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Abstract. Let R be a homogeneous ring over an in¢nite ¢eld, I � R a homogeneous ideal, and
a � I an ideal generated by s forms of degrees d1; . . . ; ds so that codim�a : I�X s.We give broad
conditions for when the Hilbert function ofR=aorofR=�a : I� is determined by I and the degrees
d1; . . . ; ds. These conditions are expressed in terms of residual intersections of I, culminating in
the notion of residually S2 ideals. We prove that the residually S2 property is implied by the
vanishing of certain Ext modules and deduce that generic projections tend to produce ideals
with this property.
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Introduction

Let I be a homogeneous ideal in a polynomial ring R � k�x1; . . . ; xn� over an in¢nite
¢eld k. Choose degrees d1; . . . ; ds, and consider the family of ideals a generated
by elements a1; . . . ; as 2 I of degrees d1; . . . ; ds. By semicontinuity there are open
sets in this family consisting of ideals a such that the Hilbert functions of R=a
and of the residual intersection R=�a : I� are constant. One might ask:

(A) What do these open sets look like?
(B) What are these generic Hilbert functions?

If I � �x1; . . . ; xn� and sW n, then the answers are well known: The open sets of
question (A) each consist precisely of the ideals a of codimension s, and the generic
Hilbert series of question (B) are

Q�1ÿ tdi �=�1ÿ t�n except in case s � n, where
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R=�a : I� is R=a modulo its socle, and has Hilbert series

Q�1ÿ tdi �
�1ÿ t�n ÿ t

P
�diÿ1�:

Even for this I , both questions are open when s > n (see [24], [9], [1] and [13] for
partial results).

In this paper we will take up question (A), always in the case sW n, but for more
general ideals I . Our main results are that, in a wide range of cases, codimension
conditions de¢ne the open sets in question. In a later paper [8] we will compute
the generic Hilbert functions of question (B) under stronger hypotheses on I .
For the purpose of describing our results, we say that the ideal I satis¢es condition

(A1) if the Hilbert function ofR=a is constant on the open set of ideals a generated by s
forms of the given degrees such that codim�a : I�X s; and

(A2) if the Hilbert function of R=�a : I� is constant on this set.

Both conditions are satis¢ed automatically for sW g :� codim I (the case s � g is the
theory of linkage). Thus we will focus on the cases s > g.

Our ¢rst results concern the case s � g� 1 and the case of ideals of small
codimension (see Theorem 1.1 and Corollary 2.2):

THEOREM 0.1.With notation as above, both conditions (A1) and (A2) are satis¢ed
if

. s � g� 1 and, for (A2), I is a complete intersection locally in codimension g; or

. codim I � 2 and R=I is Cohen^Macaulay; or

. codim I � 3 and R=I is Gorenstein.

Before stating further results we motivate the codimension condition in (A1) and
(A2). Recall from Artin and Nagata [3] that an ideal J in any ring satis¢es the con-
dition Gs if, for each prime ideal p containing J with codim pW sÿ 1, the minimal
number of generators m�Jp� is at most codim p. If I satis¢es Gs then
codim�a : I�X s when a is generated by s generic forms of suf¢ciently large degrees,
and thus the codimension condition is necessary for a to be in the desired open set.
On the other hand, many interesting ideals satisfy Gs. For example any smooth
(or even locally complete intersection) projective variety can be de¢ned
(scheme-theoretically) by an ideal satisfying G1 ^ that is, Gs for every s. Most
of our results give cases where an ideal satisfying Gsÿ1 has property (A1) and cases
where an ideal satisfying Gs has property (A2).

The following gives the £avor of what we can prove. A special case of a combi-
nation of Theorem 2.1, Proposition 3.1, and Corollary 4.3 (a) says that I satis¢es
(A1) or (A2) if it satis¢es Gsÿ1 or Gs, respectively, and if the depths of the rings
R=I j are not too small for jW sÿ gÿ 1. In fact we only need to assume the vanishing
of a single local cohomology module of each of these rings:

194 MARC CHARDIN ET AL.



THEOREM 0.2. Let R be a polynomial ring over a ¢eld with irrelevant maximal ideal
m, let I � R be a homogeneous ideal of codimension g and dimension d, and assume
that Hdÿj

m �R=I j� � 0 for 1W jW sÿ gÿ 1. If I satis¢es Gsÿ1 or Gs, then (A1) or (A2),
respectively, hold.

For example, the vanishing condition is satis¢ed for s � g� 2 if R=I is
Cohen^Macaulay.

The distinction between ideals that satisfy the conditions and those that don't is
sometimes rather subtle. For example the ideal of a Veronese surface P2,!P5 (2
by 2 minors of a generic symmetric 3 by 3 matrix) and that of a two-dimensional
rational normal scroll in P5 (2 by 2 minors of a suf¢ciently general 2 by 4 matrix
of linear forms) behave differently: The ideal of the Veronese satis¢es (A1) and (A2)
for all s (Theorem 2.1, Proposition 3.1, and [12, 2.3 and 3.3]), whereas the ideal of the
scroll satis¢es these properties for sW 5 � g� 2 (Corollary 4.6) but does not satisfy
(A1) for s � 6 (Remark 6.5).

To explain these results, we introduce our main de¢nitions:

DEFINITION. Let R be a graded ring, and let I � R be a homogeneous ideal.

(a) We say that I is s-parsimonious if the following holds for each 0W iW s: for every
i-generated homogeneous ideal b � I , and every homogeneous element a 2 I
such that

codim�b : I�X i and codim��b; a� : I�X i � 1

we have

b : I � b : a:

(b) We say that I is s-thrifty if the following holds for each 0W iW s: for every
i-generated homogeneous ideal b � I , and every homogeneous element a 2 I
such that

codim�b : I�X i and codim��b : I�; a�X i � 1

we have

�b : I� \ I � b and a is a nonzerodivisor on R=�b : I�:

The de¢nition applies to every ring (for example to localizations of graded rings)
since we regard otherwise ungraded rings as being trivially graded (every element
has degree 0). The idea behind the names is that if b and a are suf¢ciently general,
so that the codimension conditions hold, then there are no `extra' elements that
annihilate a (as compared with I) modulo b.

Theorem 2.1 states that if I is Gsÿ1 and �sÿ 1�-parsimonious, then (A1) is satis¢ed,
and that if I is Gs and �sÿ 1�-thrifty then (A2) holds. The actual result also includes
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the case where we know the hypotheses only `locally in codimension W r' and yields
only some of the coef¢cients of the Hilbert polynomial ^ thus it can be used for
projective varieties, where the hypotheses are ful¢lled locally on the variety.
Theorem 2.3 re¢nes this statement, and computes the changes in Hilbert functions
as the degrees di are changed.

Given these results it is interesting to have conditions under which an ideal is
s-parsimonious or s-thrifty. The rest of the paper is devoted to such conditions.
We show (Proposition 3.1) that parsimony and thrift can be deduced from the con-
dition that certain residual intersections satisfy the property S2 of Serre. This con-
dition of being residually S2 has other applications ^ for example to
d-sequences, and to bounding the codimension of annihilator ideals ^ see Corollary
3.6.

Of course we gain nothing by replacing the assumptions of parsimony or thrift by
the condition residually S2 unless we can check the latter condition more easily! In
Theorem 4.1, the hardest result of the paper, we give a suf¢cient condition for
residually S2, essentially in terms of the vanishing of local cohomology ^ for example
in the case of smooth projective varieties, this condition becomes the vanishing of
certain cohomology of some powers of the conormal bundle, as in Theorem 0.2
above.

In Section 5, we give an interesting class of residually S2 ideals by proving that if
X � Pn

k is an isomorphic projection of a reduced complete intersection, then the
de¢ning ideal I of X satis¢es conditions (A1) and (A2) for sW n. More generally,
for any projection, we give conditions in terms of the codimension of the conductor
^ see Theorem 5.3.

In Section 6 we give a number of examples showing that our cohomological con-
dition for parsimony is not too far from being sharp in interesting cases.

A problem related to the one above is as follows: Given a homogeneous ideal of a
polynomial ring in n variables I � R, we again choose s elements of I of given degrees
di and consider

J :� �a1; . . . ; as� : I1 � [j �a1; . . . ; as� : I j
ÿ �

:

It is easy to see that if the di are large enough then for generic choices of the ai the
ideal J will have codimension X s, and that for any ai such that J has codimension
X s, the ideal J is unmixed of codimension exactly s (or the unit ideal). As before,
there is a `generic' Hilbert function. Now suppose only that the codimension of
J is s. Under what circumstances can we conclude that the Hilbert function (or
Hilbert polynomial or . . . or the degree) is equal to the generic one? For example,
it was discovered in the 19th century by Chasles, Halphen, Schubert (and sub-
sequently proved by Kleiman, [18]) that if I is the ideal of the Veronese surface
in the projective space of plane conics, s � 5, and the ai are the sextic equations
that say that a conic is tangent to 5 given general conics, then J is the reduced ideal
of 3264 points (see [19] for the history of this problem and for references). Such
sextic equations actually span the symbolic square of I up to an irrelevant
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component. If we just assume that the ai are 5 sextics in the symbolic square general
enough so that J has codimension 5, is it still true that the degree of R=J is 3264?
Does this condition determine the Hilbert function of R=J? Answers to these ques-
tions might be interesting geometrically.

1. Ideals of Small Codimension

In this section we take up the ideals of small codimension mentioned in Theorem 0.1.
We do not need theGs conditions that will appear in many other results of this paper,
and we also prove the stronger result that the Hilbert functions of the rings R=a and
R=�a : I� are determined by that of R=I ^ one does not need to know deeper
invariants. The proof could easily be made into a computation of the new Hilbert
functions from the old one; we hope to return to such results in a subsequent paper.

THEOREM 1.1. Let R be a polynomial ring over a ¢eld, let I � R be a homogeneous
ideal and let a � I be a homogeneous s-generated ideal with codim�a : I�X s. If I
is perfect of codimension 2 or Gorenstein of codimension 3, then the Hilbert functions
of R=a and R=�a : I� are determined by the Hilbert function of R=I and the degrees of
the s homogeneous generators of a.

Proof. We may assume that the ground ¢eld k is in¢nite and that sX 2.
First consider the case where I is perfect of codimension 2. In this case I has a

homogeneous minimal resolution of the form

0! G� F1 ÿ!
f

G� F0ÿ! I ÿ! 0

where G is the largest free summand the two free modules have in common. Writing
the Hilbert series of R=I in the form p�t�=�1ÿ t�dimR we see that giving the Hilbert
series is equivalent to giving F1 and F0.

Let d1; . . . ; ds be the degrees of the s generators of a, and write H � �s
i�1R�ÿdi�.

We need to show that the Hilbert functions of I=a and of R=�a : I� are determined
by the modules F0;F1;H.

The R-module I=a has a homogeneous presentation

G� F1 �H ÿ!c G� F0ÿ! I=aÿ! 0;

where c � ÿjj�� has size n by nÿ 1� s, say. Now a : I � ann�I=a� � �����������
In�c�

p
;

hence codim In�c�X codim�a : I�X s � �nÿ 1� s� ÿ n� 1X 2. Thus by [7, 3.1],
a : I � In�c�. Furthermore, the Buchsbaum^Rim and Eagon^Northcott complexes
associated to c yield homogeneous free resolutions of I=a � coker c and of
R=�a : I� � R=In�c�, respectively. These resolutions show that the Hilbert functions
of coker c and of R=In�c� are determined by the graded modules F0;F1;H;G;
as long as codim In�c�X s.
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To show the independence from G, consider the n by nÿ 1� s matrix

Z � 1G 0
0 0

� �
and the family of homogeneous matrices cl � c� lZ �

l1G � e �
� �

� �
; l 2 k. For l general, codim In�cl�X s, and we may replace c by cl

without changing F0;F1;H;G. But since l1G � e is invertible for general l, coker cl

has a homogeneous presentation of the form

F1 �H ÿ!F0ÿ! cokerclÿ! 0;

eliminating the dependence on G.
Next, consider the case where I is Gorenstein of codimension 3. By [6, 2.1], I has a

homogeneous minimal resolution of the form

0ÿ!R�ÿe� ÿ!G��ÿe� � F ��ÿe� ÿ!j G� F ÿ! I ÿ! 0;

where j is an alternating matrix, G � G��ÿe� has even rank, and F ; e are determined
by the Hilbert function of R=I . Now one proceeds as above, replacing [7, 3.1] by [20,
10.5 (a) and its proof], and the complexes of Buchsbaum^Rim and Eagon^Northcott
by the complexes of [20, 10.5 (b),(c)]. &

2. Parsimonious Ideals

By a `homogeneous ring' (over k) we shall mean an N-graded Noetherian ring R
where R � R0�R1� and R0 � k is a ¢eld. Write ��M�� for the Hilbert series of a ¢nitely
generated graded moduleM over a homogeneous ring. We shall say that the Hilbert
series of two ¢nitely generated graded modulesM;N over a homogeneous ring R are
r-equivalent and write ��M�� �

r
��N��, if they differ by the Hilbert series of R-modules

whose annihilators have codimension at least r� 1. Note that if dim R � r then
this means that the Hilbert series are equal; while for smaller values of r, it implies
that the terms of the Hilbert polynomials of M and N of degrees
dim Rÿ 1; . . . ; dim Rÿ 1ÿ r coincide. We write M �

r
N if there is a sequence of

homogeneous R-linear maps between M and N that are isomorphisms locally in
codimension W r.

THEOREM 2.1. Let R be a homogeneous ring over an in¢nite ¢eld, let I � R be a
homogeneous ideal, and let a � I be a homogeneous s-generated ideal with
codim�a : I�X s.

(a) If I satis¢es Gsÿ1 and is �sÿ 1�-parsimonious locally in codimension W r, then the
Hilbert series of R=a is determined, up to r-equivalence, by I and the degrees of
the s homogeneous generators of a.
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(b) If I satis¢es Gs and is �sÿ 1�-thrifty locally in codimension W r, then the Hilbert
series of R=�a : I� is determined, up to r-equivalence, by I and the degrees of
the s homogeneous generators of a.

Theorem 2.1 will be deduced from Theorem 2.3 below.

COROLLARY 2.2. Let R be a homogeneous Cohen^Macaulay ring, let I � R be a
homogeneous ideal of codimension g, and let a � I be a homogeneous
�g� 1�-generated ideal with codim�a : I�X g� 1. The Hilbert function of R=a is
determined by I and the degrees of the g� 1 homogeneous generators of a. If moreover
I is Gg�1 (i.e., a complete intersection locally in codimension g) then the same is true
for R=�a : I�.

Proof. Any ideal of codimension g in a Cohen^Macaulay ring is g-parsimonious
and g-thrifty. Thus after an extension to make the ground ¢eld in¢nite we may apply
Theorem 2.1 (a) or (b), respectively. &

Here is a more explicit version of Theorem 2.1 that allows one to pass from one a to
another. This can actually be used to compute Hilbert functions, as will be illustrated
in the last section.

THEOREM 2.3. Let R be a homogeneous ring over an in¢nite ¢eld, let I � R be a
homogeneous ideal, and let a � I be an ideal generated by sW dim R forms of
degrees d1; . . . ; ds with codim�a : I�X s. Let c1; . . . ; cs be forms of degrees
e1; . . . ; es contained in I and for each x � fi1; . . . ; ikg � �s� write cx � �ci1 ; . . . ; cik �.
Assume that codim�cx : I�X jxj for every x.

(a) If I satis¢es Gsÿ1 and is �sÿ 1�-parsimonious locally in codimension W r, then

��R=a�� �
r
td1�����dsÿe1���ÿes

Xs
k�0
�ÿ1�sÿk

X
x��s�
jxj�k

Y
j 62x
�1ÿ tejÿdj ���R=cx��:

(b) If I is �sÿ 1�-thrifty locally in codimension W r, and codim�I � �cx : I��X jxj � 1
for every x such that jxjW sÿ 1, then

��R=�a : I��� �
r
td1�����dsÿe1���ÿes

Xs
k�0
�ÿ1�sÿk

X
x��s�
jxj�k

Y
j 62x
�1ÿ tejÿdj ���R=�cx : I���:

For the proof of Theorem 2.3 we will need the following observation about thrift:

LEMMA 2.4. Let R, I, b and a be as in the de¢nition of thrift and let `ö' denote images
in R :� R=�b : I�. If I is s-thrifty, then:

(a) b : I � b : a.
(b) ��b; a� : I�=�b : I� � �a� : I .
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Proof. For (a), since the element a is a non zerodivisor modulo b : I , the inclusions

a�b : a� � b � b : I

yield b : a � b : I , hence b : a � b : I .
Part (b) holds because

��b : I�; a� : I � ��b : I� \ I; a� : I � �b; a� : I : &

We shall make frequent use of a general position lemma:

LEMMA 2.5. Let R be a homogeneous ring over an in¢nite ¢eld, and let I � R be a
homogeneous ideal satisfying Gsÿ1. Let a � I be an ideal generated by forms
a1; . . . ; as of degrees d1; . . . ; ds, and assume that codim�a : I�X s.

(a) If ds � minfdig; then the generators a1; . . . ; as can be chosen so that

codim��a1; . . . ; asÿ1� : I�X sÿ 1:

(a0) If I satis¢es Gs and ds � minfdig, then the generators a1; . . . ; as can be chosen so
that

codim���a1; . . . ; asÿ1� : I�; as�X s:

(b) For every eX maxfdig; there exist forms c1; . . . ; cs of degree e in I such that

codim�cx : I�X jxj; for every x � �s�;
codim�I � �cx : I��X jxj � 1; for every x � �s� with jxjW sÿ 2:

(b0) If I satis¢es Gs; then forevery eX maxfdig; there exist forms c1; . . . ; cs of degree e in
I such that

codim�cx : I�X jxj; for every x � �s�;
codim�I � �cx : I��X jxj � 1; for every x � �s� with jxjW sÿ 1:

Now assume that d1 � � � � � ds � d. Let g � I be another ideal generated by forms
g1; . . . ; gs of degree d, so that codim�g : I�X s.

(c) The generators a1; . . . ; as and g1; . . . ; gs can be chosen so that for
bi � �a1; . . . ; aiÿ1; gi�1; . . . ; gs�, 1W iW s; we have

codim�bi : I�X sÿ 1; codim��bi; ai� : I�X s; codim��bi; gi� : I�X s:

(c0) If I satis¢es Gs; then the generators a1; . . . ; as and g1; . . . ; gs can be chosen so that
for bi � �a1; . . . ; aiÿ1; gi�1; . . . ; gs�; 1W iW s; we have

codim�bi : I�X sÿ 1; codim��bi : I�; ai�X s; codim��bi : I�; gi�X s:
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Proof. The proof is very similar to that given in [26, the proof of 1.4]. &

Proof of Theorem 2.1. By Lemma 2.5 (b) or (b0), there exist forms c1; . . . ; cs as in
Theorem 2.3 (a) or (b), respectively. Now this theorem implies that the Hilbert series
ofR=a orR=�a : I�, respectively, are determined, up to r-equivalence, by c1; . . . ; cs, by
I , and by the degrees of the s homogeneous generators of a. &

Proof of Theorem 2.3.We may assume that sX 1. Notice that I satis¢es Gs in part
(b). Choose dX maxfdi; ei j ig and set t � #fi j di 6� d or ei 6� dg. We are going to
prove both statements by induction on t.

If t � 0, then d � d1 � � � � � ds � e1 � � � � � es, and the assertion is that
��R=a�� �

r
��R=c�� or ��R=�a : I��� �

r
��R=�c : I���, respectively. We may choose

a1; . . . ; as and c1; . . . ; cs as in Lemma 2.5 (c) or (c0), respectively. (It is possible that

we lose some of the hypotheses on the subset ideals cx, but it does not matter since
the assertion is simpler in this special case.) It suf¢ces to show that setting
bi � �a1; . . . ; aiÿ1; ci�1; . . . ; cs� for 1W iW s, we have ���bi; ai��� �

r
���bi; ci��� for (a)

and ���bi; ai� : I �� �
r
���bi; ci� : I �� for (b). But indeed the de¢nition of parsimony gives

�bi; ai�=bi �
r
�R=�bi : I���ÿd� �

r
�bi; ci�=bi. On the other hand by Lemma 2.4 (b), thrift

implies ��bi; ai� : I�=�bi : I� �
r
��bi; ci� : I�=�bi : I�, since ai and ci are non zerodivisors

modulo bi : I and have the same degree.
Next assume that t > 0. We may suppose that ds � minfdig, and that ds < d or

es < d. Choose a1; . . . ; as as in Lemma 2.5 (a) or (a0), respectively. Write
a0 � �a1; . . . ; asÿ1�. Let x be a linear form of R which is not in any of the ¢nitely
many primes of codimension sÿ 1 containing a0 : I , of codimension jxj containing
cx : I; jxjW sÿ 1, and, for (b), of codimension jxj � 1 containing I � �cx : I�;
jxjW sÿ 2. Write y � xdÿds and z � xdÿes . Now yas and zcs are forms of degree
d. Moreover, codim��a0; yas� : I�X s or codim��a0 : I�; yas�X s; respectively, and
the sequence c1; . . . ; csÿ1; zcs has the same codimension properties as c1; . . . ; cs.

We ¢rst treat part (a). By the de¢nition of parsimony we have

a=a0 �
r
�R=�a0 : I�� �ÿds� �

r
��a0; yas�=a0��d ÿ ds�;

so that

��R=a�� �
r
tdsÿd ��R=�a0; yas��� � �1ÿ tdsÿd ���R=a0��: �2:6�

Now, from the induction hypothesis, and setting Di � d1 � � � � � di and
Ei � e1 � � � � � ei, we obtain

��R=�a0; yas��� �
r
tDsÿ1ÿEsÿ1

Xs
k�0
�ÿ1�sÿk

X
jxj�k
s2x

Y
j 62x
�1ÿ tejÿdj ���R=�cxÿfsg; zcs���:
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Formula (2.6) with cx in place of a shows that

tesÿd ��R=�cxÿfsg; zcs��� �
r
��R=cx�� ÿ �1ÿ tesÿd���R=cxÿfsg��;

and substituting into the previous formula we get

tdsÿd ��R=�a0; yas���

�
r
tDsÿEs

Xs
k�1
�ÿ1�sÿk

X
jxj�k
s2x

Y
j 62x
�1ÿ tejÿdj ����R=cx�� ÿ �1ÿ tesÿd���R=cxÿfsg���

� tDsÿEs
Xs
k�1
�ÿ1�sÿk

X
jxj�k
s2x

Y
j 62x
�1ÿ tejÿdj ���R=cx��

264 �

�
Xsÿ1
k�0
�ÿ1�sÿk

X
jxj�k
s62x

�1ÿ tesÿd�
Y
j 62x
j 6�s

�1ÿ tejÿdj ���R=cx��

375:
Also by induction hypothesis,

�1ÿ tdsÿd ���R=a0�� �
r
tDsÿEs

Xsÿ1
k�0
�ÿ1�sÿk

X
jxj�k
s62x

�tesÿd ÿ tesÿds �
Y
j 62x
j 6�s

�1ÿ tejÿdj ���R=cx��:

Taking the sum, using (2.6), and noticing that �1ÿ tesÿd � � �tesÿd ÿ tesÿds�
� 1ÿ tesÿds , we obtain

��R=a�� �
r
tDsÿEs

Xs
k�1
�ÿ1�sÿk

X
jxj�k
s2x

Y
j 62x
�1ÿ tejÿdj ���R=cx��

264 �

�
Xsÿ1
k�0
�ÿ1�sÿk

X
jxj�k
s62x

Y
j 62x
�1ÿ tejÿdj ���R=cx��

375:
This is the formula asserted in (a).

We now turn to the proof of (b). By Lemma 2.4 (b),

�a : I�=�a0 : I� �
r
���a0; yas� : I�=�a0 : I���d ÿ ds�;
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which yields,

��R=�a : I��� �
r
tdsÿd ��R=��a0; yas� : I��� � �1ÿ tdsÿd���R=�a0 : I���: �2:7�

One can now proceed as above, formally replacing (2.6) by (2.7). &

3. Residually S2 Ideals Are Parsimonious and Thrifty

We know no useful characterization of s-parsimonious and s-thrifty ideals, but
parsimony and thrift are implied by the Artin^Nagata property studied in [26]. Here
we give better suf¢cient conditions. In this section we de¢ne the notion `s-residually
S2' and exhibit some of its properties. The advantage of the condition `s-residually
S2' is that it can be checked from homological properties of I and its powers. Such
a criterion is given in the next section.

DEFINITION. Let R be a Noetherian ring, let I � R be an ideal of codimension g,
let K � R be a proper ideal, and let sX g be an integer.

(a) K is called an s-residual intersection of I if there exists an s-generated ideal a � I
such that K � a : I and codim K X s.

(b) K is called a geometric s-residual intersection of I if K is an s-residual intersection
of I and if in addition codim�I � K�X s� 1.

We shall often write `K � a : I is an s-residual intersection of I ' to indicate that the
conditions of the above de¢nition are satis¢ed.

DEFINITION. Let R be a Noetherian ring, let I � R be an ideal of codimension g,
and let s be an integer.

(a) I is said to be s-residually S2 if for every i with gW iW s and every i-residual
intersection K of I, R=K is S2.

(b) I is said to be weakly s-residually S2 if for every i with gW iW s and every geo-
metric i-residual intersection K of I, R=K is S2.

These properties are weaker versions of the propertiesANs andANÿs of [26], where
the residual intersections are required to be Cohen^Macaulay instead of merely S2.
Notice that if sW gÿ 1 then I is automatically s-residually S2.

We can now state the main result of this section:

PROPOSITION 3.1. Let R be a graded Cohen^Macaulay ring, and let I � R be a
homogeneous ideal. If I satis¢es Gs and is weakly �sÿ 1�-residually S2, then I is
s-parsimonious and s-thrifty.

Proof. The statement follows from Corollary 3.6 (a). &
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SOURCES OF EXAMPLES. The hypotheses of Proposition 3.1 are ful¢lled if I
satis¢es Gs and if moreover, after localizing, I has the sliding depth property or,
more restrictively, is strongly Cohen^Macaulay (which means that for every i;
the i-th Koszul homology Hi of a generating set h1; . . . ; hn of I satis¢es
depth Hi X dimRÿ n� i or is Cohen^Macaulay, respectively) ([12, 3.3], [17, 3.1]).
The latter condition always holds if I is a Cohen^Macaulay almost complete
intersection or a Cohen^Macaulay deviation 2 ideal of a Gorenstein ring ([4, p.259]).
It is also satis¢ed for any ideal in the linkage class of a complete intersection ([16,
1.11]). Standard examples include perfect ideals of codimension 2 ([2], [10]) and
perfect Gorenstein ideals of codimension 3 ([27]).

We shall often use the following remark on general position:

LEMMA 3.2 (e.g. [3, 2.3] or [26, 1.6 (a)]). Let R be a Noetherian local ring, let
a � I � R be ideals, and assume that a is s-generated with codim�a : I�X s and that
I satis¢es Gs. Then there exists a generating sequence a1; . . . ; as of a such that with
ai � �a1; . . . ; ai� and Ki � ai : I ; codim Ki X i and codim�I � Ki�X i � 1 whenever
0W iW sÿ 1.

The next result contains basic facts about parsimony:

PROPOSITION 3.3. Let R be a Noetherian graded ring, and let I � R be a homo-
geneous ideal.

(a) I is s-parsimonious if and only if for every i; b; as in the de¢nition of parsimony, b : I
is unmixed of height i (or b : I � R).

(b) If I is s-parsimonious then for every a, b as in the de¢nition of thrift, a is a non
zerodivisor on R=�b : I�.

Proof. It suf¢ces to prove that if I is s-parsimonious and b : I 6� R, then b : I is
unmixed of height i. The converse is obvious and part (b) follows immediately from
(a).

Thus, let p � R be a prime of height X i � 1 that contains b : I . Choose an element
x 2 p not in any minimal prime of b : I of height i. Now codim��b; ax� : I�X i � 1,
hence by the parsimony of I ,

b : I � b : �ax� � �b : a� : x � �b : I� : x:

Hence x 2 p is a nonzerodivisor on R=�b : I�, showing that p cannot be an associated
prime of b : I : &

The next result shows that the unmixedness condition of the previous proposition
is always satis¢ed by weakly �sÿ 1�-residually S2 ideals. This generalizes [26, 1.7]
(which, in turn, extends parts of [17, 3.1]).
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PROPOSITION 3.4. Let R be a Cohen^Macaulay ring, let I � R be an ideal, and
assume that I is Gs and weakly �sÿ 1�-residually S2. For every s-residual intersection
K � a : I of I one has:

(a) K is unmixed of codimension s.
(b) The associated primes of a have codimension at most s.
(c) If K is a geometric residual intersection, then K \ I � a.

Proof. After localizing the proof is the same as that of [26, 1.7]. &

COROLLARY 3.5. Let R be a Cohen^Macaulay ring, let I � Rbe an ideal satisfying
Gs, and let I 0 � I be an ideal that agrees with I locally up to codimension s. If I is
s-residually S2 (respectively weakly s-residually S2) then so is I 0.

Proof. Proposition 3.4 (a) implies that for codim I W iW s, every i-residual
intersection of I 0 is also an i-residual intersection of I , and one is geometric iff
the other is. &

COROLLARY 3.6. Let R be a Cohen^Macaulay ring, and let I � R be an ideal
satisfying Gs.

(a) If I is weakly �sÿ 1�-residually S2; then I is s-parsimonious and s-thrifty.
(b) Suppose that R is local and I is weakly �sÿ 2�-residually S2: If a � I is an

s-generated ideal with codim�a : I�X s, and a1; . . . ; as satisfy the conditions of
Lemma 3.2, then a1; . . . ; as is a d-sequence relative to I (that is,
��a1; . . . ; ai� : ai�1� \ I � �a1; . . . ; ai� for 0W iW sÿ 1�:

(c) Suppose that I is weakly �sÿ 1�-residually S2: If a �= I is an ideal generated by s
elements, then codim�a : I�W s.

Proof. (a) The ideal I is s-parsimonious by Propositions 3.3 (a) and 3.4 (a), and
then I is s-thrifty by Propositions 3.3 (b) and 3.4 (c).
(b) Let 0W iW sÿ 1 and write ai � �a1; . . . ; ai�. Notice that codim��ai : I�; ai�1�X
i � 1. By part (a) of this corollary, I is �sÿ 1�-parsimonious and �sÿ 1�-thrifty.
Therefore �ai : ai�1� \ I � �ai : I� \ I � ai.
(c) We may suppose that codim�a : I�X s, and then use Proposition 3.4 (a). &

4. A Su¤cient Condition For Residually S2

We now turn to the main technical result of this paper: A suf¢cient condition for an
ideal I of codimension g to be s-residually S2. This condition is more general than
the one of [26, 2.9] (which is a suf¢cient condition for the stronger Artin^Nagata
property) as it only requires the vanishing of sÿ g� 1 local cohomology modules.

The condition involves the vanishing of certain ExtiR�R=In;R�. Occasionally this
vanishing holds not for In but for an ideal equal to In up to a certain codimension,
and this is sometimes enough. To formalize this possibility, we make a de¢nition:
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DEFINITION. LetR be a Noetherian ring, and let I � R be an ideal of codimension
g. We will say that ideals I1; . . . ; Ir are good approximations of the ¢rst r powers of I
if the following two conditions are satis¢ed:

(a) Ij coincides with IIjÿ1 locally up to codimension g� j ÿ 1 whenever 1W jW r.
(b) Ij coincides with I j locally up to codimension g� j ÿ 1 whenever 2W jW rÿ 1.

For convenience we set Ij � I j � R if jW 0. Note that Ij need not contain Ij�1 (but
in practice they often do).

For example, one may choose Ij to be

(a) I j; or
(b) �I j�W g�rÿ1 (here JW i denotes the intersection of all primary components of

codimension at most i, for J � R any ideal); or
(c) �I j�W minfg�j;g�rÿ1g; or
(d) �I j�W g�jÿ1 in case I j has no associated primes of codimension g� j for

1W jW rÿ 1; or
(e) I �j� in case I j has no embedded associated primes of codimension at most

minfg� j; g� rÿ 1g for 1W jW r (here I �j� denotes the j-th symbolic power).

THEOREM4.1. Let Rbe aGorenstein ring, and let I � Rbe an ideal of codimension g
satisfying Gs for some sX g. Suppose that I1; . . . ; Isÿg�1 are good approximations of
the ¢rst sÿ g� 1 powers of I locally at every maximal ideal containing I. If
Extg�jR �R=Ij;R� � 0 for 1W jW sÿ g� 1, then I is s-residually S2.

COROLLARY 4.2. Let R be a local Gorenstein ring, and let I � R be an ideal of
codimension g satisfying Gs for some sX g. Let I1; . . . ; Isÿg�1 be ideals such that
Ij coincides with I j locally up to codimension minfg� j; sg. If Extg�jR �R=Ij;R� � 0
for 1W jW sÿ g� 1, then I is s-residually S2.

For applications to projective varieties it is convenient to reformulate Theorem 4.1
in terms of local cohomology:

COROLLARY 4.3. Let �R;m� be a local Gorenstein ring, and let I � R be an ideal of
codimension g satisfying Gs for some sX g. Set d � dim R=I. Suppose that
I1; . . . ; Isÿg�1 are good approximations of the ¢rst sÿ g� 1 powers of I. The ideal
I is s-residually S2 if either

(a) Hdÿj
m �R=Ij� � 0 for 1W jW sÿ g� 1; or

(b) we have containments I1 � � � � � Isÿg�1 and Hdÿi
m �Ijÿ1=Ij� � 0 for 1W jW iW sÿ

g� 1.

The conditions of Corollary 4.3 are satis¢ed in particular if depthR=I j X d ÿ j � 1
for 1W jW sÿ g� 1, which in turn holds if I is strongly Cohen^Macaulay (assuming
that I satis¢es Gs) ([11, the proof of 5.1]).
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COROLLARY 4.4. (cf. also [23,4.1]). Let �R;m� be a local Gorenstein ring, let I � R
be an ideal of codimension g, and let I1 � IW g. If Hdÿ1

m �R=I1� � 0where d � dimR=I ,
then I is g-residually S2.

COROLLARY 4.5. Let �R;m� be a regular local ring which is essentially of ¢nite type
over a perfect ¢eld k, and let I � R be an ideal of codimension g. Write
I1 � IW g�1;A � R=I1, and d � dim A. Assume that A is reduced and a complete
intersection locally in codimension 1 (in A). If Hdÿ1

m �A� � Hdÿ2
m �A� � 0 and

Hdÿ3
m �Ok�A�� � 0, then I is �g� 1�-residually S2.
Proof. The standard exact sequence

0ÿ! I1=I
�2�
1 ÿ!Ok�R� 
R A � �Aÿ!Ok�A� ÿ! 0

shows that we may apply Corollary 4.3 (b) taking I1; I
�2�
1 as I1; I2. &

Here are the consequences for Hilbert functions:

COROLLARY 4.6. Let R be a homogeneous Gorenstein ring, let I � R be a homo-
geneous ideal of codimension g satisfying Gg�1, and let a � I be a homogeneous
�g� 2�-generated ideal with codim�a : I�X g� 2. Let I1 � I W g, let m be the irrel-
evant maximal ideal of R, and write d � dim R=I. If Hdÿ1

m �R=I1� � 0, then the Hilbert
function of R=a is determined by I and the degrees of the g� 2 homogeneous gen-
erators of a. If moreover I satis¢es Gg�2, the same is true for the Hilbert function
of R=�a : I�.

Proof. The assertion follows from Corollary 4.4, Proposition 3.1, and Theorem
2.1. &

COROLLARY 4.7. Let R be a polynomial ring over a perfect ¢eld k, let I � R be a
homogeneous ideal of codimension g, and let a � I be a homogeneous
�g� 3�-generated ideal with codim�a : I�X g� 3. Let I1 � IW g�1, let m be the irrel-
evant maximal ideal of R, and write A � R=I1 and d � dim A. Assume that A is
reduced and a complete intersection locally in codimension 1. If
Hdÿ1

m �A� � Hdÿ2
m �A� � 0 and Hdÿ3

m �Ok�A�� � 0, then the Hilbert function of R=a is
determined by I and the degrees of the g� 3 homogeneous generators of a. If moreover
I satis¢es Gg�3, the same is true for the Hilbert function of R=�a : I�:

Proof. One uses Corollary 4.5, Proposition 3.1, and Theorem 2.1. &

We next turn to some lemmas necessary for the proof of Theorem 4.1. The ¢rst is
an easy consequence of the change^of^rings spectral sequence (or one can simply
argue using injective resolutions):

LEMMA 4.8. Let R! S be a homomorphism of rings, and letM be an R-module with
ExtjR�S;M� � 0 for j < g. Then for every integer n and every S-module N, there is a
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natural homomorphism

ExtnS�N;ExtgR�S;M�� ÿ!Extn�gR �N;M�;

which is an isomorphism if n � 0 or if ExtjR�S;M� � 0 for j 6� g.

The following provides a crucial step in the proof of Theorem 4.1:

LEMMA 4.9. (cf. also [26, 2.1]). Let R be a Noetherian local ring satisfying S2,
assume that R has a canonical module o � oR, and write ÿÿ_ � Hom�ÿÿ;o�.
Let I � R be an ideal, let a be an R-regular element contained in I, let
K � �a� : I 6� R, and write �R � R=K . We have

Ext1R� �R;o� � �Io�__=ao:

Proof. There are natural isomorphisms

�a� : I � Hom�I; �a��
� Hom�I;R�a
� Hom�I;Hom�o;o��a
� Hom�I 
R o;o�a
� Hom�Io;o�a;

which yield K_ � aÿ1�Io�__.
Now applying ÿÿ_ to the exact sequence

0! K ! R! �R! 0

we get an exact sequence

0! o! aÿ1�Io�__ ! Ext1R� �R;o� ! 0:

Thus Ext1R� �R;o� � aÿ1�Io�__=o, and the desired result follows upon multiplication
by a. &

Proof of Theorem 4.1. Let K � a : I be any s-residual intersection of I . We may
assume that R is local. Let Ki be ideals as in Lemma 3.2 and write Ri � R=Ki.
The theorem is a consequence of the following assertions, which we shall prove
by induction on i:

(a) Ri satis¢es S2 for 0W iW s;
(b) Exti�1R �Iiÿg�2Ri;R� � 0 for 0W iW sÿ 1;
(c) oRi � �Iiÿg�1Ri�__ for 0W iW sÿ 1, where ÿÿ_ � Hom�ÿÿ;oRi �; note that this

notation implicitly uses the value of i.

We ¢rst show that if s > 0 (as will be the case in the proof of parts (b) and (c)) then
IjR0 � Ij for all jX 1. Equivalently, Ij \ �0 : I� � 0 for all jX 1. Indeed, since R is
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unmixed it suf¢ces to prove this after localizing at a prime p of R such that dim
Rp � 0. Since s > 0, the ideal I satis¢esG1, so Ip is 0 or the unit ideal. By the de¢nition
of good approximations, we have �Ij�p � Ip, and the formula follows.

To prove (a), (b), (c), ¢rst let i � 0. In this case our assertion is only nontrivial if
g � 0. So let g � 0 and write ÿÿ� � Hom�ÿÿ;R�. As for (a), notice that
0 : I � 0 : I1 � �R=I1��. Since Ext1R�R=I1;R� � 0, applying ÿÿ� to a free R-resolution
� � � ! F2! F1! F0 � R of R=I1, yields an exact sequence

0! 0 : I ! R! F �1 ! F �2 ;

which shows that R0 � R=�0 : I� satis¢es S2.
As for (b) and (c), notice that s > 0, so I2R0 � I2, which gives (b). Furthermore

I1R0 � I1, thus �I1R0�__ � �I1R0��� � I��1 . As I1 is unmixed locally in codimension
one, I1 and 0 : �0 : I1� coincide locally in codimension one. Hence
I��1 � �0 : �0 : I1����. But �0 : �0 : I1���� � 0 : �0 : I1� � 0 : �0 : I�, and the latter mod-
ule is oR0 .

We now perform the induction step from iX 0 to i � 1.

. For (a) we may suppose iW sÿ 1. By the induction hypothesis, I is
i-residually S2. Propositions 3.4 (a) and 3.1 and Lemma 2.4 (b) imply that
Ri satis¢es S2 and is equidimensional of codimension i in R, ai�1 is regular
on Ri, Ki�1Ri � ai�1Ri : IRi � Hom�IRi;Ri�, and depthI �oRi � > 0. Since
IIiÿg�1 and Iiÿg�2 coincide locally in codimension i � 1, part (c) for i shows
that �IoRi �_ � �Iiÿg�2Ri�_. Putting this together, one obtains natural
isomorphisms,

Ki�1Ri � Hom�IRi;Ri�
� Hom�IRi 
Ri oRi ;oRi � (as Ri is S2�
� Hom�IoRi ;oRi � (as depthI �oRi � > 0�
� Hom�Iiÿg�2Ri;oRi � (by the remark above)

� ExtiR�Iiÿg�2Ri;R� (by Lemma 4.8).

By part (b) for i, Exti�1R �Iiÿg�2Ri;R� � 0. On the other hand since Ri has
codimension i, Ext`R�Iiÿg�2Ri;R� � 0 whenever `W i ÿ 1. Thus, dualizing a free
R-resolution of Iiÿg�2Ri into R, one sees that the Ri-module ExtiR�Iiÿg�2Ri;R�
satis¢es S3. Therefore Ki�1Ri is S3, and hence Ri�1 � Ri=Ki�1Ri satis¢es S2.
This concludes the proof of (a) for i � 1.

. For (b) and (c) we may suppose i � 1W sÿ 1. Recall that by Corollary 3.6 (b)
and Proposition 3.1, a1; . . . ; ai�1 form a d-sequence and ak is regular on
Rkÿ1 whenever 1W kW i � 1. Thus for 1W kW i � 1 and jW sÿ g� 1 there
are complexes

Ckj : 0! Ijÿ1Rkÿ1 ÿ!ak IjRkÿ1 � akIjÿ1Rkÿ1ÿ! IjRkÿ! 0
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having nontrivial homology at most in the middle. Call this homology H and
notice that

H � �Kk \ �Ij � akIjÿ1��=��Kkÿ1 \ �Ij � akIjÿ1�� � akIjÿ1�:
We ¢rst claim that

Ext`R�H;R� � 0 whenever `W minfg� j ÿ 1; i � 1g �4:10�

or equivalently

Hp � 0 whenever dimRp W minfg� j ÿ 1; i � 1g:

To see this let p 2 Spec�R� with dimRp W minfg� j ÿ 1; i � 1g. Notice that
�IIjÿ1�p � �Ij�p � �I j�p. If I 6� p, then Ijÿ1 6� p; Ij 6� p, and �Kk�p �
�a1; . . . ; ak�p. Hence Hp � 0 in this case. Next assume that I � p. Then
jX 1 since gW dimRp W g� j ÿ 1, and Ip � �a1; . . . ; ai�1�p since
dimRp W i � 1W sÿ 1. Now �Kk \ �Ij � akIjÿ1��p � �Kk \ I j�p. Since jX 1
and a1; . . . ; ak; . . . ; ai�1 form a d-sequence generating Ip, we conclude that

�Kk \ I j�p � ��a1; . . . ; ak� \ I j�p
� ��a1; . . . ; ak�I jÿ1�p (cf. [15, Theorem 2.1])

� ��Kkÿ1 \ I j� � akI jÿ1�p:
� ��Kkÿ1 \ Ij� � akI jÿ1�p:

The vanishing of Hp will follow once we have shown that �I jÿ1�p � �Ijÿ1�p, for
which we may assume jX 2. By assumption I jÿ1 and Ijÿ1 coincide locally in
codimension g� j ÿ 2. Since Extg�jÿ1R �R=Ijÿ1;R� � 0, the ideal Ijÿ1 has no
associated primes of codimension g� j ÿ 1. Therefore �I jÿ1�p � �Ijÿ1�p. This
concludes the proof of �4:10�.

. We now turn to the proof of (b) for i � 1W sÿ 1. We show, by induction on k,
0W kW i � 1, that Extg�jÿ1R �IjRk;R� � 0 whenever kÿ g� 2W jW i ÿ g� 3.
Statement (b) follows if we set k � i � 1.
First suppose k � 0.
^ If jW 0, then gX 2, hence R0 � R and IjR0 � RR0 � R.
^ If jX 1, then IjR0 � Ij by the remark at the beginning of the proof. Now the
assertion follows because Extg�jÿ1R �Ij;R� � 0 for ÿg� 2W jW sÿ g� 1.
Next suppose 1W kW i � 1. Assuming kÿ g� 2W jW i ÿ g� 3, as in the des-
ired formula, we have
^ Extg�jÿ2R �H;R� � 0 by �4:10�,
^ Extg�jÿ2R �Ijÿ1Rkÿ1;R� � Extg�jÿ1R �IjRkÿ1;R� � 0 by induction hypothesis,
^ Extg�jÿ1R �IjRkÿ1 � akIjÿ1Rkÿ1;R� embeds into Extg�jÿ1R �IjRkÿ1;R�, since ak 2 I
and locally in codimension g� j ÿ 1, Ij and IIjÿ1 coincide.
Now using the complex Ckj we derive Extg�jÿ1R �IjRk;R� � 0, proving (b).
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. Finally, we prove (c) for i � 1W sÿ 1. By part (a) and Proposition 3.4 (a), we
know that Ri and Ri�1 satisfy S2 and are equidimensional of codimension i
and i � 1 in R. Also, by Proposition 3.1 and Lemma 2.4 (b),
Ki�1Ri � ai�1Ri : IRi and ai�1 is regular on Ri. Write ÿÿ� � Hom�ÿÿ;oRi �
and ÿÿ_ � Hom�ÿÿ;oRi�1 �.

Consider the complex

Ci�1;iÿg�2 : 0ÿ! Iiÿg�1Ri ÿ!
ai�1

Iiÿg�2Ri � ai�1Iiÿg�1Ri ÿ! Iiÿg�2Ri�1ÿ! 0;

introduced above, which has nontrivial homologyH at most in the middle. By �4:10�,
Ext`R�H;R��0 for `W i � 1, and by part (b), Exti�1R �Iiÿg�2Ri;R� � 0. Notice that,
since ai�1 2 I and Iiÿg�2 coincides with IIiÿg�1 locally in codimension i � 1, the map

Ext`R�Iiÿg�2Ri � ai�1Iiÿg�1Ri;R� ÿ!Ext`R�Iiÿg�2Ri;R�

is a monomorphism for `W i � 1 and is an isomorphism for `W i. Further,
ExtiR�Iiÿg�2Ri�1;R� � 0. Thus the above complex induces an exact sequence

0 ÿ! ExtiR�Iiÿg�2Ri;R� ÿ! ExtiR�Iiÿg�1Ri;R� ÿ! Exti�1R �Iiÿg�2Ri�1;R� ÿ! 0;
k o k o k o

�Iiÿg�2Ri�� �Iiÿg�1Ri�� �Iiÿg�2Ri�1�_

where the various identi¢cations are special cases of Lemma 4.8. Dualizing again, we
obtain an exact sequence

0ÿ!�Iiÿg�1Ri��� ÿ!
ai�1 �Iiÿg�2Ri��� ÿ!�Iiÿg�2Ri�1�__ ÿ!Exti�1R ��Iiÿg�1Ri��;R�:

This shows that

�Iiÿg�2Ri���=ai�1�Iiÿg�1Ri���

is isomorphic to an Ri�1-submodule of �Iiÿg�2Ri�1�__, and that both modules
coincide locally in codimension one in Ri�1. Thus, since Ri�1 is S2,
�Iiÿg�2Ri�1�__ � ��Iiÿg�2Ri���=ai�1�Iiÿg�1Ri����__, and we must show that the latter
module is isomorphic to oRi�1 .

Now Iiÿg�2 and IIiÿg�1 coincide locally in codimension i � 1 and Ri satis¢es S2,
hence by our induction hypothesis, �Iiÿg�2Ri���=ai�1�Iiÿg�1Ri��� � �IoRi ���=
ai�1oRi . But Lemma 4.9 shows the latter module is isomorphic to
Ext1Ri

�Ri�1;oRi �. Thus it remains to prove that Ext1Ri
�Ri�1;oRi �__ � oRi�1 . Now

Lemma 4.8 yields a natural map Ext1Ri
�Ri�1;oRi � ! oRi�1 , which is an isomorphism

locally in codimension one in Ri�1 because Ri satis¢es S2. Thus, since Ri�1 is S2,
we get Ext1Ri

�Ri�1;oRi �__ � �oRi�1 �__ � oRi�1 . &
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5. A Class of Residually S2 Ideals

In this section we illustrate how general projections can produce an abundance of
ideals that are s-residually S2, but in general fail to satisfy the stronger conditions
ANs or ANÿs .

THEOREM 5.1. Let k be an algebraically closed ¢eld, and let Y � Pn�t
k be a reduced

complete intersection of dimension d. Consider a general projection X � Pn
k of Y, and

let I � k�X0; . . . ;Xn� be the (saturated) ideal de¢ning X. Let de be the dimension of
the closed subset fy 2 Y j edim OY ;y X eg, and write s � 2nÿ 3ÿ
max

e
fnÿ 1; 2d; de � eÿ 1g (using the convention that dim 1 � ÿ1). Then I is

s-residually S2. In particular, if Y is nonsingular (or, more generally, if
edim Bq W 2 dimBq � 1 for every nonmaximal homogeneous prime q of the homo-
geneous coordinate ring B of Y), then I is minfnÿ 2; 2nÿ 2d ÿ 3g-residually S2.

Proof. Let A;B be the homogeneous coordinate rings of X ;Y respectively. The
geometric condition implies that the conductor of A � B has codimension at least
min
e
fd � 1; nÿ d; n� d ÿ de ÿ e� 1g: The theorem thus follows from the more gen-

eral result in Theorem 5.3. &

Remark 5.2. If in the setting of Theorem 5.1, Y � Pn�t
k is nondegenerate and

nonsingular with tX 1; dX 1 and nÿ dX 2, then I does not satisfy ANÿnÿd .
Proof.Let A;B be the homogeneous coordinate rings of X ;Y . Since the conductor

of the extension A � B has codimension Xmin fd � 1; nÿ dgX 2 and A 6� B, it
follows that A � k�X0; . . . ;Xn�=I cannot be Cohen^Macaulay. As I is an unmixed
radical ideal of codimension nÿ d, there has to exist a geometric link of I that
is not Cohen^Macaulay. &

To state our more general result we replace the complete intersection above by an
ideal J whose conormal module has symmetric powers with suf¢ciently high depths.
This condition is automatically satis¢ed if J is an unmixed locally strongly
Cohen^Macaulay ideal satisfying certain conditions on the local numbers of gen-
erators ([11, the proof of 5.1]).

THEOREM 5.3. Let k be a perfect ¢eld, let R � S be regular domains that are
k-algebras essentially of ¢nite type, and set t� trdegRS. Let J be an ideal of
codimension g in S satisfying Gs�t�1. Set I � J \ R, consider A � R=I � B � S=J,
and let C � A :A B denote the conductor. Assume that B is reduced and a complete
intersection locally in codimension 1 (in B) and that codimACX s� tÿ g� 3. If
projdimSSymB

j �J=J2�W g� j for 0W jW s� tÿ g, then I is s-residually S2.
Proof. We induct on s, the assertion being trivial for sW ÿ 1.
Notice that I is the intersection of the contractions of all minimal primes of J.

Now, replacing R;S;A;B by af¢ne domains and computing dimensions, one easily
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sees that codim I X gÿ t. Thus nothing is to be shown if s < gÿ t, and we may from
now on assume that sX gÿ t.

But then by our assumption, codimAC > 0 and hence C contains a non zerodivisor
of A, which implies that B is a ¢nite A-module. Since sX gÿ t, B is a perfect
S-module of grade g by our assumption, and therefore every minimal prime of
J has the same codimension g. Localizing R we may suppose that �R;m� is a local
ring. Moreover, if p 2 V �I� then there exists q 2 V �J� with q \ R � p, and for every
such q the dimension formula yields dimSq � dimRp � t since the residue ¢eld exten-
sion of Rp ! Sq is algebraic. Applying this equality to any minimal prime p of I one
sees that dimRp � dimSq ÿ t � �dimSq ÿ dimBq� ÿ t � gÿ t. Thus every minimal
prime of I has the same codimension gÿ t. On the other hand, if we choose q

to be the preimage of any maximal ideal n of B, then
dimBn � dimSq ÿ dim Jq � �dimR� t� ÿ g � dimRÿ codim I � dimA, or equi-
valently, the codimension of every maximal ideal of B is dimA. Finally, the preimage
of C in R has codimension at least �s� tÿ g� 3� � codim I � s� 3, showing that
the R-module B=A vanishes locally in codimension W s� 2.

Let M and N be ¢nitely generated R-modules. We write M �
r
N if there is an

R-linear map between M and N that is an isomorphism locally in codimension

W r in R. Notice that if M �
r
N then Hi

m�M� � Hi
m�N� as long as iX dimRÿ r� 1.

After these preparatory remarks we are now going to prove that I satis¢esGs�1. To
this end let p 2 V �I� with dimRp W s. Choose q 2 V �J� with q \ R � p. Since
dimSq � dimRp � tW s� t, we have m�Jq�W dimSq, or equivalently, the deviation
d�Bq� of Bq is at most dimBq. Now the equality Ap � Bq yields m�Ip� �
codim Ip� d�Ap���gÿ t� � d�Bq�W �gÿ t� � dimBq � �codim Jq � dimBq� ÿ t �
dimSq ÿ t � dimRp: Thus I satis¢es Gs�1.

Write d � dimA. Having established the propertyGs, we know from Corollary 4.3
(b) that I is s-residually S2 once we show

Hdÿi
m �I jÿ1=I j� � 0 for 1W jW iW s� tÿ g� 1: �5:4�

So let 1W jW s� tÿ g� 1 and set M � SymB
jÿ1�J=J2�. For every maximal ideal n

of B, our assumption on J implies depthBn
Mn X dimBn ÿ j � 1 � d ÿ j � 1. Thus

the Rad�B�-depth of the B-module M is at least d ÿ j � 1, which yields
Hdÿi

Rad�B��M� � 0 as long as iX j. This shows that

Hdÿi
m �SymB

jÿ1�J=J2�� � 0 for 1W jW iW s� tÿ g� 1: �5:5�

Since A �
s�2

B and d ÿ 1 � dimRÿ g� tÿ 1X dimRÿ �s� 2� � 1, we have

Hdÿ1
m �A� � Hdÿ1

m �B�, and hence (5.4) follows from (5.5) if s � gÿ t. Thus we

may from now on assume that sX gÿ t� 1.
But then by our assumption, projdimSJ=J2 W g� 1. Since J is a complete

intersection locally in codimension g� 1 in S, we conclude that the B-module
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J=J2 is torsionfree. The Zariski Sequence associated to the homomorphisms
k! S! B yields an exact sequence of B-modules

T1�S=k;B� � 0ÿ!T1�B=k;B� ÿ!T1�B=S;B� � J=J2

ÿ!T0�S=k;B� � Ok�S� 
S Bÿ!T0�B=k;B� � Ok�B� ÿ! 0;

where T0�S=k;B� is projective and hence free ([21, 2.3.5 and 3.1.5]). Since B is
reduced, the B-module T1�B=k;B� is torsion ([21, 2.3.4 and 3.1.5]), and hence
T1�B=k;B� � 0 by the torsionfreeness of J=J2. In particular J=J2 is a ¢rst syzygy
module in a free resolution of T0�B=k;B�.

Likewise, the morphisms k! R! A give rise to two short exact sequences of
B-modules

0ÿ!T1�A=k;B� ÿ!T1�A=R;B� � I=I2 
A Bÿ!U ÿ! 0
0ÿ!U ÿ!T0�R=k;B� ÿ!T0�A=k;B� ÿ! 0;

where T0�R=k;B� is free. Notice thatU is a ¢rst syzygy module in a free resolution of
T0�A=k;B�.

Finally, from the homomorphisms k! A! B we obtain the Zariski Sequence

Ti�1�B=A;B� ÿ!Ti�A=k;B� ÿ!Ti�B=k;B� ÿ!Ti�B=A;B�:
If p 2 Spec�R� with dimRp W s� 2, then Ti�B=A;B�p � Ti�Bp=Ap;Bp� �
Ti�Ap=Ap;Bp� � 0 for every i ([21, 2.3.3 and 3.1.1]). Thus Ti�B=A;B� �

s�2
0; which

implies Ti�A=k;B� �
s�2

Ti�B=k;B�:
We ¢rst make use of the identi¢cation T0�A=k;B� �

s�2
T0�B=k;B�: From it we

obtain two short exact sequences

0ÿ!K ÿ!T0�A=k;B� ÿ!V ÿ! 0
0ÿ!V ÿ!T0�B=k;B� ÿ!Lÿ! 0;

where K �
s�2

0 �
s�2

L. Comparing ¢rst syzygy modules in free B-resolutions, we con-

clude that U and syz1�K� � syz1�V � are stably isomorphic, and likewise for J=J2

and syz1�V � � syz1�L�. Thus U � syz1�L� and J=J2 � syz1�K� are stably isomorphic,
which allows us to assume that U is a direct summand of J=J2 � syz1�K�. But
syz1�K� �

s�2
F for some free B-module F , and hence

SymB
jÿ1�U� ,!

�
SymB

jÿ1�J=J2 � syz1�K�� �
s�2

SymB
jÿ1�J=J2 � F �

� �j
n�1 SymB

nÿ1�J=J2� 
B SymB
jÿn�F �:

Now (5.5) implies

Hdÿi
m �SymB

jÿ1�U�� � 0 for 1W jW iW s� tÿ g� 1: �5:6�
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Next we make use of the fact that T1�A=k;B� �
s�2

T1�B=k;B� � 0. From it we con-
clude I=I2 
A B �

s�2
U , and thus

SymA
jÿ1�I=I2� �s�2 SymB

jÿ1�I=I2 
A B� �
s�2

SymB
jÿ1�U�:

Hence by (5.6),

Hdÿi
m �SymA

jÿ1�I=I2�� � 0 for 1W jW iW s� tÿ g� 1: �5:7�

We saw that I satis¢es Gs�1, and by our induction hypothesis, I is �sÿ 1�-residually
S2. Now Corollary 3.6 (b) shows that locally in codimension s, I can be generated
by a d-sequence. But then in the natural exact sequence

0ÿ!N ÿ!SymA
jÿ1�I=I2� ÿ! I jÿ1=I j ÿ! 0;

we have N �
s
0 ([14, Theorem 3.1]). Now (5.7) implies (5.4). &

6. Examples

First we wish to illustrate how the formulas of Theorem 2.3 can be used for explicit
computations of Hilbert functions.

EXAMPLE 6.1. Let k be a ¢eld, let R � k�X1; . . . ;X6�, and let I � R be the de¢ning
ideal of the Veronese surface in P5

k, that is, the ideal generated by the 2 by 2 minors
of the generic symmetric matrix

X1 X2 X3
X2 X4 X5
X3 X5 X6

0@ 1A:
We wish to compute ��R=�a : I���, where a � I is an arbitrary ideal generated by 5
forms of degree d � e� 2 so that ht�a : I�X 5. For this we may assume that k is
in¢nite. Let c1; . . . ; c6 be quadrics contained in I that satisfy the conditions of
Lemma 2.5 (b'), and write ci � �c1; . . . ; ci� for 0W iW 5. Recall that I is (weakly)
6-residually S2 by [12, 2.3 and 3.3]. Thus Proposition 3.1 and Theorem 2.1 (b) imply
that, for every 0W iW 5 and every x � �5� with jxj � i, ��R=�cx : I��� � ��R=�ci : I���.
Furthermore, again by Proposition 3.1, ci : I � ci : ci�1, which yields
��R=�ci : I��� � ��R=�ci : ci�1��� � ��ci�1=ci��tÿ2. Finally, by Proposition 3.4 (a) (or [12,
3.3]), ht�ci : I� � i. Now for 0W iW 2, ci : I � ci is a complete intersection, whereas
by linkage theory, ��R=�c3 : I��� � 1�3t

�1ÿt�3. Since I has a linear presentation matrix,
c5 : I is a complete intersection of 5 linear forms, hence ��R=�c5 : I��� � 1

�1ÿt�. Finally,
��R=�c4 : I��� � ��c5=c4��tÿ2 �

ÿ��R=c3�� ÿ ��c4=c3�� ÿ ��I=c5��ÿ ��R=I ���tÿ2 � ��R=c3��tÿ2ÿ
��R=�c3 : I���ÿ��R=�c5 : I��� ÿ ��R=I ��tÿ2 � 1�t

�1ÿt�2 :
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Now using this information in the formula of Theorem 2.3 (b) yields,

��R=�a : I��� �
X5
k�0

5
k

� �
tke�1ÿ te�5ÿk��R=�ck : I���

� t5e

�1ÿ t� � 5
t4e�1ÿ te��1� t�
�1ÿ t�2 � 10

t3e�1ÿ te�2�1� 3t�
�1ÿ t�3

� 10
t2e�1ÿ te�3�1� t�2

�1ÿ t�4 � 5
te�1ÿ te�4�1� t�
�1ÿ t�5 � �1ÿ te�5

�1ÿ t�6

� 1� 5t� 15t2 � � � � � 6t5�dÿ2�

�1ÿ t� �for dX 3�:

In particular one can see that the regularity of R=�a : I� is 5�d ÿ 2� and the initial
degree of a : I is d for dX 3. Also the degree of R=�a : I� is
1� 10e� 40e2 � 40e3 � 10e4� e5 � d5 ÿ 40d2 � 90d ÿ 51.

Using the corresponding formula for ��R=a�� one can also check that the minimal
degree of an element in a : I that is not in a is 3d ÿ 4 for dX 3 (and 1 for d � 2).

Our main theorems say that under various hypotheses the Hilbert functions of R=a
or R=�a : I� are determined by I and the degrees of the generators of a. In a few cases
(Theorem 1.1) we have seen that a knowledge of the Hilbert function of I alone
suf¢ces. Here is an example that shows this is not true in general:

EXAMPLE 6.2. Let k be a ¢eld, let R � k�X1; . . . ;X6�, and again let I � R be the
de¢ning ideal of the Veronese surface in P5

k, that is, the ideal generated by the 2
by 2 minors of the generic symmetric matrix. Let I 0 be the de¢ning ideal of the generic
rational normal scroll of degree 4 in P5

k, that is, the ideal of 2 by 2 minors of the
matrix

X1 X2 X4 X5
X2 X3 X5 X6

� �
:

Notice that R=I and R=I 0 have the same Hilbert function. Let a � I and a0 � I 0 be
ideals generated by 4 quadrics so that codim�a : I�X 4 and codim�a0 : I 0�X 4.

By Corollary 2.2 the Hilbert function of R=�a0 : I 0� is determined by I 0. Thus we
may perform a direct computation on a particular choice of a0 to obtain

��R=�a0 : I 0��� � 1� 2tÿ t2

�1ÿ t�2 :

On the other hand, by Example 6.1 we have ��R=�a : I��� � �1� t�= �1ÿ t�2ÿ �
.

Next we illustrate the fact that our results about Hilbert functions do not hold in
general without parsimony condition or some residual S2 assumption.
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Remark 6.3. Let R be a homogeneous ring, and let a � I be homogeneous ideals of
R. Assume that m�a� < sW codim�a : I� and that 0 6� �a�d 6� �I �d for some d. If
0 6� as 2 �a�d and a0s 2 �I �d n �a�d , then a � �a; as� and a0 � �a; a0s� are both generated
by s forms in I of the same degrees di, and codim�a : I�X s; codim�a0 : I�X s.
Nevertheless, R=a and R=a0 do not have the same Hilbert function since a �= a0.

EXAMPLE 6.4. Let k be an algebraically closed ¢eld, let I � k�X0; . . . ;X3� be the
de¢ning ideal of a monomial arithmetically Buchsbaum curve that is not
arithmetically Cohen^Macaulay (for instance the rational quartic) in P3

k. There
exists a homogeneous ideal a � I with 0 6� �a�d 6� �I �d for some d so that m�a� � 3
and a : I � �X0; . . . ;X3�, as can be easily seen from [5, Theorem 3]. Applying Remark
6.3 with s � 4 � codim I � 2, one sees that Corollary 4.6 can fail if the depth con-
dition on R=I is dropped.

Let R be a homogeneous ring over an in¢nite ¢eld k and let I � R be a homo-
geneous ideal. A homogeneous ideal a contained in I is called a homogeneous
reduction of I if Ir�1 � aIr for some rX 0. For any homogeneous reduction,
m�a�X `�I�, where `�I� � dim grI �R� 
R k denotes the analytic spread of I , and if
the equality m�a� � `�I� holds we call a a homogeneous minimal reduction of I .
Not every homogeneous ideal I has a homogeneous minimal reduction (consider
I � �X 2;XY ;Y 3� � k�X ;Y ��, but such reductions always exist if I is generated
by forms of the same degree. Now in the situation of Remark 6.3, the inequality
m�a� < sW codim �a : I� implies that a is necessarily a reduction of I and hence
`�I� < s (at least if R is equidimensional) ([25, Proposition 3], which is based on
[22, 4.1]). But in fact, also the converse holds, which yields many instances where
Remark 6.3 applies:

Remark 6.5. Let R be a homogeneous reduced Cohen^Macaulay ring over an
in¢nite ¢eld, let I � R be a homogeneous ideal with m�I� 6� `�I�, and let s be an
integer with s > `�I�. If I is Gs and weakly �sÿ 3�-residually S2 (for instance, I
is a complete intersection) locally in codimension sÿ 1 and if I has a homogeneous
minimal reduction a (for instance, I is generated by forms of the same degree), then
Remark 6.3 applies to a � I .

Proof. Let p 2 Spec�R� with dimRp W sÿ 1. If I 6� p, then a 6� p since
���
I
p � ���

a
p

. If
however I � p, then Ip can be generated by a d-sequence (cf. Corollary 3.6 (b)) and
thus has no proper reduction (cf. [15, Theorem 2.2]). Hence in either case
Ip � ap, which gives codim�a : I�X s.

Furthermore, a being a reduction of I and R being reduced, it follows that a 6� 0
has the same initial degree as I . Thus 0 6� �a�d 6� �I �d for some d since
depth R > 0. &

So far our counterexamples were largely based on the fact that one of the s
elements generating awas redundant. We are now going to present an example where
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both ideals a and a0 are minimally generated by s elements. This example also shows
that Corollary 4.7 fails even for Cohen^Macaulay ideals without further
assumptions on the square of the ideal.

EXAMPLE 6.6. Let k be a ¢eld, let R � k�X1; . . . ;X6�, let L denote the ideal

L � �X 3
1 ;X

2
1X2;X 3

2 ;X
3
3 ;X

3
4 ;X

3
5 ;X

3
6 �;

and let j be a 2 by 4 matrix whose entries are forms of degree 3 in R and generate L.
Let Dij be the 2 by 2 minor of j involving columns i and j, set

u � �X1X3X4X5X6�2; v � �X2X3X4X5X6�2; b � �D12 � D34;D13;D14;D23;D24�;
a � �b; uD34�; a0 � �b; vD34�; and I � I2�j�:

Assume that codim I X 3 (for instance, take

j � X 3
1 X3

2 X3
3 X3

4

X 3
5 X3

3 X3
6 X 2

1X2

� �
;

in fact if k is in¢nite and the entries of j are chosen to be general elements in L then
R=I is an isolated singularity of dimension 3). We claim I is a perfect ideal of
codimension 3 that is a complete intersection locally on the punctured spectrum,
codim�a : I�X 6 and codim�a0 : I�X 6, a and a0 are both minimally generated by
5 sextics and one form of degree 16, but R=a and R=a0, and R=�a : I� and
R=�a0 : I�, respectively, do not have the same Hilbert function.

Proof. Since
�����������
I1�j�

p � ����
L
p � �X1; . . . ;X6�, the ideal I is a complete intersection

locally on the punctured spectrum. Furthermore, from the presentation matrix
of the determinantal ideal I it follows that b : I � b : �D34� � I1�j� � L. Thus
codim�a : I�X 6 and codim�a0 : I�X 6, and I=b � �R=L��ÿ6�. Write `ö' for images
in �R � R=L and notice that a=b � � �R�u��ÿ6�, R=�a : I� � �R=��u�, a0=b � � �R�v��ÿ6�,
R=�a0 : I� � �R=��v�. Now �u 6� 0 6� �v, which already gives m�a� � 6 � m�a0�. Further-
more �u 2 socle� �R� and �v 62 socle� �R� (in order to ¢nd two such elements in the same
degree, we had to choose L so that socle� �R� is not pure). But then �R�u and �R�v have
different Hilbert functions, hence the same holds for R=a and R=a0, and for
R=�a : I� and R=�a0 : I�, respectively. &
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