric situations as follows.

THEOREM 3.3
Let L , L ′ be two line bundles on a scheme X over a field k, and let L ′′ := L ⊗ L ′. Let
W ⊂ H0(L), U ⊂ H0(L ′) be nonzero finite-dimensional linear series such that the
multiplication

µ : W ⊗ U
0
- (L ′′)

is geometrically 1-generic. Let V ⊂ H0(L ′′) be a finite-dimensional linear series
containing W · U. Let S := Sym(V ), and let M ⊂

⊕
n≥0 H0(L ⊗ L ′′⊗n

) be a finitely
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generated graded S-submodule such that W ⊂ M0. Then the maximal irredundant
quotient

F ′
•(µ) : ∧w W ⊗ Dw−1(U ) ⊗ S(−w + 1)

- F ′
w−2

- · · · - F ′
1

- W ⊗ S

of the linear free complex F•(µ) injects as a degreewise direct summand of the mini-
mal free resolution of M. (Here, as above, w = dim W .)

Proof
Let G• be the minimal free resolution of M over S. The hypotheses on M imply that
G0 = (W ⊗ S)⊕ L with L a free S-module. We can construct inductively a morphism
α• : F•(µ) → G• such that α0 : F0(µ)/mF0(µ) → G0/mG0 is a monomorphism,
as a lifting

· · · - ∧3W ⊗ D2U ⊗ S(−2) - ∧2W ⊗ U ⊗ S(−1) - W ⊗ S

· · · - G2

?

........
- G1

α1
?

........
- (W ⊗ S) ⊕ L

?

∩

-- M

For instance, α1 exists since the composition ∧2W ⊗U ⊗S(−1) → W ⊗S → M van-
ishes. So by Lemma 2.3, α• induces a degreewise split inclusion F ′

•(µ) ⊂ - G• with
F ′

•(µ) having the form given in Theorem 3.1 (since µ is geometrically 1-generic).

It is easy to see that if X is a geometrically reduced and irreducible scheme, then any
pairing µ : W ⊗U - V induced by multiplication of sections as in Theorem 3.3 is
geometrically 1-generic. The hypothesis sometimes holds for reducible or nonreduced
schemes too, as in the case we use for the proof of Theorem 1.1.

The following example shows that the complexes F•(µ) and F ′
•(µ) are not al-

ways the same.

Example 3.4
If we take U = W = H0(O

P1(2)) with µ the multiplication map to V = H0(O
P1(4)),

that is,
µ : k[s, t]2 ⊗ k[s, t]2 = W ⊗ U - V = k[s, t]4,

then µ is geometrically 1-generic because k[s, t] is a domain and remains so over
the algebraic closure of k. The module M =

⊕
n≥0 H0(O

P1(2) ⊗ O
P1(4n)) of The-

orem 3.3 is the graded module associated to the line bundle O
P1(2 points) on P

1,
regarded as a module over the homogeneous coordinate ring S of P

4 via the embed-
ding of P

1 as the rational normal quartic C . This line bundle is ωC (1), the twist of
the canonical line bundle by the hyperplane line bundle, so the minimal resolution of
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M is the dual of the minimal resolution of the homogeneous coordinate ring of C ,
suitably shifted. It has the form

G• : 0 - S(−4) - S6(−2) - S8(−1) - S3 - M - 0.

On the other hand, F• has the form

F•(µ) : 0 - S6(−2) - (S3 ⊗ S3)(−1)
δ1(µ)

- S3,

and F1 = S9(−1) cannot inject into G1 = S8(−1). The columns of the matrix of
δ1(µ) have exactly one k-linear dependence relation, so the maximal irredundant quo-
tient of F• has the form

F ′
• : 0 - S6(−2) - S8(−1) - S3.

So, in particular, F ′
2 = F2, in accordance with Theorem 3.1. By Lemma 2.3, any map

from F• to G• lifting the identity on F0 is a degreewise split monomorphism on F ′
•;

in fact, F ′
• is isomorphic to the linear strand of G• in this case.

4. Failure of the MRC
Before proving Theorem 1.1, we present the bare bones of Gale duality. The reader
who wishes to go further into this rich and beautiful subject can consult Eisenbud and
Popescu [EP1], [EP2] or I. Dolgachev and D. Ortland [DO].

Let 0 ⊂ P
r be a set of γ = r +s+2 points. The linear forms on P

r define a linear
series V ⊂ H0(O0(1)). The orthogonal complement V ⊥ ⊂ H0(O0(1))∗ is identified
by Serre duality with a linear series (ω0)−1 ⊂ H0(K0(−1)) (where K0 denotes the
canonical sheaf of 0). Under mild hypotheses on 0, the linear series (ω0)−1 is very
ample and gives an embedding whose image 0′ ⊂ P

s is the Gale transform of 0. As
a set it is well defined only modulo linear changes of coordinates on P

s and P
r .

Concretely, if the columns of the ((r + 1) × γ )-matrix M represent the points of
0 ⊂ P

r and if N is a (γ × (s + 1))-matrix whose columns are a basis of ker(M), then
the rows of N represent the points of 0′ ⊂ P

s .
In the proof of Theorem 1.1 we need four facts about the Gale transform, which

the reader may easily verify (or find in [EP1], [EP2]).
• The subset 0′ ⊂ P

s is defined for a general 0. In fact, it is defined as long as
no subset containing all but two of the points of 0 lies in a hyperplane of P

r .
• The Gale transform of 0′ is 0.
• There is a natural identification of V = H0(OPr (1)) with (ω0′)−1.
• 0 is general if and only if 0′ is general. More formally, a GL(s + 1)-invariant

Zariski open condition on 0′ induces a GL(r + 1)-invariant Zariski open con-
dition on 0.
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Proof of Theorem 1.1
Let s ≥ 3 be an integer, and set r =

(s+1
2

)
+ δ. Suppose that

0 ≤ δ ≤
(

s

2

)
−

{
1 if s ≤ 4,

2 if s ≥ 5,

and let 0 ⊂ P
r be a set of γ (r, s) = r + s + 2 points, in linearly general position. We

show that the MRC fails for 0. From this statement it is easy to solve for γ in terms
of r , obtaining the range given in Theorem 1.1.

Let I0 be the homogeneous ideal of 0 ⊂ P
r , and let

ω0 = Extr−1
S

(
I0, S(−r − 1)

)

be the canonical module. The free resolution of ω0 is, up to a shift in degree, the dual
of the resolution of S/I0 .

We assume that 0 is a general set of points such that the following hold: its
Gale transform 0′ ⊂ P

s is defined and is in linearly general position, 0 imposes
independent conditions on quadrics, and 0′ is not contained in any quadric (note that(s+2

2

)
< γ (r, s) ≤

(r+2
2

)
).

Since γ (r, s) >
(s+2

2

)
, it follows that 0′ does not impose independent conditions

on quadrics of P
s , and thus H1(I0′(2)) 6= 0. We set

U := (ω0′)−2 = Homk
(
H1(I0′(2)), k

)
6= 0.

(In this setting we have dim U = δ + 1.) Write W = H0(OPs (1)), and V =
H0(OPr (1)). Multiplication induces a natural pairing

µ : W ⊗ U - V = (ω0′)−1.

We now carry out the checks needed to apply Theorem 3.3. First, 0 ′ ⊂ P
s is in

linearly general position, so by Kreuzer [K], the pairing µ is 1-generic over any field
and thus geometrically 1-generic. Second, 0 ⊂ P

r imposes independent conditions
on quadrics, so (ω0)−d = 0 for d ≥ 2. Hence ω0(−1) is a finitely generated graded
S-submodule of

⊕
n≥0 H0(K0(n − 1)) containing W = (ω0)−1 in degree zero.

Therefore the irredundant linear free quotient F ′
•(µ) of the complex F•(µ) injects

onto a degreewise split direct summand of the minimal free resolution of ω0(−1),
which is the dual of the minimal free resolution of (S/I0)(r + 2). Hence the true
graded Betti number β(r−s),(r−s+2) for S/I0 satisfies

β(r−s),(r−s+2) ≥ rank F ′
s(µ) =

(
s + δ

δ

)
> 0.
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The corresponding expected graded Betti number β̃(r−s),(r−s+2) is found in [EP1], or
it can be computed by taking the Hilbert series for 0,

∑

i

dim(S/I0)i · t i = 1 + (r + 1)t + γ (r, s) ·
t2

1 − t
=

∑
j b j t j

(1 − t)r+1
,

and calculating that

(−1)r−sbr−s+2 =
(2δ + 4 − s2 + s)

(s2 − s + 2δ + 4)
·
((s+1

2

)
+ δ

s

)
.

This number is the alternating sum of the graded Betti numbers of degree r − s + 2,
in this case β(r−s),(r−s+2) −β(r−s+1),(r−s+2). Thus the expected graded Betti number
is

β̃(r−s),(r−s+2) = max
(
(−1)r−sbr−s+2, 0

)
.

The MRC certainly fails when β̃(r−s),(r−s+2) = 0, which is equivalent to 0 ≤ δ ≤(s
2

)
− 2. The MRC also fails for s = 3, 4 and δ =

(s
2

)
− 1 because

(
s + δ

δ

)
> β̃(r−s),(r−s+2)

in those cases. (For s = 4 this is Boij’s example.) Straightforward computation shows
that there are no other cases where

(s+δ
δ

)
> β̃(r−s),(r−s+2).

Schreyer observed around 1983 (unpublished) that the MRC fails for linearly normal
curves of degree d > g2 − g, g ≥ 4. A result of Green and Lazarsfeld [GrL] implies
that this bound can be improved to d > 3g − 3. We can use the technique devel-
oped above to give a new proof of the relevant part of the Green-Lazarsfeld result,
recovering the failure of the MRC in a new way.

THEOREM 4.1
Let C be a smooth curve of genus g ≥ 2, let L ∈ Picd(C) be a line bundle on C of
degree d ≥ 2g + 2, and denote by ϕ|L| : C → P

d−g the embedding defined by the
complete linear system |L|.
(a) If H0(L ⊗ ω−1

C ) 6= 0 (i.e., equivalently, if the curve ϕ|L|(C) ⊂ P
d−g has a

(d − 2g + 1)-secant P
d−2g−1), then the maximal irredundant quotient of the

free linear complex

F• := L
(⊕

l≥0

∧l+1H0(ωC ) ⊗ Dl
(
H0(L ⊗ ω−1

C )
))

injects as a degreewise direct summand of the minimal free resolution of the
Sym(H0(L))-module

⊕
n≥0 H0(ωC ⊗Ln). In particular, ϕ|L|(C) ⊂ P

d−g does
not satisfy the property Nd−2g .
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(b) If g ≥ 4 and d > 3g − 3, then the MRC fails for ϕ|L|(C) ⊂ P
d−g .

Remark 4.2
By Green [Gr1], ϕ|L|(C) ⊂ P

d−g satisfies the property Nd−2g−1 (i.e., the embedding
is projectively normal, the homogeneous ideal Iϕ|L|(C) is generated by quadrics, and
all syzygies in the first (d −2g −2) steps in its minimal free resolution are linear). On
the other hand, if C is nonhyperelliptic, then property Nd−2g fails for ϕ|L|(C) ⊂ P

d−g

if and only if the curve has a (d − 2g + 1)-secant (d − 2g − 1)-plane, by Green and
Lazarsfeld [GrL, Th. 2]. Theorem 4.1(a) spells out explicitly this failure.

Proof of Theorem 4.1
By hypothesis, d ≥ 2g + 2, so ϕ|L|(C) ⊂ P

d−g is arithmetically Cohen-Macaulay;
its homogeneous ideal Iϕ|L|(C) is generated by quadrics and is 2-regular. Now Theo-
rem 3.3, applied to the geometrically 1-generic pairing

µ : H0(ωC ) ⊗ H0(L ⊗ ω−1
C ) → H0(L),

yields the complex F• = F•(µ) whose maximal irredundant quotient injects as a
degreewise direct summand of the minimal free resolution of

⊕
n≥0 H0(ωC ⊗ Ln),

which is the dual of the minimal free resolution of S/Iϕ|L|(C)(d − g + 1). Here and in
the sequel, S = Sym(H0(L)). It follows that the graded Betti number βd−2g,d−2g+2

of S/Iϕ|L|(C) satisfies the inequality

βd−2g,d−2g+2 ≥ dim Symg−1
(
H0(L ⊗ ω−1

C )
)

=
(

d − 2g + 1

g − 1

)
.

In particular, βd−2g,d−2g+2 ≥ 1, and so ϕ|L|(C) ⊂ P
d−g does not satisfy property

Nd−2g , which finishes the proof of part (a).
Since the embedding ϕ|L|(C) ⊂ P

d−g is arithmetically Cohen-Macaulay, its hy-
perplane section 0 ⊂ P

d−g−1 has the same graded Betti numbers as ϕ|L|(C). Thus,
as in [EP1] or the proof of Theorem 1.1, we obtain the following for the alternated
sum of graded Betti numbers of degree d − 2g + 2 for S/Iϕ|L|(C):

βd−2g,d−2g+2 − βd−2g+1,d−2g+2 =
(d − g2 + g)

(d − 2g + 2)

(
d − g − 1

g − 1

)
.

If 3g − 2 ≤ d ≤ g2 − g, the MRC predicts that βd−2g,d−2g+2 = 0, while from (a) we
get βd−2g,d−2g+2 ≥ 1; hence the MRC fails for d in the above range.

For d ≥ g2 − g + 1, the expected βd−2g+1,d−2g+2 is zero while the expected
βd−2g,d−2g+2 is always larger than

(d−2g+1
g−1

)
, and so the linear complex in (a) does

not account for the failure of the MRC.
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For g ≥ 4, there exist a g1
g−1 = |OC (D)| on C . The pairing

η : H0(
OC (D)

)
⊗ H0(L ⊗ OC (−D)

)
→ H0(L)

is 1-generic and thus η defines a (2 × (d − 2g + 2))-matrix with linear entries in P
d−g

whose (2 × 2)-minors vanish in the expected codimension (see [E]). Therefore the
Eagon-Northcott complex resolving the (2 × 2)-minors of this matrix is a linear exact
complex of length d −2g+1 which injects as a degreewise direct summand in the top
strand of the resolution of Iϕ|L|(C). In particular, βd−2g+1,d−2g+2 ≥ (d −2g +1) > 1,
so the MRC also fails for ϕ|L|(C) when d ≥ g2 − g + 1. This concludes the proof of
part (b).
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arrangement général d’un grand nombre de points dans P

n , Invent. Math. 126
(1996), 467 – 503. MR 97i:13015

[K] M. KREUZER, On the canonical module of a 0-dimensional scheme, Canad. J. Math.
46 (1994), 357 – 379. MR 95d:13021

[L] F. LAUZE, Rang maximal pour TPn , Manuscripta Math. 92 (1997), 525 – 543.
MR 98f:14016

[Lo1] A. LORENZINI, Betti numbers of points in projective space, J. Pure Appl. Algebra 63
(1990), 181 – 193. MR 91e:14045

[Lo2] , The minimal resolution conjecture, J. Algebra 156 (1993), 5 – 35.
MR 94g:13005

[S] J.-P. SERRE, Modules projectifs et espaces fibrés à fibre vectorielle, Séminaire P.
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