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The Gale transform, an involution on sets of points in projective space, appears
in a multitude of guises and in subjects as diverse as optimization, coding theory,
theta functions, and recently in our proof that certain general sets of points fail to

Žsatisfy the minimal free resolution conjecture see Eisenbud and Popescu, 1999,
.In¨ent. Math. 136, 419]449 . In this paper we reexamine the Gale transform in the

light of modern algebraic geometry. We give a more general definition in the
Ž .context of finite locally Gorenstein subschemes. We put in modern form a

number of the more remarkable examples discovered in the past, and we add new
constructions and connections to other areas of algebraic geometry. We generalize
Goppa’s theorem in coding theory and we give new applications to Castelnuovo
theory. We also give references to classical and modern sources. Q 2000 Academic

Press
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Let r, s be positive integers and let g s r q s q 2. The classical Gale
Ž . rtransform is an involution that takes a reasonably general set G ; P of g

labeled points in a projective space P r to a set G
X of g labeled points in P s,

s Ždefined up to a linear transformation of P . Perhaps the simplest though
.least geometric of many equivalent definitions is this: If we choose

homogeneous coordinates so that the points of G ; P r have as coordi-
nates the rows of the matrix

Irq1
,ž /A

Ž . Ž .where I is an r q 1 = r q 1 identity matrix and A is a matrix of sizerq1
Ž . Ž . Xs q 1 = r q 1 , then the Gale transform of G is the set of points G
whose homogeneous coordinates in P s are the rows of the matrix

AT

,ž /Isq1

where AT is the transpose of A.
It is not obvious from this definition that the Gale transform has any

‘‘geometry’’ in the classical projective sense. Here are some examples that
suggest it has:

Ž . 1a r s 1. The Gale transform of a set of s q 3 points in P is the
corresponding set of s q 3 points on the rational normal curve that is the
s-uple embedding of P1 in P s. Conversely, the Gale transform of any s q 3
points in linearly general position in P s is the same set in the P1 that is the
unique rational normal curve through the original points. See Corollary 3.2
and the examples following it.

Ž .b r s 2, s s 2. There are two main cases: First a complete inter-
Žsection of a conic and a cubic is its own Gale transform a ‘‘self-associated

.set’’ . On the other hand, if G consists of six points not on a conic, then the
Gale transform of G is the image of the five conics through five of the six
points of G via the Cremona transform that blows up the six points and
then blows down the conics. See Example 5.12.
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Ž . 3c r s 2, s s 3. A set G of seven general points in P lies on three
quadrics, which intersect in eight points. The Gale transform of G is the
projection of G from the eighth point. Again, see the examples following
Corollary 3.2.

Section 1 contains what we know of the history of the Gale transform,
including work of Pascal, Hesse, Castelnuovo, Coble, Dolgachev]Ortland,
and Kapranov.

In Section 2 we introduce a general definition of the Gale transform as
an involution, induced by Serre duality, on the set of linear series on a

Žfinite Gorenstein scheme over a field here, as always in this paper,
.Gorenstein means locally Gorenstein . This language turns out to be very

Ž .convenient even in the classical reduced case. The main result of this
section is an extension of the Cayley]Bacharach Theorem for finite

Žcomplete intersections or, more generally, finite arithmetically Gorenstein
.schemes to finite locally Gorenstein schemes. It interprets the failure of a

set of points to impose independent conditions on a linear series as a
condition on the Gale transform.

The next sections treat basic properties of the Gale transform and
examples derived from them, such as the ones above. Section 3 is devoted
to an extension of a famous theorem of Goppa in coding theory. A linear
code is essentially a set of points in projective space, and the dual code is
its Gale transform. Goppa’s theorem asserts that if a linear code comes
from a set of points on a smooth linearly normal curve, then the dual code

Ž . Ž .lies on another image of the same curve. Examples a and c above are
Žspecial cases. We show how to extend this theorem and its scheme-theo-

.retic generalization to sets of points contained in certain other varieties,
such as ruled varieties over a curve. Using these results we exhibit some of
the classical examples of the Gale transform and provide some new ones
as well; for instance, nine general points of P 3 lie on a smooth quadric
surface, which is a ruled variety in two different ways. It follows from our
theory that the Gale transform, which will be nine general points of P 4,
lies on two different cubic ruled surfaces. In fact, we show that the nine
general points are the complete intersection of these two surfaces.

In Section 4 we use the Gale transform to give a simple proof of the
Eisenbud]Harris generalization to schemes of Castelnuovo’s lemma that
r q 3 points in linearly general position in P r lie on a unique rational
normal curve in P r. We also prove a similar result for when finite schemes
in linearly general position lie on higher dimensional rational normal
scrolls and when these scrolls may be taken to be smooth. Our method

Ž . w xprovides a simple proof in many cases for a result of Cavaliere et al. 6 .
In Section 5 we show that if G ; P r and G

X ; P s are related by the Gale
transform, then the canonical modules v and v X are related in a simpleG G
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w xway. This is the idea exploited in Eisenbud and Popescu 32 to study the
minimal free resolutions associated to general point sets G ; P r and in
particular to disprove the Minimal Resolution Conjecture. As an applica-
tion we exhibit an example due to Coble, connecting the Gale transform of

Žsix points in the plane with the Clebsch transform blow up the six points
.and blow down the proper transforms of the conics through five of the six .

One family of examples that does not seem to have been considered
before is the determinantal sets of points. In Section 6 we describe a novel
relationship, expressed in terms of the Gale transform of Veronese re-em-
beddings, between the zero-dimensional determinantal varieties defined by
certain ‘‘adjoint’’ pairs of matrices of linear forms.

A major preoccupation of the early work on the Gale transform was the
study of ‘‘self-associated’’ sets of points, that is, sets of points G ; P r that

Žare equal to their own Gale transforms up to projective equivalence, of
. rcourse . This notion only applies to sets of 2 r q 2 points in P , since

otherwise the Gale transform doesn’t even lie in the same space. For
example, six points in the plane are self-associated iff they are a complete

Žintersection of a conic and a cubic and this is the essential content of
.Pascal’s ‘‘Mystic Hexagram’’ . It turns out that this is indeed a natural

notion: under mild non-degeneracy assumptions G is self-associated iff its
homogeneous coordinate ring is Gorenstein! Section 7 is devoted to a
study of self-association and a generalization: Again under mild extra
hypotheses, a Gorenstein scheme G ; P r has Gorenstein homogeneous
coordinate ring iff the Gale transform of G is equal to a Veronese
transform of G. We review the known geometric constructions of self-asso-
ciated sets and add a few new ones. It would be interesting to know
whether the list contains any families of Gorenstein ideals not yet investi-
gated by the algebraists.

In Section 8 we continue the study of self-associated sets of points,
showing how they are related to nonsingular bilinear forms on the underly-
ing vector space of P r. A classical result states that self-associated sets
correspond to pairs of orthogonal bases of such a form. We say what it
means for a non-reduced scheme to be the ‘‘union of two orthogonal
bases’’ and generalize the result correspondingly. We also reprove and
generalize some of the other classical results on self-associated sets,
showing for example that the variety of self-associated sets of labeled
points in P r is isomorphic to an open set of the variety of complete flags in

r ŽP , a result of Coble and Dolgachev and Ortland see the references
.below .

It is interesting to ask, given a set of g points in P r with g - 2 r q 2,
whether it can be extended to a set of points of degree 2 r q 2 with
Gorenstein homogeneous coordinate ring}indeed, such questions arise

w ximplicitly in our work on free resolutions 32 . From the theory developed
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in Section 8 we are able to give interesting information in some cases. For
example, we show that a set of 11 general points in P6 can be completed to
a set of 14 points with an arithmetically Gorenstein homogeneous coordi-

Ž .nate ring. We show that although the extension is not unique the three
points added span a plane that is uniquely determined. This plane appears
as the ‘‘obstruction’’ to the truth of the minimal resolution conjecture for

6 w x11 points in P , as treated in our paper 32 .
In Section 9 we continue with self-associated sets and describe what is

known about the classification of small dimensional projective spaces, up
to P 5.

We thank Joe Harris and Bernd Sturmfels for introducing us to the
Gale transform and Lou Billera, Karen Chandler, Tony Geramita, and
Gunter Ziegler for useful discussions.¨

1. HISTORY

Perhaps the first result that belongs to the development of the Gale
Žtransform is the theorem of Pascal from his ‘‘Essay Pour Les Coniques’’

w x.from 1640, reproduced in Struik 66 that the vertices of two triangles
circumscribed around the same conic lie on another conic. As we shall see
in Section 8, this is a typical result about sets of points that are Gale

Ž .transforms of themselves ‘‘self-associated sets’’ . Hesse, in his Dissertation
w x Žand Habilitationschrift in Konigsberg 44 see the papers in Crelle’s¨

w x w x.Journal 45, 46 and the reprinted Dissertation in Werke 46a , found an
Ž w x.analogue of Pascal’s result see also Zeuthen 73, p. 363 which held for

eight points in three-dimensional space and gave various applications.
Some of Hesse’s results were made clearer and also extended by von

w x w x w x w x ŽStaudt 64 , Weddle 70 , Zeuthen 73 , and Dobriner 18 see also p. 152,
w x.Tome 3, of the Encyclopedie 55 .

The step to defining the Gale transform itself in the corresponding cases
2 w x wof six points in P was taken by Sturm 68 and extended by Rosanes 61,

x w x62 . More important is the realization by Castelnuovo in 1889 8 that one
could do the same sort of thing for 2 r q 2 points in P r in general. He
called two sets of 2 r q 2 points that are Gale transforms of one another
‘‘gruppi associati di punti.’’ Castelnuovo, who refers to Sturm and Rosanes
but seems unaware of Hesse’s work, gives the following geometric defini-
tion:

X r Ž r .UTwo sets G and G , each of 2 r q 2 labeled points in P and P ,
respectï ely, are defined to be associated when there exist two simplices D and
D

X in P r such that the points of G are projectï e with the 2 r q 2 ¨ertices of D
and D

X, while the points of G
X are projectï e with the 2 r q 2 facets of the two

Ž .simplices each facet being labeled by the opposite ¨ertex .
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Castelnuovo was primarily interested in the case when a set of points is
self-associated; this is the case of Pascal’s six points on a conic, for
example. As we shall see, a general set of 2 r q 2 points is associated to
itself iff its homogeneous coordinate ring is Gorenstein. It is interesting
that the stream of work that led Castelnuovo in this direction has the same
source in Pascal’s theorem as the stream that lead to the Cayley]Bacharach
Theorem and its ramifications, another early manifestation of the Goren-

Ž w x .stein property see Eisenbud et al. 26 for a discussion .
The first one to have studied the Gale transform of a set of g points in

P r without assuming g s 2 r q 2 seems to have been Coble, and we begin
with his definition. As before, we may represent an ordered set of g points

r Ž .G ; P by a g = r q 1 matrix of homogeneous coordinates, though this
Žinvolves some choices. To make the symmetry of the relation of G and its

Gale transform more visible, we will no longer insist, as above, that the
.first part of the matrix is the identity.

DEFINITION 1.1. Let k be a field and let r, s G 1 be integers. Set
g s r q s q 2, and let G ; P r, G

X ; P s be ordered nondegenerate sets of g
Ž . Ž . Xpoints represented by g = r q 1 and g = s q 1 matrices G and G ,

respectively. We say that G
X is the Gale transform of G if there exists a

nonsingular diagonal g = g matrix D such that GT ? D ? GX s 0.

Put more simply, the Gale transform of a set of points represented by a
matrix of homogeneous coordinates G is the set of points represented by

T Žthe kernel of G the diagonal matrix above is necessary to avoid the
.dependence on the choices of homogeneous coordinates . Note that the

Gale transform is really only defined up to automorphisms of the projec-
tive space. Since we are going to give a more general modern definition in
the next section, we will not pause to analyze this version further.

This definition is related to the one given in the introduction by the
identity

IyI 0 rq1rq1<A I s 0.Ž .sq1 ž /ž /0 I Asq1

w xIn a remarkable series of papers 9]12 in the early part of this century,
Coble gave the definition above, gave applications to theta functions and
Jacobians of curves, and described many amazing examples. Although
Coble used the same term for the ‘‘associated sets’’ as Castelnuovo, he
doesn’t mention Castelnuovo or any of the other references given above,

Žleaving us to wonder how exactly he came to the idea. The related paper
w xof Conner 14 often quoted by Coble, doesn’t mention Castelnuovo

.either.



GEOMETRY OF THE GALE TRANSFORM 133

Castelnuovo’s work on self-associated sets of points, on the other hand,
w x w x w xwas continued by Bath 2 , Ramamurti 57 , and Babbage 1 , but they seem

ignorant of Coble; perhaps the old and new worlds were too far apart.
Similar ideas in the affine case were developed, apparently without any

w x w xknowledge of this earlier work, by Whitney 71 and Gale 35 , the latter in
the study of polytopes. As a duality theory for polytopes, and in linear
programming, it has had a multitude of applications. The names ‘‘Gale
Transform’’ and ‘‘Gale diagram’’ are well-established in these fields, and in
the absence of a more descriptive term than ‘‘associated points’’ in
algebraic geometry we have adopted them. These names may have been
coined by Perles, who uncovered the power of Gale diagrams in the study
of polytopes with a small number of vertices and in the construction of
non-rational polytopes.

w xAnother important group of applications was initiated by Goppa 37, 38 .
In coding theory the Gale transform is the passage from a code to its dual,
and Goppa proved that a code defined by a set of rational points on an
algebraic curve was dual to another such code. See Corollary 3.2 for a
generalization.

w xDolgachev and Ortland 20 give a modern exposition of the geometric
theory of the Gale transform. These authors treat many topics covered by
Coble. Their main new contribution is the use of geometric invariant
theory to extend the definition of the Gale transform to a partial compact-
ification of the ‘‘configuration space’’ of sets of general points. In a similar

w xvein, Kapranov 49 shows that the Gale transform extends from general
Žsets of points to the Chow compactification. A similar result can be

deduced from our description of the Gale transform as an operation on
linear series, since the Chow compactification is an image of the set of
linear series on a reduced set of points containing a given generator of the

.line bundle.
Although we will not pursue it here, there is a possible extension of the

theory, suggested to us by Rahul Pandharipande, which deserves to be
mentioned. One may easily extend Definition 1.1 to ordered collections of
linear subspaces: the Gale transform of a collection of g linear spaces of
dimension d in P r will be a collection of g linear spaces of dimension also

g Ždq1.yry2 Žd in P . For each space, choose an independent set of points
spanning it. Take the Gale transform of the union of these collections of
points. The spaces spanned by the subsets corresponding to the original

.spaces make up the Gale transform. Thus the Gale transform of a set of
four lines in P 3 would be again a set of four lines in P 3. This definition can
be shown to be independent of the choice of frames and generalized to
finite Gorenstein subschemes of Grassmannians in the spirit of Definition
2.1 below. It might be interesting to understand its geometric significance,
at least in simple examples such as that of the four lines above.
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2. THE SCHEME-THEORETIC DEFINITION

Throughout this paper G will denote a Gorenstein scheme, finite over a
Ž .field k we will usually just say a finite Gorenstein scheme . We recall that a

subscheme of P n is nondegenerate if it is not contained in any hyperplane.
The Gale transform is the involution on the set of linear series on G

induced by Serre duality. In more detail:

Let G be a finite Gorenstein scheme. Let L be a line bundle on G and
t0Ž .consider the canonical ‘‘trace’’ map t : H K ª k provided by SerreG

duality. The composition of t with the multiplication map

H 0 L m H 0 K m Ly1 ª H 0 K ª kŽ . Ž .Ž .k G G

0Ž . 0Ž y1 .is a perfect pairing between H L and H K m L . For any subspaceG
0Ž . H 0Ž y1 .V ; H L we write V ; H K m L for the annihilator with respectG

to this pairing.

DEFINITION 2.1. Let G be a finite Gorenstein scheme, let L be a line
0Ž .bundle on G, and let V ; H L be a subspace. The Gale transform of the

Ž . Ž H y1.linear series V, L is the linear series V , K m L .G

w xIn Coble’s work 9, 12 the following observation, always in the reduced
case and with deg G s r q 1, is used as the foundation of the theory:1

PROPOSITION 2.2. Let G be a finite Gorenstein scheme of degree r q s q 2.
Let G ; G be a subscheme, and let G be the residual scheme to G . Let1 2 1
Ž . Ž .V, L be a linear series of projectï e dimension r on G, and suppose that

0Ž y1 . Ž .W ; H K m L is its Gale transform. The failure of G to span P VG 1
Ž Ž ..that is, the codimension of the linear span of the image of G in P V is1
equal to the failure of G to impose independent conditions on W.2

Proof. Consider the diagram with short exact row and column

0Ž .H L <G1

a
66

U06 6

Ž .V H L W .66
b

0Ž .H II LG1

Ž . Ž .A diagram chase shows that ker a ( ker b . But the failure of G to span1
Ž . 0Ž .U 0Ž .P V is the dimension of the kernel of a, and since H II L s H L ,G <G1 2

the failure of G to impose independent conditions on W is the dimension2
Uof the cokernel of b .
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Problem 2.3. Coble often uses this result as follows: He gives some
transformation taking a general set of r q s q 2 labeled points in P r to a
general set of r q s q 2 labeled points in P s, definable by rational func-
tions. He then proves that it takes a set of points whose first r q 1
elements are dependent to a set of points whose last s q 1 elements are
dependent. He then claims that in consequence this transformation must
agree with the Gale transformation. Coble establishes many of the exam-
ples described below in this way. Can this argument be made rigorous?

As a corollary of Proposition 2.2 we deduce a characterization of
base-point-free and very ample linear series in terms of their Gale trans-
forms. It will usually be applied to the Gale transform of a known linear
series V, so we formulate it for W s V H .

COROLLARY 2.4. Let G be a finite Gorenstein scheme o¨er a field k with
0Ž .algebraic closure k, let L be a line bundle on G, and let V ; H L be a

H 0Ž y1 . Ž .linear series. Let W s V ; H K m L be the Gale transform of V, L .G

Ž .a The series W is base point free iff no element of k m V ¨anishes on a
codegree 1 subscheme of k m G.

Ž .b The series W is ¨ery ample iff no element of k m V ¨anishes on a
codegree 2 subscheme of k m G.

For example, suppose that G is reduced over k s k and G is embedded
Ž . Ž .by V into P V . The series W is base point free iff no hyperplane in P V

Ž .contains all but one point of G; W is very ample iff no hyperplane in P V
contains all but two points of G.

In the case of basepoint freeness, a criterion can be given which does
Ž .not invoke k. The reader may check that condition a is equivalent to the

statement that no proper subscheme G
X of degree g X in G imposes only

X Ž . Hg y dim W conditions, the smallest possible number, on W .

Proof. Both statements reduce immediately to the case k s k. Then W
is basepoint free iff every degree 1 subscheme of G imposes one condition
on W. By Proposition 2.2, this occurs iff every codegree 1 subscheme of G

Ž .spans P V , that is, iff no element of V vanishes on a codegree-1
subscheme. Similarly, W is very ample iff every degree 2 subscheme
imposes two conditions on W, and again the result follows from Proposi-
tion 2.2.

Proposition 2.2 may be seen as a generalization of the Cayley]Bacharach
Theorem from the case of arithmetically Gorenstein schemes to the case

Ž . Ž w xof locally Gorenstein schemes. See Eisenbud et al. 26 for historical
.remarks on this other forerunner of the Gorenstein notion. To exhibit this

aspect we first explain how to find the Gale transforms of series cut out by
hypersurfaces of given degree.
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Ž .Recall that if G ; P U is any finite scheme, with homogeneous coordi-
nate ring S , then the canonical module of G is the S -moduleG G

v s ExtdimŽU .y1 S , S ydim U ,Ž .Ž .Ž .G S G

where S denotes the symmetric algebra of U, the homogeneous coordinate
Ž .ring of P U . The sheaf on G associated to v is the dualizing sheaf K .G G

Ž . dPROPOSITION 2.5. Let G ; P U be a finite Gorenstein scheme and let U
Ž .be the series cut out on G by the hypersurfaces of degree d in P U . The Gale

d 0Ž Ž .. Ž . 0Ž Ž ..transform of U ; H OO d is the image of v in H K yd .G G yd G

Proof. From the exact sequence 0 ª II ª OO ª OO ª 0 we get theG PŽU . G

sequence

a0 0 1??? ª H OO d ª H OO d ª H II d ª 0Ž . Ž . Ž .Ž . Ž .Ž .PŽU . G G

Ž d.H 1Ž Ž ..Uwhich identifies U with H II d . By duality, v is the moduleG G

`
U1H II ye ,Ž .Ž .[ G

esy`

U1Ž Ž ..with degree yd part equal to H II d , so we are done.G

Ž . Ž .For any finite scheme G ; P V , let a G be the largest integer a such
that G fails to impose independent conditions on forms of degree a. For
example, if G is a complete intersection of forms of degree d , . . . , d , then1 c
Ž . Ž .a G s Ý d y 1 y 1. The scheme G is arithmetically Gorenstein}that is,i

the homogeneous coordinate ring S is Gorenstein}iff there is an iso-G

Ž . Ž .morphism S a ( v for some a, and it is easy to see that then a s a G .G G

wSee for example Bruns and Herzog 14, Proposition 3.6.11 and Definition
x3.6.13 .

Ž .COROLLARY 2.6. Suppose that the finite scheme G ; P U is arithmeti-
Ž .cally Gorenstein. For any integer d F a G , the linear series of forms of degree

Ž .d on G is the Gale transform of the linear series of forms of degree a G y d.

Ž .Proof. Use Proposition 2.5 and the fact that v s S a .G G

The Cayley]Bacharach Theorem is now the special case of Proposition
2.2 in which G is arithmetically Gorenstein in some embedding in a P n and
the linear series involved is induced by forms of small degree on this
projective space.

ŽCOROLLARY 2.7 Cayley]Bacharach for Arithmetically Gorenstein
. Ž .Schemes . Suppose that G ; P U is a finite arithmetically Gorenstein

scheme, and let G , G be mutually residual subschemes of G. For any integer1 2
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Ž .d - a G , the failure of G to impose independent conditions on forms of1
Ž .degree d is equal to the number of forms of degree a G y d ¨anishing on G .2

Proof. Apply Proposition 2.2 and Corollary 2.6.

This includes the classic version:

Ž . 2COROLLARY 2.8 Chasles . If a set G of eight points in P lies in the1
complete intersection G of two cubics, then any cubic ¨anishing on G1
¨anishes on G.

Ž .Proof. In this case a G s 3. Since the number of forms of degree 0
Ž .vanishing on the empty set respectively, on any one-point set is 1

Ž .respectively, 0 , the nine points of G impose dependent conditions on
cubics, while any eight-point subset imposes independent conditions on
cubics.

3. A GENERALIZED GOPPA THEOREM

This section is devoted to an extension of Goppa’s classical result on the
duality of algebro-geometric codes.

THEOREM 3.1. Let G be a zero-dimensional Gorenstein scheme with a
finite map to a locally Gorenstein base scheme B of dimension c, and let

Ž .OO 1 be a line bundle on G. Suppose thatG

0 ª EE ª EE ª ??? ª EE ª OO 1 ª 0Ž .c cy1 0 G

Ž .is a resolution of OO 1 by locally free shea¨es on B, and hence thatG

K y1 s coker HHom EE , K ª HHom EE , K .Ž . Ž . Ž .G cy1 B c B

If

H iq1 EE s H iq1 EE s 0, for all 0 F i F c y 2,Ž . Ž .i iq1

then the induced sequence
U0 0 0 0H EE ª H EE ª H OO 1 s H K y1Ž . Ž . Ž . Ž .Ž . Ž .1 0 G G

U U0 0ª H HHom EE , K ª H HHom EE , KŽ . Ž .Ž . Ž .c B cy1 B

is exact. In particular, if G is embedded in P r by the linear series which is the
0Ž . 0Ž Ž .. Ž .image of H EE ª H OO 1 , so that G lies on the image of P EE0 G 0

< Ž . <embedded by the complete linear series OO 1 , then the Gale transform ofPŽ EE .0
0Ž U . 0Ž Ž ..G is defined by the image of H EE m K ª H K y1 and lies on thec B G

Ž U . < Ž . <Uimage of P EE m K mapped by the complete linear series OO 1 .c B PŽEE mK .c B
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Proof. Break up the given resolution into short exact sequences

0 ª KK ª EE ª KK ª 0, 0 F i F c y 1,iq1 i i

and then use the vanishings in the hypothesis to obtain

coker H 0 EE ª H 0 OO 1 s H1 KK s ???Ž . Ž . Ž .Ž .Ž .0 G 1

s H cy1 KKŽ .cy1

s ker H c KK ª H c EE .Ž . Ž .Ž .c cy1

Identifying KK with EE and using Serre duality, we get the asserted result.c c

In the special case when G ; B s P r, Theorem 3.1 is the special case
d s 1 of Proposition 2.5.

Ž .COROLLARY 3.2 Goppa Duality . Let B be a locally Gorenstein cur̈ e,
embedded in P r by the complete linear series associated to a line bundle

Ž . rOO H , and let G ; B ; P be a Cartier dï isor on the cur̈ e B. The GaleB
transform of G lies on the image B under the complete linear series associated

Ž .to OO K y H q G .B B

Proof. Apply Theorem 3.1 to the resolution

0 ª OO H y G ª OO H ª OO 1 ª 0.Ž . Ž . Ž .B B G

w xThis result is essentially due to Goppa 37, 38 and expresses the duality
Žamong the algebro-geometric codes bearing his name see e.g. van Lint

w x .and van der Geer 54 for more details . From Corollary 3.2 we may
immediately derive the following consequences:

v If a curvilinear finite scheme of degree g s r q s q 2 lies on a
rational normal curve in P r, then its Gale transform lies also on a rational
normal curve in P s. The analogous statement also holds for finite sub-

w xschemes of an elliptic normal curve. See Coble 12 for the statement in
the reduced case.

v
gy2A set of g s 2 g y 2 points in P which is the hyperplane section

of a canonical curve of genus g is its own Gale transform.
v

2 2Let G be a set of seven general points in P , and let E ; P be a
smooth plane cubic curve passing through G. Write h for the hyperplane
divisor of E ; P 2. By Corollary 3.2, the Gale transform G

X of G is the
image of G via the re-embedding of E as an elliptic normal quartic curve
EX ; P 3 with hyperplane divisor H s G y h. Similarly, G is obtained from
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G
X by the linear series G

X y H. If we write G
X s 2 H y p, so that the three

quadrics containing G
X intersect in G

X q p, then we see that G
X y H s H

y p, so that G is obtained from G
X by projection from p.

COROLLARY 3.3. Let B be a locally Gorenstein cur̈ e, and let EE be a
¨ector bundle o¨er B. Let G be a zero-dimensional Gorenstein subscheme of

Ž . rthe ruled ¨ariety X s P EE , and assume that G is embedded in P by the
< Ž . < Ž . <restriction of the complete series OO 1 . Assume that OO 1 is ¨eryGPŽEE . PŽEE .

ample. Then the Gale transform of G lies on the image of the ruled ¨ariety
X ŽŽ X.U . < Ž . < X

X UX s P EE m K , mapped by OO 1 , where the ¨ector bundle EEB PŽŽEE . mK .B

is defined as the kernel of the natural epimorphism

0 ª EE
X ª EE ª OO 1 ª 0.Ž .G

Ž . Ž X.U XIf X is a ruled surface, that is, rank EE s 2, then EE m K ( EE mB
Ž X.U Xdet EE m K , and hence X is the elementary transform of X along theB

scheme G.

Proof. Apply Theorem 3.1 to the resolution

0 ª EE
X ª EE ª OO 1 ª 0.Ž .G

EXAMPLE 3.4. A smooth quadric surface Q in P 3 can be regarded in
two ways as a ruled surface over P1, hence we deduce that nine general
points in P 4 lie in the intersection of two rational cubic scrolls in P 4. The
nine points are actually the complete intersection of the two scrolls.

To see this, let G ; Q ; P 3 be a set of nine general points. The ideal IG

is 3-regular so by Bertini the general cubic through G cuts out on Q a
general canonically embedded smooth curve of genus 4. Such a curve has
exactly two g1’s, namely those cut out by the two rulings of the smooth3
quadric Q. By Corollary 3.2, the Gale transform of G is a hyperplane

5 < <section of the re-embedding of C in P via the linear system G . In this
embedding, each g1 of C sweeps out a rational cubic threefold scroll X ,3 i

Ž 1 2 5.i s 1, 2 isomorphic to the Segre embedding of P = P into P . Each Xi
is determinantal, cut out to be the 2 = 2 minors of a 2 = 3 matrix with
linear entries. Since C ; P 5 is a general curve of degree 9 and genus 4 in
P 5, and since the complete intersection of two general cubic scrolls is of
this type, C s X l X and G

X is correspondingly the complete intersec-1 2
tion of the two scrolls in P 4.

If the points G lie on a complete intersection of a cubic with a singular
quadric, then the two scrolls in P 4 coincide, so G

X is not a complete
intersection as above. This leads us to the following formulation.
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Problem 3.5. Suppose that G ; P 3 is a finite Gorenstein scheme of
degree 9 that lies on a unique quadric surface, and suppose that this
quadric is smooth. Is the Gale transform of G the intersection of the
corresponding pair of rational cubic scrolls in P 4?

More generally, the Gale transform of 5 q r general points on a smooth
quadric surface in P 3 is contained in the intersection of two rational
normal scrolls in P r.

We refer the reader to Section 4 for other applications of Corollary 3.2
and Corollary 3.3.

4. CASTELNUOVO’S r q 3 THEOREM

A scheme-theoretic version of Castelnuovo’s Lemma for r q 3 points in
Ž .linearly general position over an algebraically closed field was proved by

w xEisenbud and Harris 29 :

A finite subscheme G ; P r of degree r q 3 in linearly general positionk
over an algebraically closed field k lies on a unique rational normal curve.

As an application of the Gale transform we give here a simpler direct
proof of this result.

It is well-known that any finite subscheme G of a rational normal curve
over an arbitrary field k is in linearly general position, in the sense that any
subscheme of G that lies on a d-dimensional linear subspace has degree

ŽF d q 1. It is also cur̈ ilinear each local ring OO is isomorphic toG, p

w x Ž n. . ŽF x r x for some n, and some field extension F of k and unramified if
V is the vector space of linear forms on P r, then the natural map

.V ª OO has image the complement of an ideal . Thus the followingG, p

result characterizes subschemes of a rational normal curve:

THEOREM 4.1. Let G be a finite scheme geometrically in linearly general
position in P r.k

Ž .a If deg G s r q 3, then G lies on a rational normal cur̈ e iff G is
Gorenstein.

Ž .b If deg G G r q 3 and G is Gorenstein, then G is cur̈ ilinear and
unramified.

Ž .Proof. a If G lies on a rational normal curve, then G is curvilinear,
thus Gorenstein. Conversely, suppose that G is Gorenstein and geometri-
cally in linearly general position. By Corollary 2.4, the Gale transform of
G ; P r is an embedding of G as a subscheme G

X ; P1. By Corollary 3.2, G,k k
X Žthe Gale transform of G , lies on a rational normal curve. One could also
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use Theorem 7.2: Since any subscheme of P1 is arithmetically Gorenstein,k
.its Gale transform is equal to its Veronese transform.

Ž . Ž .b By part a , any subscheme of degree r q 3 of G is curvilinear
and unramified. It follows that every component of G is too, and this
implies the desired result.

Remark 4.2. The condition of being geometrically in linearly general
position cannot be replaced by the condition of being in linearly general

Ž .position. Let F be a field of characteristic p, and let k s F s, t . Consider
Ž 1r p 1r p.the Gorenstein scheme G s Spec k s , t . Set r s 2 p y 3, and let

Ž 1r p 1r p.V ; OO s k s , t be a k-subspace of dimension r q 1 s 2 p y 2. IfG

p G 3, then V has dimension more than half the dimension of OO , andG
r Ž .thus V is very ample. As G ; P s P V has no proper subschemes at all,k

it is in linearly general position. But it does not lie on any rational normal
p pw x Ž .curve, since after tensoring with k the local ring k m OO ( k x, y r x , yG

is not generated by one element over k.

To connect this result with the result for algebraically closed ground
fields proved by Eisenbud and Harris we use:

THEOREM 4.3. Let G be a finite scheme in linearly good general position
in P r. If k is algebraically closed and deg G G r q 2, then G is Gorenstein.k

EXAMPLE 4.4. The following shows that the condition of algebraic
closure cannot be dropped in Theorem 4.3. Let G be the scheme in P 2

defined by the 2 = 2 minors of the matrix

x y 0
.2ž /yy x x

G is a finite scheme of degree 5, concentrated at the point p defined by
Žx s y s 0. It is in linearly general position over R but not after base

.change to C. It is not Gorenstein since the matrix above gives a minimal
set of syzygies locally at p. In particular, it does not lie on a rational
normal curve.

Proof of Theorem 4.3. The result amounts to a very special case of
w xTheorem 1.2 of Eisenbud and Harris 28 . Here is a greatly simplified

version of the proof given there. See the original for further classification,
examples, and remarks.

0Ž Ž ..Let V ª H OO 1 be the map defining the embedding of OO inG G
r Ž . Ž .P s P V . By choosing a generator of OO 1 we may identify V with ak G

subspace of OO . Let G
X be a subscheme of G, and let I ; OO be itsG G

defining ideal. Since G is in linearly general position the composite map
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Ž X .XV ª OO ª OO rI s OO is either a monomorphism G is nondegenerateG G G

or an epimorphism, as one sees directly by comparing the dimension of the
linear space defined by the image of V with the degree of G

X.
Now suppose that G is a component of G of degree d which is not1

Ž .Gorenstein, so that dim socle OO ) 1. We will derive a contradiction. WeG1

divide the argument into cases according to the value of d .
First suppose d F r q 1 so that V ª OO is a surjection. It follows thatG1

the preimage of the socle in V contains a P rq2yd of hyperplanes, each of
which meets G in a subscheme of degree at least d y 1. Since G must1
have also some other components, there is a hyperplane in the family

Ž .meeting G in a scheme of degree G d y 1 q r q 2 y d s r q 1, contra-
dicting our assumption of linearly general position.

Ž .Suppose now d s r q 2, so that V ; OO . If dim socle OO ) 1, then VG G1 1

meets the socle; thus there is a linear form x on P r that meets G in r q 11
points, again contradicting our hypothesis.

If d s r q 3, then again we have V ; OO , and we again get a contradic-G1

tion as above if V meets the socle. Thus we may suppose OO s V [G1

socle OO and that the dimension of the socle is 2.G1

Set m s m . We see that V l m projects isomorphically onto mrm 2,G1

while socle OO s m 2. The multiplication on OO induces a mapG G1 1

V l m ª Hom mrm 2 , m 2 .Ž .k

Counting dimensions, and using the algebraic closure of k, we see that for
some x g V the transformation induced by x has rank at most 1. Thus
OO x has dimension at most 2, and the hyperplane defined by x s 0 meetsG1

G in at least r q 1 points, a contradiction.1
Finally, suppose that d ) r q 3. By the previous case and Theorem 4.1,

every subscheme of G of degree - r q 3 is curvilinear; it follows that
every component is curvilinear, and thus Gorenstein.

ŽWe prove now a higher dimensional version of Theorem 4.1. See also
w x .Cavaliere et al. 7, Theorem 3.2 for another proof in a reduced case.

THEOREM 4.5. Let G ; P r, r G 3, be a finite Gorenstein scheme of degreek
g which is in linearly general position, and let s be an integer with 1 F s F r
y 2.

Ž . ra If g F r q s q 2, then G ; P lies on an s-dimensional rationalk
Ž .normal scroll possibly singular .

Ž . Ž .b If moreo¨er g F r q s q 2 and s F r q 1 r2, then G lies on a
smooth s-dimensional rational normal scroll in P r.k
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Ž . Ž .Proof. a The case s s 1 was proved in part a of Theorem 4.1 so we
may assume in the following that s G 2. It is also enough to prove the
assertion when g s r q s q 2. Then the Gale transform of G is a finite
scheme G

X ; P s of degree g which is also in linearly general position, byk
Proposition 2.2. Regarding now P s as a ‘‘cone’’ over P1 with ‘‘vertex’’k k

sy2 Ž .X 1P ( P , we may resolve OO 1 as an OO -module:k G Pk

0 ª [s OO 1 ya ª [sy1 OO 1 [ OO 1 1 ª OO X 1 ª 0,Ž . Ž . Ž .is1 P i is1 P P G

where Ýs a s g y 1 s r q s q 1.is1 i
sy1 Ž . s Ž . X

1 1 1Let EE s [ OO [ OO 1 and let FF s [ OO ya . Since G is non-is1 P P is1 P i
0Ž . 0Ž Ž ..sdegenerate, there are no sections in H EE s H OO 1 vanishing identi-P

cally on G
X and thus a G 1 for all i.i

To prove the claim we need to check that a G 2 for all i, since then wei
may use Corollary 3.3 to deduce that G lies on the birational image of
Ž U Ž .. r Ž s Ž .. Ž .1 1P FF m OO y2 in P since r q 1 s Ý a y 1 . Twisting by OO 1P is1 i P

and taking cohomology in the above short exact sequence we see that
0Ž Ž .. 0Ž sy1 Ž .1a G 2 for all i iff there are no sections in H EE 1 s H [ OO 1 [i is1 P

Ž .. X
1OO 2 vanishing identically on G . Such sections correspond to hyper-P

quadrics in P s containing P, the ‘‘vertex of the cone,’’ and since g ) 2 s q
0Ž Ž ..1 s h EE 1 this means that, for a general choice of P, a G 2 for all i iffi

there are no hyperquadrics containing both P and G. The scheme G
X is in

linearly general position so we may conclude with the following lemma:

LEMMA 4.6. Let G ; P s, s G 2, be a finite scheme of degree g G s q 3k
which is in linearly general position, and let P ; P s be a general codimensionk

Ž .two linear subspace. If d F 3, then G imposes min g , ds q 1 independent
conditions on hypersurfaces of degree d ¨anishing to order d y 1 on P.

Conjecture 4.7. Castelnuovo’s classic result, as generalized to schemes
w xby Eisenbud and Harris 28 , says that G imposes independent conditions

on forms of degree d. The lemma above represents a strengthening, in that
the points impose independent conditions on a smaller subsystem. We
conjecture that the lemma remains true for every d.

Ž .Proof of Lemma 4.6. Conjecture 4.7 in the case d F 3 . Since any
scheme of length G s q 3 in linearly general position can be extended by

Ž w x.the addition of general points see Eisenbud and Harris 28, Theorem 1.3 ,
we may assume that g s ds q 1 and we must show that there are no forms
F of degree d containing G and having multiplicity d y 1 along P. We
suppose we have such an F and argue by contradiction.

We first assume d s 2. Choose a hyperplane H containing a degree s
subscheme G of G, and let G s G_G be the residual, a scheme of1 2 1
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Ž .degree s q 1. Specialize P to be a general s y 2 -plane contained in H.
If F contains H and G, then F s H j H X, where H X is another hyper-
plane, containing G . This contradicts the assumption that G is in linearly2
general position. Thus we may assume that F does not contain H and so

X Ž . XF l H s P j P for some s y 2 -plane P . As P contains no points of
G, P

X must contain all of G l H, again contradicting the linearly general
position hypothesis.

Now suppose d s 3. We choose two hyperplanes H , H as follows:1 2
Order the components of G by decreasing degree, and suppose the
degrees are g G g G ??? . If g G 2 s, then we choose H s H to be the1 2 1 1 2
hyperplane meeting the first component of G in s points. Since G is in
linearly general position and is of degree G s q 3, the components of G

Ž .are curvilinear, so H meets G_ H l G in exactly s points as well.2 1
If on the contrary g - 2 s, we can divide G into two disjoint subschemes1

Žeach of degree at least s. The reason for this is since no component has
degree greater than 2 s y 1, the smallest group of components with total
degree G s has total degree F 2 s y 2, and the remainder thus has

.degree G s q 3. Choose H containing a degree s subscheme of one of1
the two subschemes and H containing a degree s subscheme of the other.2

Ž .In the first of these two cases, we may choose an s y 2 -plane P in
H l H that does not meet G; in the second case the intersection1 2
P s H l H automatically misses G because G is in linearly general1 2
position. If F contains both H and H then after removing the two1 2
hyperplanes we get a hyperplane containing s q 1 points of G, a contradic-
tion as before. If on the other hand F fails to contain H , we restrict to1
H . As 2P is contained in F l H , the scheme H l G is contained in the1 1 1

Ž . Ž .remaining s y 2 -plane in F restricted to H . Once again, this is a1
contradiction.

Ž . Ž .Proof of Theorem 4.5 continued . b Again we may assume that
g s r q s q 2, and thus that the Gale transform G

X is a finite scheme of
s Ž .degree g in P . In the notation of a , we need to check that a G 3 for alli

Ž .1i. Twisting the above short exact sequence by OO 2 and taking cohomol-P
0Ž Ž ..ogy, this amounts to the fact that no section in H EE 2 vanishes identi-

X 0Ž Ž ..cally on G . The 3s q 1 sections in H EE 2 correspond now to the cubics
in P s vanishing to second order on P, so the claim follows again from
Lemma 4.6.

Remark 4.8. The result in Theorem 4.5 is not always sharp; see for
instance Example 3.4. In the case r F 2 s, one may slightly improve the

Ž .statement of a by showing that the Gale transform lies on a rank 4
quadric scroll.
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5. THE GALE TRANSFORM AND CANONICAL MODULES

In this section we consider a fundamental relation between the presen-
tations of the canonical modules of a finite Gorenstein subscheme of
projective space and its Gale transform.

As in Definition 2.1 we consider a Gorenstein scheme G finite of degree
r Ž .g over k. Suppose that G is embedded in P s P V by a linear seriesk

Ž Ž .. H 0Ž Ž ..V, OO 1 . We write W s V ; H K y1 for the linear series corre-G G

sponding to the Gale transform. Supposing that W is base-point-free, we
X s Ž .write G ; P s P W for the image of G under the corresponding map.k

Writing S for the homogeneous coordinate ring of P r and S for theG

homogeneous coordinate ring of G, we will study the canonical module
r Ž Ž ..v s Ext S , S yr y 1 .G S G

We will also use the notion of adjoint of a matrix of linear forms. If V ,1
V , and V are vector spaces over k and f g V m V m V is a trilinear2 3 1 2 3
form, then f can be regarded as a homomorphism of graded free modules

w xover the polynomial ring k V ,1

U w x w xf : V m k V ª V m k V 1 ,Ž .V 2 1 3 11

� 4and in two other ways corresponding to the permutations of 1, 2, 3 . We
Žcall these three linear maps which may be viewed as matrices of linear
.forms, once bases are chosen adjoints of one another.

X Ž . Ž .PROPOSITION 5.1. If G ; P W is the Gale transform of G ; P V , then
Ž . w xXthe linear part of the presentation matrix of v , as a k W -module, isG Gy1

Ž .adjoint to the linear part of the presentation matrix of v as aG Gy1
w xk V -module.

0Ž .Proof. Consider the multiplication map V m W ª H K , and let NG

be its kernel. From Corollary 1.3 and Theorem 1.4 of Eisenbud and
w xPopescu 32 we see that N may be regarded as either the space of linear

relations on the degree y1 elements of v considered as a module overG

w x Xk V or as the space of linear relations on the degree y1 elements of v G

w xregarded as a module over k W , which is exactly the meaning of adjoint-
ness.

To explore this result we need to know when the linear part of the
Ž .presentation matrix of v actually is the presentation matrix. ThisG Gy1

occurs when v is generated in degree F y1 and its relations areG

generated in degree F 0. The first condition is easy to characterize
completely:

PROPOSITION 5.2. Suppose the field k is algebraically closed and let G be a
Ž . r rfinite not necessarily Gorenstein scheme in P s P , not contained in anyk
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hyperplane. Then v is generated in degrees F 0, and it fails to be generatedG

Žin degrees F y1 iff the homogeneous ideal I contains after a possibleG

.change of ¨ariables the ideal of 2 = 2 minors of a matrix of the form

x ??? x x ??? x0 t tq1 r ,ž /0 ??? 0 l ??? ltq1 r

where 0 F t - r and the l are linearly independent linear forms.i

Ž .Proof. Since I is generated in degree G 2, its r y 1 st syzygies areG

generated in degree G r, which yields the first statement. A standard
Ž w xKoszul homology argument see Green 40 for the source or, for example,

w x w xCavaliere et al. 6 or Eisenbud and Popescu 33, Proposition 4.2 for this
. Ž .particular result shows that the r y 1 st syzygies are generated in degree

G r q 1 unless I contains the ideal of 2 = 2 minors of a matrix of theG

form

x ??? x x ??? x0 t tq1 r , )Ž .ž /l ??? l l ??? l0 t tq1 r

where the l are linear forms and the row of l is not a scalar multiple ofi i
Ž .the first row. Because the number of variables is only r q 1, this 2 = r q 1

Ž w x.matrix must have a ‘‘generalized zero’’ Eisenbud 23 and thus may be
transformed as in the claim of the proposition.

COROLLARY 5.3. If G is a finite Gorenstein scheme of degree G r q 2 in
linearly general position in P r, then v is generated in degrees F y1.G

Proof. Suppose not. By Proposition 5.2, I contains the ideal of minorsG

of a matrix with linear entries as in the statement of Proposition 5.2. By
our general position hypothesis, the degree of the subscheme G of G1

Ž .contained in V x , . . . , x is at most r y t, while the degree of the0 t
Ž .subscheme G of G contained in V l , . . . , l is at most t q 1. Since I2 tq1 r G

contains the product of the ideals of these linear spaces, and G is
Gorenstein, deg G q deg G G deg G, a contradiction.1 2

In the reduced case, or more generally in the case when G isred
nondegenerate, we can give a geometric necessary and sufficient condition:

DEFINITION 5.4. A finite scheme G ; P r is decomposable if it can be
written as the union of two subschemes contained in disjoint linear
subspaces L and L , in which case we say that G ; P r is the direct sum1 2
of its summands G l L and G l L .1 2
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PROPOSITION 5.5. Let G ; P r be a finite scheme such that G isred
nondegenerate. The module v is generated in degrees F y1 iff G isG

indecomposable.

Proof. First suppose that v is not generated in degree F y1. ByG

Ž . Ž .Proposition 5.2, I contains an ideal of the form x , . . . , x ? l , . . . , l ,G 0 t tq1 r
where the l are independent linear forms. If the linear span of x , . . . , xi 0 t
in the space of linear forms meets that of l , . . . , l , then I wouldtq1 r G

contain the square of a linear form, and thus G would be degenerate. Itred
follows that

x , . . . , x , l , . . . , l s x , . . . , x ,Ž . Ž .0 t tq1 r 0 r

so

x , . . . , x ? l , . . . , l s x , . . . , x l l , . . . , lŽ . Ž . Ž . Ž .0 t tq1 r 0 t tq1 r

is the ideal of the union of two disjoint linear spaces.
Conversely, if I contains the ideal of the disjoint union of two linearG

Ž .spaces, then after a possible change of variables it contains an ideal of
the form

x , . . . , x l x , . . . , x s x , . . . , x ? x , . . . , xŽ . Ž . Ž . Ž .0 t tq1 r 0 t tq1 r

which may be written as the ideal of minors of the matrix

x ??? x x ??? x0 t tq1 r ,ž /0 ??? 0 x ??? xtq1 r

Žas required. The resolution of the product is also easy to compute
.directly.

The condition that the relations on v are generated in degree 0 isG

Ždeeper, and is expressed in the third part of the proposition below we
.include the first two parts because of the nice pattern of results :

r Ž .PROPOSITION 5.6. Suppose L ; P s P V is a finite Gorenstein sub-k
scheme o¨er a field k with algebraic closure k.

Ž .a If k m L contains a subscheme of degree r q 1 in linearly general
w xposition, then the k V -module v is generated in degree F 0 and itsL

relations are generated in degree F 1.
Ž .b If k m L contains a subscheme of degree r q 2 in linearly general

position, then v is generated in degree F y1.L

Ž .c If k m L contains a subscheme of degree r q 3 in linearly general
position and k m L does not lie on a rational normal cur̈ e, then the relations
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Ž .on v are generated in degree F 0. Thus the presentation matrix of vL L Gy1
is linear.

Proof. The conclusion of each part may be checked after tensoring with
Ž .k, so we may assume that k s k from the outset. The condition of part a

means that the homogeneous ideal I contains no linear form, and henceL

Ž . Ž .b I s 0 for j - i q 2. As mentioned above, part b follows fromi, j L

Ž .Proposition 5.2 applied to the subscheme of degree r q 2, while c is the
w x w x‘‘Strong Castelnuovo Lemma’’ of Green 40 and Yanagawa 72 ; see

w x Ž .Eisenbud and Popescu 33 for a proof of c involving syzygy ideals for the
w x w xEagon]Northcott complex. See also Ehbauer 22 and Cavaliere et al. 6

for related results.

Returning to the case of the finite Gorenstein subscheme G, we have:

COROLLARY 5.7. Suppose that G is a Gorenstein scheme, finite o¨er a
Ž .field k with algebraic closure k. Let V, L be a linear series that embeds G in

r Ž . Ž y1 .P s P V , and let W, K m L be the Gale transform. Let also s q 1 sk G

Ž .dim W .k
If k m G contains a subscheme of degree G r q 3 in linearly general

Ž .position and G does not lie on a rational normal cur̈ e in P V , then the
Ž 0Ž ..¨ector space N [ ker V m W ª H K has dimension rs, and the corre-G

w x w xŽ .sponding matrix with linear entries N m k V ª W m k V 1 is a presenta-
w x Ž .tion matrix for the k V -module v .G Gy1

COROLLARY 5.8. Suppose that G ; P r is a finite nondegenerate Goren-k
stein subscheme of degree g s r q s q 2, with r, s G 1, and let G

X ; P s be itsk
Gale transform. The following conditions are equï alent and are all satisfied if
k m G contains a subscheme of degree r q 2 in linearly general position:

Ž . w xa v is generated in degree F y1 as a k V -module.G

Ž . w xXb v is generated in degree F y1 as a k W -module.G

Ž . Ž . 0Ž .c The multiplication map V m W ª ker t ; H K is surjectï e.G

Ž . Ž .XWhen these conditions are satisfied, both v and v ha¨eG Gy1 G Gy1
precisely rs linearly independent linear relations.

Ž . Ž . Ž . Ž . Ž .Proof. a « c The part of v s ker t generated by v isG 0 G y1
V ? W.

Ž . Ž .c « a Because G is nondegenerate, k m G contains a subscheme
Ž .of length r q 1 in linearly general position. By Proposition 5.6 a , v isG

Ž .generated in degree F 0, so it suffices to show that v is the image ofG 0
Ž . Ž . Ž .V m v s V m W. As v s ker t we are done.G y1 G 0

Ž .The symmetry of c completes the proof of the equivalences. By
Ž .Proposition 5.6, the condition of a follows if k m G contains a subscheme
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of degree at least r q 2 in linearly general position. If the conditions in
Ž . Ž .a ] c hold, then we can compute the number of linear relations in the

Ž . Ž . Ž Ž .. Ž .Ž . Žlast statement as dim V ? dim W y dim ker t s r q 1 s q 1 y r q
.s q 2 y 1 s rs.

In the simplest case we can say something about v itself:G

COROLLARY 5.9. Suppose that G ; P r contains a subscheme of degreek
r q 3 in linearly general position o¨er k, that G imposes independent condi-

Žtions on quadrics this occurs for example when g F 2 r q 1 and G is in
.linearly general position , and that G does not lie on a rational normal cur̈ e

r Ž .in P . Then the module v has a free presentation by the s q 1 = rs matrixk G

of linear forms gï en in Corollary 5.7.

Proof. Since G imposes independent conditions on quadrics it is 3-regu-
Ž .lar, whence v s 0.G y2

In the situation of Corollary 5.9, it is useful to ask about the adjoint to
the presentation matrix of v , which is the linear part of the presentationG

Ž .Xmatrix of v . In general, we have:G Gy1

PROPOSITION 5.10. Let w : N ª V m W be a map of k-̈ ector spaces, with
w xŽ . w xk algebraically closed, and let w : N m k V y1 ª W m k V and w :V W

w xŽ . w xN m k W y1 ª V m k W be the corresponding adjoint matrices of linear
forms.

Ž .If the sheafification L of coker w is a line bundle on its supportV
Ž .X ; P V , then the maximal minors of w generate, up to radical, the idealW

0Ž .of the image of X under the map defined by the linear series W ; H L .

˜ Ž . Ž .Proof. Let X be the subscheme of P V = P W defined by the
Ž . Ž . Ž .1, 1 -forms in the image of w, and let p be the projection of P V = P W

Ž . Ž .on the first factor. On P V = P W the map w corresponds to a mor-
w

Ž . Ž Ž ..phism N m OO y1, y1 ª OO and w s p# w 0, 1 . SincePŽV .=PŽW . PŽV .=PŽW . V
1 Ž Ž .. Ž Ž .. Ž .R p# OO y1, 0 s 0, it follows that p# OO 0, 1 s coker w s˜PŽV .=PŽW . X V

L, so that the push-forward of a line bundle by p is a line bundle, which
˜implies that p is an isomorphism from X onto X.˜< X

Ž .An element of P W is a functional x: W ª k. It is in the support of
Ž . Ž .coker w iff w drops rank when its entries elements of W areW W

replaced by their images under x; that is, if there is a functional y: V ª k
such that y m x: V m W ª k annihilates the image of N via w. The

˜projection p is an isomorphism from X onto X, thus the projection of˜< X
˜ Ž .X to P W is the image of the map defined by the sections W in L, and
the maximal minors of w generate, up to radical, the ideal of this image.W
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In an important special case we can do better:

COROLLARY 5.11. If G is a finite Gorenstein scheme and both G ; P r

and its Gale transform G
X ; P s satisfy the hypotheses of Corollary 5.9, then G

X

Ž . Ž .has its homogeneous ideal generated by the r q 1 = r q 1 minors of the
adjoint matrix of the presentation matrix of v .G

Ž 0Ž .Proof. Set as above N s ker V m W ª H K and let w denote theG

inclusion of N in V m W; the matrices w and w defined in PropositionV W
5.10 are, by virtue of Corollary 5.9, presentations of modules whose
sheafifications are the canonical line bundles on G and G

X, respectively.
Thus their minors generate the homogeneous ideals of G and G

X, respec-
tively.

Ž . 2EXAMPLE 5.12 The Clebsch Transform . Let G ; P be a set of six
sufficiently general points. A familiar transformation in the plane, called
the Clebsch transform, can be constructed from these points: Blow up the

Ž .six points, and then blow down the six y1 -curves in the blowup which are
the proper transforms of the six conics through five of the six original
points. The images of the six conics are six new points, each associated to

Žone of the original points the one through which the corresponding conic
.did not pass. The new set of six points is the Clebsch transform of the

original set.
w xCoble 12 showed that the Clebsch transform of the six points is the

same as the Gale transform. This follows from Corollary 5.11. The set G is
cut out by the maximal minors of a 3 = 4 matrix M whose cokernel is the
canonical module. By Corollary 5.11, the maximal minors of the 3 = 4

X Ž .matrix M which is adjoint to M with respect to the rows define the Gale
transform G

X of G. This example also illustrates the case r s s s 2 of
Theorem 6.1

The ‘‘third’’ adjoint matrix gives the connection of these ideas to the
cubic surface. The determinant of the 3 = 3 matrix MY in four variables

X Ž .which is adjoint to both M and M with respect to their columns is the
equation of the cubic surface in P 3, the image of P 2 via the linear system

Ž w x.of cubics through G see also Gimigliano 36 . The two linear series on the
cubic surface blowing down the two systems of six lines described above
correspond to the line bundles on the surface obtained from the cokernel

Ž .of the 3 = 3 matrix restricted to the surface, where it has constant rank 2
and from the cokernel of the transpose matrix.

6. THE GALE TRANSFORM OF DETERMINANTAL SCHEMES

Let G ; P r be a set of points defined by the maximal minors of a matrix
with linear entries vanishing in the generic codimension; that is, suppose
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Ž . Ž . Ž .that there is an s q 1 = r q s matrix M such that the ideal I Msq1
Ž . Ž .generated by the s q 1 = s q 1 minors of M defines a set of points

r q sŽ Ž . Ž . . Ž .r s r q s y s q 1 q 1 . It follows that the degree of G is g s .s

Ž .In this section we will see that in a sufficiently general case the
Ž .s y 1 st Veronese embedding of this set of points is the Gale transform

Ž .of the r y 1 st Veronese embedding of a set of points defined by the
adjoint matrix to M. We denote the dth Veronese map by n : P r ª P N

d
r q dŽ Ž . .where N s y 1 .r

THEOREM 6.1. Let V and W be k-̈ ector spaces of dimension r q 1 and
s q 1, respectï ely. Let f: F ª V m W be a map of ¨ector spaces with

w x w xŽ .dim F s r q s, and let f : F m k V ª W m k V 1 be the correspond-k V
w xing map of free modules o¨er the polynomial ring k V . Let f be theW

w x r sanalogous map o¨er k W , and let G ; P and G ; P be the schemesV W
Ž . w x Ž . w xdefined by the ideals of minors I f ; k V and I f ; k W ,sq1 V rq1 W

respectï ely.
If G and G are both zero-dimensional then they are both Gorenstein,V W

there is a natural isomorphism between them, and

n G is the Gale transform of n G .Ž . Ž .sy1 V ry1 W

The proof will have several steps. We first take care of the Gorenstein
condition:

PROPOSITION 6.2. With notation as in the theorem, the following are
equï alent:

Ž .a Both G and G are zero-dimensional schemes.V W

Ž . Ž . Ž .b codim I f s r and codim I f s r q 1.sq1 V s V

Ž .c G is zero-dimensional and Gorenstein.V

The proof can be analyzed to show that when these conditions are
satisfied, G and G are in fact local complete intersections.V W

Ž .Proof. By definition, G is zero-dimensional iff codim I f s r.V sq1 V
Ž . Ž .Thus to prove the equivalence of a and b we suppose that G isV

zero-dimensional and we must show that G is zero-dimensional iff fW V
U w U x w U xŽ .never drops rank by more than 1. Let f : V m k F ª W m k F 1F

Žbe the third map induced by f. The generalized zeros in the sense of
w x. UEisenbud 23 of f in a generalized row indexed by an element a g WF

correspond to elements of the kernel of f : F ª V. ThusW < a

saying that G is zero-dimensional is equivalent to saying that only finitelyW
many generalized rows of f have generalized zeros. On the other hand,F
the assumption that G is finite means that only finitely many generalizedV
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columns of f have generalized zeros, so that the finiteness of GF W
amounts to saying that no generalized column can have 2, and thus
infinitely many, generalized zeros. That is, G is finite iff f never dropsW V
rank by more than 1.

Ž . Ž .To prove the equivalence of b and c we may again assume that G isV
Ž . Ž .zero-dimensional. Since the s q 1 = s q 1 minors of f have genericV

codimension, we may use the Eagon]Northcott complex to compute

v s Sym coker f s y 1 .Ž . Ž .Ž .G ry1 VV

Now the scheme G is Gorenstein iff v is locally principal. On the otherV GV
Ž .hand, the ideal I f has codimension r q 1 iff it defines the empty sets V

Ž Ž ..Ž .iff coker f is locally principal on G iff Sym coker f s y 1 isV V ry1 V
locally principal on G , as required.V

Proof of Theorem 6.1. We begin with the identification of G and G .V W
Ž . Ž .Working on P [ P V = P W , the map f corresponds to a map of

Ž . rqssheaves f : OO y1, y1 ª OO . We define a subscheme G ; P byV W P P
setting OO [ coker f . Let p be the projection on the first factor p:G V W

Ž .P ª P V . We claim that p induces an isomorphism from G to G . SinceV
the construction is symmetric in V and W, it will follow that G is naturally
isomorphic to G too, as required.W

Ž . Ž .We have f s p#f 0, 1 . Thus p#OO 0, 1 s coker f . By hypothe-V V W G V
Ž .sis I f defines the empty set, so coker f is a line bundle on G . Ins V V V

Ž .particular, p G s G . By symmetry, the projection of G onto the otherV
Ž . Ž .factor P W is G . Since the fibers of p project isomorphically to P W ,W

and G is zero-dimensional, this shows in particular that the map p :W <G

G ª G is a finite map. The fact that the push-forward by p of a lineV
bundle is a line bundle now implies that p is an isomorphism.<G

w xAs noted in the proof of Proposition 6.2 the presentation over k V of
v is given by the Eagon]Northcott complex. It has the formGV

w x w xF m Sym W m k V s y 2 ª Sym W m k V s y 1 ª v ª 0,Ž . Ž .ry2 ry1 GV

Ž . Ž .where the twists by s y 2 and s y 1 indicate as usual that we regard
w xthe first two terms of this sequence as free modules over k V generated

Ž . Ž . Ž .in degrees ys q 2 and ys q 1 , respectively. Taking the s y 1 st
Veronese embedding, we see that v is generated in degree y1 withn ŽG .sy 1 V

relations generated in degree 0, corresponding to the following right-exact
sequence:

c
F m Sym W m Sym V ª Sym W m Sym V ª v ª 0.Ž .ry2 sy2 ry1 sy1 GV 0
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On the other hand, we would obtain the same map c if we had started
Ž .instead from the scheme G ; P W . In other words, the presentation ofW

v is adjoint to the presentation of v , and by Proposition 5.1n ŽG . n ŽG .ry 1 W sy1 V

and Corollary 5.11 this means that the two finite schemes are related by
the Gale transform.

EXAMPLE 6.3. Let G
Y ; P 2 be a locally Gorenstein scheme of degree

10, not contained in any plane cubic curve. It follows from the
Ž w x.Hilbert]Burch theorem see for example Eisenbud 25 that the ideal of

G
Y is generated by the maximal minors of a 4 = 5 matrix MY with linear

entries and from Proposition 6.2 that its 2 = 2 minors generate an irrele-
vant ideal. As above, by Theorem 6.1, the maximal minors of the 3 = 5-

Y Ž .matrix M which is adjoint to M with respect to the rows define a set
G ; P 3 of 10 points, whose Gale transform G

X ; P 5 coincides with the
second Veronese embedding of G

Y. In this case the maximal minors of the
X Ž‘‘third’’ adjoint 3 = 4-matrix M in five variables which is adjoint to both

Y . 4M and M with respect to their columns define a Bordiga surface in P ,
the image of P 2 via the linear system of quartics through the set of 10

Y w x w xpoints G }see Gimigliano 36 and Room 60 .
w x w xA special case was described by Coble 12 , who refers to Conner 15 for

connections with the geometry of the ‘‘Cayley symmetroid’’: Let C ; P6 be
Ž . 6a rational normal sextic curve, and let X s Sec C ; P be the secant

variety to the curve C. X has degree 10, since this is the number of nodes
of a general projection of C to a plane. The homogeneous ideal of C is
generated by the 2 = 2-minors of either a 3 = 5 or a 4 = 4 catalecticant

Ž .1matrix with linear entries, induced by splittings of OO 6 as a tensorP
product of two line bundles of strictly positive degree. Furthermore, the

Ž .homogeneous ideal of X s Sec C is generated by the 3 = 3 minors of
Žeither of the above two catalecticant matrices this is a classical result, see

w x w xfor example Gruson and Peskine 42 or Eisenbud et al. 31 for a modern
. 3 6reference . Let now P s P ; P be a general three-dimensional linear

3 Ž .subspace, and let G ; P be a set of ten points defined by G [ Sec C l
P. Then the 2 = 2 minors of the restriction of the 3 = 5 catalecticant
matrix generate an irrelevant ideal. So as above, by Theorem 6.1, G

X the
Gale transform of G lies on a quadratic Veronese surface in P 5.

In this case, the maximal minors of the ‘‘third’’ adjoint matrix cut out a
special Bordiga surface in P 4, the image of P 2 via the linear system of
quartics through the 10 nodes of the rational plane sextic curve obtained

3 Žby projecting the rational normal curve above from the P . See also Room
w x w x w x .60, 14.21, p. 391 and ff. , Hulek et al. 47 , and Rathmann 59 .

Problem 6.4. Can the previous method be used to tell exactly when a
set of 10 points in P 3 is determinantal?
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For geometry related to the Gale transform of g G 11 points on the
5 w xVeronese surface in P see also Franco 16 .

7. GORENSTEIN AND SELF-ASSOCIATED SCHEMES

Castelnuovo’s and Coble’s original interest in associated sets of points
centered on those sets that are ‘‘self-associated,’’ that is, equal to their own
Gale transform up to projective equivalence.

w xDolgachev and Ortland 20 posed the problem of giving a ‘‘clear-cut
Ž .geometrical statement’’ equivalent to self-association Remark 3, p. 47 .

The following is our solution to this problem:
r Ž .THEOREM 7.1. Let G ; P s P V be a finite Gorenstein scheme of

degree 2 r q 2 o¨er an algebraically closed field k. The following are equï a-
lent:

Ž .a G is self-associated.
Ž . Ž .b Each of the finitely many subschemes of degree 2 r q 1 of G

imposes the same number of conditions on quadrics as G does.
Ž . Ž .c If we choose a generator of OO 1 , and thus identify V with aG

subspace of OO , there is a linear form f : OO ª k which ¨anishes on V 2 andG G

Ž .which generates Hom OO , k as an OO -module.k G G

Ž .We include c because it represents the most efficient way that we know
to check the property of self-association computationally; namely, repre-
senting the multiplication table of the ring OO as a matrix with linearG

Ž . 2entries over Sym OO , we may identify V with a vector space of linearG

Ž . Ž .forms in Sym OO . Then part c in Theorem 7.1 can be reformulated as: GG

is self-associated iff the matrix of the multiplication table reduced modulo
the linear forms in V 2 has maximal rank. This test can be implemented in

w xMacaulayrMacaulay2 3, 39 .

Proof. The subscheme G is self-associated iff there is an isomorphism
Ž . Ž .Uof OO -modules w : OO 1 ª OO 1 such that the composite of naturalG G G

maps
w U U0 0V ª H OO 1 ª H OO 1 ª VŽ . Ž .Ž . Ž .G G

is zero.
Ž . Ž .UGiving a morphism of OO -modules w : OO 1 ª OO 1 is the same asG G G

Ž . Ž . Ž .giving a map of vector spaces w : OO 2 s OO 1 m OO 1 ª k. Since OO isG G G G

Ž . Ž .UGorenstein, the modules OO 1 and OO 1 are isomorphic, and w is anG G

Ž Ž . .isomorphism iff w generates Hom OO 2 , k as an OO -module. We mayk G G

write OO s ŁOO , where the G are the connected components of G, andG G ii
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Ž .the ideals J s socle OO are all one-dimensional. With this notation, w isi Gi

an isomorphism iff w does not annihilate any of the one-dimensional
Ž .submodules J OO 2 .i G

On the other hand, w makes the composite map displayed above zero iff
2 Ž .w annihilates V , the image of V m V in OO 2 . Thus G is self-associatedG

2 Ž .iff there is a map w that annihilates V but not any of the J OO 2 iffi G
2 Ž .V l J OO 2 s 0 iff each codegree 1 subscheme of G imposes the samei G

Ž . Ž .number of conditions on quadrics as G, thus proving that a and b are
equivalent.

Ž . Ž .Once we choose an identification of OO and OO 1 , part c is aG G

reformulation of this condition.

A classical theorem of Pascal says that given a conic in the plane and
Žtwo triangles circumscribing it algebraically this means that the vertices of

.each triangle are apolar to the conic , then the six vertices of the two
triangles all lie on another conic. In other words, the six points form a set
of self-associated points in the plane, as one sees from Theorem 7.1.

w xCoble 13 generalized this statement to say that for sufficiently general
sets of 2 r q 2 points in P r, self-association is the same as failing to impose
independent conditions on quadrics. We next characterize arithmetically
Gorenstein schemes in terms of the Gale transform, and we will see in a
somewhat more precise way that a self-associated scheme in P r is the same
as an arithmetically Gorenstein scheme of degree 2 r q 2 except in degen-
erate circumstances:

THEOREM 7.2. If G ; P r is a finite nondegenerate Gorenstein scheme,
then G is arithmetically Gorenstein iff v is generated in degrees F y1 andG

the Gale transform of G is the dth Veronese embedding of G for some d G 0.
Ž .In particular, if deg G s 2 r q 2, then G is arithmetically Gorenstein iff v G

is generated in degrees F y1 and G is self-associated.

The case d s 0 occurs only for r q 2 points in P r; such a scheme is
arithmetically Gorenstein iff it is in linearly good position.

Proof. If G is nondegenerate and arithmetically Gorenstein, then the
symmetry of the free resolution of the homogeneous coordinate ring SG

Ž .shows that v s S d q 1 for some d G 0, and v is generated inG G G

degree yd y 1 F y1. By Proposition 2.5 the Gale transform is given by
Ž . Ž . 0Ž Ž ..the image of v s S in H K y1 , so the Gale transform is theG y1 G d G

dth Veronese embedding.
Conversely, suppose v is generated in degrees F y1 and the GaleG

transform coincides with the dth Veronese embedding for some d G 0.
Ž .Since S d q 1 is also generated in degrees F y1, and both v andG G

Ž . Ž .S d q 1 are Cohen]Macaulay modules, they are isomorphic iff vG G Gy1
Ž Ž ..( S d q 1 , and this occurs precisely when there is an isomorphismG Gy1
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Ž . Ž . H Ž .of sheaves of OO -modules K y1 ( OO d , which maps V to S .G G G G d
This last is the condition that the Gale transform of G is the dth Veronese
embedding of G.

Perhaps the best characterization of this kind is

THEOREM 7.3. If G ; P r is a nondegenerate finite scheme of degreek
2 r q 2 o¨er an algebraically closed field k, then S is Gorenstein if and only ifG

G is self-associated and fails by 1 to impose independent conditions on
quadrics.

By Theorem 7.1, we could restate the condition of the theorem by saying
that G fails to impose independent conditions on quadrics but that every

Žmaximal proper subscheme of G equivalently, every proper subscheme of
.G imposes independent conditions on quadrics. This is also a consequence

w xof Kreuzer 51, Theorem 1.1 , which generalizes the main result of Davis
w xet al. 17 to the non-reduced case.

w xA result of Dolgachev and Ortland 20, Lemma 3, p. 45 and Shokurov
w x63 shows that every proper subscheme does impose independent condi-
tions if G is reduced and, for every s - r, no subset of 2 s q 2 points of G
is contained in a P s, which is the same as saying that G is stable in this

Ž .case. See Proposition 8.10 for the general stability test. Dolgachev and
w xOrtland 20 use this to prove that a reduced set of stable points is

self-associated if and only if it fails to impose independent conditions on
w xquadrics, generalizing a result of Coble 13 .

Proof of Theorem 7.3. If S is Gorenstein then G is self-associated byG

Theorem 7.2 and fails by just 1 to impose independent conditions on
Ž . Ž . ŽŽ . .Hquadrics since S s v s S is one-dimensional.G 0 G y2 G 2

Conversely, suppose that G is self-associated. By definition there is
Ž . Ž . Ž .an isomorphism of OO -modules OO 1 ª K y1 carrying V s SG G G G 1

Ž . Ž Ž ..to v . This defines a map of modules S 2 ª v . SinceG y1 G G1 G
1 Ž .Ext k, v s k, concentrated in degree 0, this map lifts to a map a :S GG

Ž Ž ..S 2 ª v , necessarily a monomorphism. As G is nondegenerate, v isG G G

Ž . ŽŽ . .Hgenerated in degree F 0. We have v s S , so it has dimensionG 0 G 0
just one less than deg G.

Further, if G fails by 1 to impose independent conditions on quadrics,
Ž .then S has the same dimension and we see that a is an isomorphismG 2

in all degrees G y2. Further, if every subscheme of G imposes indepen-
dent conditions on quadrics then G imposes independent conditions on

Žcubics Proof. Find a quadric vanishing on a codegree 2 subscheme. It does
Ž .not generate a minimal submodule of OO 2 , so we can multiply by a linearG

.form to get a cubic vanishing precisely on a codegree 1 subscheme. Thus
Ž .v s 0 for d G 3, and a is an isomorphism. Thus G is arithmeticallyG yd
Gorenstein.
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As mentioned above, if we restrict to the case of stable sets of points,
there is a particularly simple characterization of self-association, due to

w xCoble 13 .

Ž w x w x.COROLLARY 7.4 Coble 13 , Dolgachev and Ortland 20 . A stable set
of 2 r q 2 distinct k-rational points in P r is self-associated iff it fails to imposek
independent conditions on quadrics.

Proof. Any self-associated scheme of degree 2 r q 2 fails to impose
independent conditions on quadrics, for example by Theorem 7.1. Con-
versely, assume that G is stable and fails to impose independent conditions
on quadrics. Any subset of 2 r q 1 points of G imposes independent

Ž w xconditions on quadrics see Dolgachev and Ortland 20, Lemma 3, p. 45
w x.and Shokurov 63 , and so the result follows from Theorem 7.1.

As a corollary of Theorem 7.3 we can exhibit an interesting class of
examples. To simplify the notation we systematically identify effective
divisors on a smooth curve with the schemes they represent.

COROLLARY 7.5. Let C be a reduced irreducible canonically embedded
cur̈ e in P n, and let G ; C be a Cartier dï isor in the class K q D, where DC
is an effectï e dï isor of degree 2, so that the degree of G is 2n q 2. The
scheme G is arithmetically Gorenstein iff G does not contain D.

Proof. We check the conditions of Theorem 7.3, noting that by Rie-
mann-Roch an effective Cartier divisor E fails to impose independent
conditions on quadrics iff

h1 2 K y E s h0 E y K / 0.Ž . Ž .C C

In particular, any effective divisor in the class K q D fails to imposeC
independent conditions on quadrics because D imposes just one condition.

0Ž . 0Ž .Further, if G > D and p g D, then h G y p y K s h D y p / 0,C
and we see that G is not arithmetically Gorenstein.

Now suppose that G does not contain D, that is, G y D is ineffective. As
0Ž . 0Ž .h K s h K q D y 1, we see that G cannot even contain a point ofC C

0Ž . 0Ž .D. Thus, for any p g G, h G y p y K s h D y p s 0, so G y pC
imposes independent conditions on quadrics and G is arithmetically
Gorenstein by Theorem 7.3.

We conclude with a remark that will be used for the classifications in
ŽSection 9: Self-associated schemes can be direct sums in the sense of

.Section 5 above .

PROPOSITION 7.6. If G ; P r is a decomposable finite scheme, then G is
self-associated iff each of its summands is self-associated.
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Proof. If G decomposes with summands G ; L and G ; L , then the1 1 2 2
0Ž Ž ..natural map V ª H OO 1 splits as the direct sums of maps V ªG i

0Ž Ž .. 0Ž Ž .. HH OO 1 , where V s H OO 1 . Thus the Gale transform V ;G i Li i0Ž Ž ..H K y1 splits too, and the proposition follows.G

COROLLARY 7.7. A finite locally Gorenstein scheme G ; P r of degree
2 r q 2 which is a direct sum of arithmetically Gorenstein subschemes is
self-associated. The number of summands is exactly the amount by which G
fails to impose independent conditions on quadrics.

8. LINEAR ALGEBRA AND SELF-ASSOCIATION

r Ž .Let G ; P s P V be a nondegenerate set of 2 r q 2 distinct points.k
Choose G ; G a subset of r q 1 points that spans P r, and let G be the1 2
complementary set. If G is self-associated, then by Proposition 2.2, the set
G must also span P r.2

w xBabbage 1 pointed out that G is self-associated iff in addition there is a
nonsingular quadric Q ; P r such that each of G and G are apolar1 2
Ž . Žself-conjugated simplexes with respect to Q. In modern language and
replacing quadratic forms with symmetric bilinear forms to avoid problems

.in characteristic 2 :

THEOREM 8.1. Let G ; P r be a nondegenerate set of 2 r q 2 distinctk
points. The set G is self-associated if and only if it can be decomposed into a
disjoint union G s G j G , where G and G correspond to orthogonal bases1 2 1 2
for the same nonsingular symmetric bilinear form on V.

ŽProof. The result follows immediately from Castelnuovo’s definition in
.Section 1 which amounts to saying that a set of points is self-associated iff

there is a nonsingular bilinear form B on V and a decomposition of G into
� 4 � 4 Ž .two disjoint bases e and f for V the vertices of the two simplices suchi i

� 4that the orthogonal complement of any e is the span of e , andi j j/ i
similarly for the f . Since the form B has orthogonal bases, it is symmetric.i

The bilinear form really does depend on the choice of splitting G s G1
j G , since otherwise each vector in G would be orthogonal to all the2
other vectors in G, and these other vectors span V. Babbage also asserts
that Q is unique, which, as we shall see, is false in general.

To generalize Babbage’s result to schemes, we first extend the notion of
an orthogonal basis.

DEFINITION 8.2. As above, let V be a k-vector space of dimension
Ž .dim V s r q 1.k
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Ž . Ž .a A scheme L ; P V is a basis for V if it is nondegenerate and of
0Ž Ž .. Ž .degree r q 1 over k; that is, if the natural map V ª H OO 1 s OO 1 isL L

an isomorphism.
Ž . Ub If B: V ª V is a k-linear map, then we say L is an orthogonal

Ž .basis with respect to the bilinear form or quadratic form corresponding
to B if L is a basis and the composition

B U
OO 1 ( V ª V ( K y1Ž . Ž .L L

is an isomorphism of sheaves of OO -modules.L

This generalizes the classical notion: If L corresponds to an ordinary
� 4basis p of V, then OO ( k = k = ??? = k as a ring and OO hasi �is1, . . . , rq14 L L

idempotents e corresponding to the basis elements p . Any sheaf FF overi i
OO decomposes as [e FF, and any morphism of sheaves preserves thisL i

Ž .decomposition. Thus B satisfies condition b above iff the matrix of B
� 4 Ž .Ž .with respect to the basis p is diagonal, and B p p s 0 for all i / j.i i j

In the classical case the existence of an orthogonal basis implies that the
bilinear form corresponding to B is symmetric. This remains true in our
generality also: For if B is a sheaf homomorphism, then for any generator

Ž . Ž .f g OO 1 and section g g K y1 the quotient is a section grf g OO , andL L L

we have

B f g s B f grf f s B grf f f s B g f .Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .
X Ž . XSince any section f g OO 1 may be written as f s rf for some r g OO , weL L

get

B f X g s rB f g s rB g f s B g rf s B g f X ,Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .

as required.
We will generalize Theorem 8.1 as follows:

r Ž .THEOREM 8.3. Suppose that a finite Gorenstein scheme G ; P s P Vk
of degree 2 r q 2 decomposes as the disjoint union of two subschemes G and1
G that are bases. Then the scheme G is self-associated iff G and G are both2 1 2
orthogonal bases for the same nonsingular bilinear form on V. The bilinear
form is unique iff G is arithmetically Gorenstein.

Proof. Suppose first that G is self-associated, so there is a sheaf
Ž . Ž . Hisomorphism l: OO 1 ª K y1 carrying V to V . As l is a sheafG G

homomorphism, it decomposes as a direct sum of isomorphisms

l : OO 1 ª K y1 , i s 1, 2.Ž . Ž .i G Gi i
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Ž .Write a : V ª OO 1 for the inclusion corresponding to the embedding ofi Gi
Ž . U UG in P V . The bilinear forms B s a ( l ( a : V ª V , i s 1, 2, arei i i i i

nonsingular since each of the three maps in the composition is an isomor-
phism. Thus each G is an orthogonal basis for B . As l s l [ l maps Vi i 1 2
to V H , the bilinear form

l 0U U a1 1a a ( (1 2Ž . až /ž /0 l 22

is zero. Thus B s yB , and each G is an orthogonal basis for B .1 2 i 1
The bilinear symmetric forms B making V isotropic correspond to

Ž . Ž .elements of the dual of the cokernel of Sym V ª OO 2 . If G is self-as-2 G

sociated then, by Theorem 7.3, G is arithmetically Gorenstein iff it fails by
exactly 1 to impose independent conditions on quadrics. Thus the bilinear
form is uniquely determined up to a scalar factor exactly in this case.

Conversely, if both G are orthogonal bases for a nonsingular form B,i
then B induces an isomorphism of OO -modulesG

B 0 : OO 1 s [ OO 1 ª [ K y1 s K y1 ,Ž . Ž . Ž . Ž .G G G Gis1, 2 is1, 2i iž /0 yB

whose associated bilinear form l satisfies the conditions of Theorem 7.1.

As a consequence of Theorem 8.3 we can give a new proof of the
following result:

Ž w x w x.COROLLARY 8.4 Coble 9]13 and Dolgachev and Ortland 20 . The
¨ariety of ordered arithmetically Gorenstein sets of 2 r q 2 distinct k-rational

r Žpoints in P whose first r q 1 elements span the ambient space up tok
.projectï e equï alence , is isomorphic to an open subset in the ¨ariety of

complete flags in P r. In particular, it is irreducible and rational of dimensionk
r q 1Ž ., and thus the ¨ariety of unordered self-associated sets of distinct points is2

also irreducible and unirational of the same dimension.

Remark 8.5. In the case of six points in the plane, the unordered
self-associated sets of six points form a rational variety, isomorphic to the

Ž w x.moduli space of genus 2 curves Igusa 48 : such a set of points lies on a
conic whose double cover branched over the six points is a curve of genus
2. Is the variety of unordered self-associated sets always rational?

Proof of Corollary 8.4. If G s G j G is an arithmetically Gorenstein1 2
set in P r decomposed into its subsets of the first r q 1 and last r q 1k
points, and G spans P r, then, by Proposition 2.2, the set G also spans P r.1 k 2 k
By Theorem 8.3 there is a unique symmetric bilinear form B for which
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both G and G are orthogonal bases. There is a unique projective1 2
equivalence taking G to the standard simples of P r and taking B to the1 k
form whose matrix with respect to this basis is the identity matrix. To the
set G we may associate the flag consisting of the spaces spanned by the
first i elements of G , for all i s 1, . . . , r q 1.2

Conversely, let G be a basis in V, and let B be the bilinear form whose1
matrix with respect to this basis is the identity. Suppose that V ; ??? ;1

Ž .V is a flag with dim V s i transverse to the flag of coordinaterq1 k i
subspaces defined by G . Assume that the restriction of B to each1
subspace V is nonsingular. By the Gram]Schmidt process, we may choosei

² :an orthogonal basis ¨ , . . . , ¨ for B such that V s ¨ , . . . , ¨ , i g1 rq1 i 1 i
� 4 r1, . . . , r q 1 . For an open set of flags, the points in P corresponding to
the vectors ¨ will be distinct from the points of the standard simplex. Leti
G be the set of these points, and set G s G j G . By Theorem 8.3, the set2 1 2
G is arithmetically Gorenstein.

By using Theorem 8.3 we may partially decide when is it possible to
Ž .extend a finite set or more generally a locally Gorenstein finite scheme

to an arithmetically Gorenstein one.

THEOREM 8.6. A general set G : P r of g s r q 1 q d F 2 r q 2 pointsk
can be extended to an arithmetically Gorenstein set G j G

X ; P r of 2 r q 2k
d dŽ . Ž .points iff F r. Moreo¨er, in the case s r, there is a unique linear2 2

r Ž . Xsubspace L ; P of dimension r y d such that if G j G is arithmetically
Gorenstein then G

X spans L.

Proof. Changing coordinates if necessary, we may assume without loss
of generality that G contains as a subset the standard basis G s1
� 4e , e , . . . , e of the ambient vector space V. We write G s G j S, where0 1 r 1
S consists of the remaining d points.

To find an arithmetically Gorenstein scheme G j S j S
X we search for1

bilinear forms B such that both G and S j S
X are orthogonal bases. First,1

G is an orthogonal basis iff the matrix of B is diagonal. The mutual1
dŽ .orthogonality of the elements of S imposes homogeneous linear2

equations on the r q 1 diagonal elements of B. In particular, the system
dŽ .has a non-trivial solution whenever F r. Since G is general and self-as-2

sociated sets do exist, there is a solution B which is nonsingular. Choosing
G to be any orthogonal basis containing S and using Theorem 8.3, we2
prove the first statement of the theorem.

dŽ .To complete the proof we show that for a general set of points G the 2

linear equations on the coefficients of B above are of maximal rank. It
d XŽ .follows that in case r q 1 s the form B is unique and S spans the2
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orthogonal complement of S with respect to B. On the other hand, if
dŽ .r q 1 - then the equations for B have only the trivial solution.2

Consider the incidence variety II whose points are pairs consisting of a
nonsingular bilinear form B on V such that G is an orthogonal basis and1
a d-tuple of distinct points in P r which are non-isotropic and mutually
orthogonal with respect to the bilinear form B. To show that the set of
linear equations above is linearly independent we must show that the fiber

dŽ .of II over a general set S has the expected dimension, which is r y .2

We know from the argument above that the general fiber has dimension at
least the expected dimension. Further, the set of d-tuples of points S has

dŽ . Ž .dimension rd. Thus it suffices to show that dim II s r d q 1 y .2

Ž .Projecting a pair B, S g II onto the first factor we obtain a surjection
Ž U . r Ž U . rII ª k . The fiber over a point B g k may be identified with the set

Ž .of flags V ; ??? ; V ; V, where dim V s i and B restricted to each1 d k i
� 4 ² :V is nonsingular: given any S s ¨ , . . . , ¨ we let V s ¨ , . . . , ¨ , andi 1 d i 1 i

conversely given the flag we use the Gram]Schmidt process to produce an
orthogonal basis. Thus the fiber is an open set in a flag variety of

d dŽ . Ž . Ž . Ždimension rd y , and so dim II s r d q 1 y as required. One can2 2

show further that the incidence variety is irreducible and nonsingular, but
.we do not need this.

EXAMPLE 8.7. Five general points in P 2 lie on a unique conic. Any
sixth point on the conic gives an arithmetically Gorenstein set.

EXAMPLE 8.8. Let G be a set of seven points in linearly general
position in P 3. They lie on just three independent quadrics. If these form a
complete intersection then there exists a unique extension of the seven
points to a self-associated scheme of degree 8. If not, the three quadrics
cut out a twisted cubic curve and G lies on it. In this case there are many
possible extensions: we can add any further point on the rational normal
curve, and these are the only possibilities.

EXAMPLE 8.9. Consider now a set G ; P6 of 11 general points. By
Theorem 8.6, the set G may be completed to a self-associated set of 14
points in P6. For all possible completions the linear span of the extra three
points is a distinguished plane P s P 2 ; P6. The Koszul complex built on
the equations defining this two-dimensional linear subspace is the complex

Ž .U Ž .E m y8 embedded at the back end of the minimal free resolution of
v

Žthe homogeneous ideal I see the end of the introduction of EisenbudG

w x .and Popescu 32 for notation and details . A similar remark holds for a
sq2 ysy1Ž .2s q 2Ž .general set of q 1 points in P , yielding a distinguished2

s q 2Ž .linear subspace of dimension y 2 s y 2 whose equations contribute2

to the resolution of G in an interesting way.
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Since we have been dealing with the condition of forming two orthogo-
nal bases, we comment on the condition that a set of 2 r q 2 points in P r

k
correspond to the union of two bases. First recall the criteria of stability
and semistability:

Ž w x. rPROPOSITION 8.10 Dolgachev and Ortland 20 . Let G ; P be a set ofk
g points. Then G is semistable if and only if for all m with 1 F m F g y 1 the
projectï e linear span of any subset of m points of G has dimension at least
Ž .m r q 1 rg y 1. Similarly, G is a stable set of points if and only if all

pre¨ious inequalities are strict.

The special case when g s 2 r q 2 has a nice linear algebra interpreta-
tion:

Ž w x w x.LEMMA 8.11 Edmonds 21 ; see also Eisenbud and Koh 30 . A set G
of 2 r q 2 points in P r is semistable iff the points of G form two bases for the
underlying ¨ector space of the ambient projectï e space.

By the remarks at the beginning of this section, any self-associated set is
semistable.

9. CLASSIFICATION OF SELF-ASSOCIATED SCHEMES IN
SMALL PROJECTIVE SPACES

In this section we give a complete classification of self-associated schemes
in P r for r F 3 and we review classification results of Coble, Bath, and
Babbage for P 4 and P 5. We begin with some examples valid in all
dimensions which come from Corollary 3.2 and Corollary 7.5.

PROPOSITION 9.1. The following are families of arithmetically Gorenstein
nondegenerate schemes of degree 2 r q 2 in P r:

Ž .a a Cartier dï isor in the class 2 H y K on a rational normal cur̈ eC
r Ž .C ; P defined by the minors of a 2 = r matrix with linear entries ;

Ž .b a quadric section of a nondegenerate reduced irreducible cur̈ e of
degree r q 1, and arithmetic genus 1 in P r, r G 2;

Ž .c a hyperplane section of a canonical cur̈ e of genus r q 2, r G 1;
Ž .d a Cartier dï isor G in the class K q D on a cur̈ e C of genusC

g s r q 1, r G 2, where D is effectï e of degree 2, and G does not contain D.

The families listed in Proposition 9.1 account in fact for the general
self-associated sets of points in small projective spaces, as we will see
below. An easy count of parameters shows that in Proposition 9.1 the
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Ž . Ž .families described in a and b have dimensions 2 r y 1, 2 r q 2 when
r G 4, and 6 when r s 3, respectively. For the last claim we use:

PROPOSITION 9.2. Let G ; P r be a quadric section of an elliptic normal
cur̈ e in P r. If r ) 3, then there is no other elliptic normal cur̈ e containing G.

By contrast, if r s 3, there are many elliptic normal curves containing
such a G; indeed, the set is parametrized by an open subset of P 2.

Proof Sketch. Suppose that G ; E l EX, where E and EX are elliptic
normal curves in P r, and assume that G is equivalent to twice the
hyperplane section of E. It follows that the quadrics vanishing on E j EX

form a codimension 1 subspace of those vanishing on E.
Suppose r ) 3. The threefold that is the union of the secant lines of E

has E as its singular locus, so if E / EX there is a secant line to E that is
not secant to EX. It follows that we can find distinct rational normal scrolls
X and X X, of codimension 2, containing E and EX respectively.

But the intersection of any two distinct quadrics containing a codimen-
sion 2 scroll is the union of the scroll and has a codimension 2 linear
subspace; there is no room for another scroll. Therefore E s EX is the

runique elliptic normal curve in P containing G.

We now turn to the classification results. In P1 the matter is trivial:
every degree 4 scheme is self-associated, and of course all are arithmeti-
cally Gorenstein. The problem is already more challenging in P 2 and P 3,
and we begin with some general remarks. Since the classification of
Gorenstein schemes in these codimensions is well-known, the difficult
point here is to decide what examples exist that are not arithmetically
Gorenstein.

Let G ; P r be a finite self-associated Gorenstein scheme. By Proposi-
tion 2.2 every codegree 2 subscheme of G spans P r, and in particular G is
nondegenerate. By Theorem 7.2 and Proposition 5.2, G is Gorenstein
unless G is contained in the scheme defined by the ideal of minors of a
matrix of the form

x ??? x x ??? x0 t tq1 r , )Ž .ž /0 ??? 0 l ??? ltq1 r

where 0 F t - r and the l are linearly independent linear forms. Ini
Ž .particular, G lies in the union of the planes L s V x , . . . , x andred 1 0 t

Ž .L s V l , . . . , l . If L l L s B, then G must be decomposable, and2 tq1 r 1 2
by Proposition 7.6, G l L is self-associated in L for each i. It seemsi i
plausible that something of this sort happens more generally:

Problem 9.3. Suppose that G is self-associated and the ideal of G
Ž .contains the 2 = 2 minors of the matrix ) above. Under what circum-

Ž .stances is G l V x , . . . , x self-associated in its span?0 t
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From the classification below we see that for P 3, the first projective
space in which a non-trivial example arises, the answer is ‘‘always!’’ The
following includes a weak result of this type, which still suffices to
eliminate many possibilities:

LEMMA 9.4. Suppose that G ; P r is a self-associated scheme.

Ž . X Xa If G ; G has degree r q d, then G spans at least a subspace of
dimension d.

Ž .b If the homogeneous ideal of G contains a product of ideals
Ž . Ž .l , . . . , l ? m , . . . , m where the l are linearly independent linear forms,1 s 1 u i
and similarly for the m , and s q u ) r, then 2 F u F r y 1 and 2 F s Fj
r y 1.

Ž .Proof. a If G is self-associated then, as the embedding series is very
ample, Corollary 2.4 shows that no subscheme of G of degree 2 r can lie in
a hyperplane. Thus no subscheme of G of degree r q d can lie in a
subspace of dimension d y 1.

Ž . X Ž .b Let G s G l V l , . . . , l . Since the homogeneous coordinate1 s
ring S is Cohen]Macaulay, any linear form l vanishing on G

X annihilatesG

Ž . Xthe ideal m , . . . , m , so we may harmlessly assume that the span of G is1 u
Ž . Ž . Xthe r y s -plane V l , . . . , l . The residual to G in G lies inside1 s

Ž . XV m , . . . , m , so by Proposition 2.2 G fails by at least u to impose1 u
Ž X. Žindependent conditions on hyperplanes. It follows that deg G G u q r q

. Ž . Ž .1 y s s r q u y s q 1 . By the result of part a , we have r y s G u y s
q 1, or equivalently u F r y 1, one of the desired inequalities. By symme-
try s F r y 1, and since s q u ) r we derive 2 F u as well.

We can now complete the classification in P 2 and P 3:

THEOREM 9.5. A finite Gorenstein scheme in P 2 is self-associated iff it is
a complete intersection of a conic and cubic.

Proof. If G is arithmetically Gorenstein then since it has codimension 2
it must be a complete intersection. It cannot lie on a line and it has degree
6 so it is the complete intersection of a conic and a cubic.

If G is not arithmetically Gorenstein, then the ideal of G contains the
Ž .ideal of the minors of a matrix of the form ) above. In particular it

Ž .Ž . Ž .contains x , . . . , x l , . . . , l , so by Lemma 9.4 b we get 2 F t q 1 F 1,0 t tq1 2
a contradiction.

PROPOSITION 9.6. A finite Gorenstein scheme G ; P 3 is self-associated if
and only if

Ž . Ž . Ža G is a complete intersection of type 2, 2, 2 thus the general such G
3.is a quadric section of an ‘‘elliptic normal quartic’’ cur̈ e in P , or
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Ž .b G is cut out by the Pfaffians of a 5 = 5 skew symmetric matrix with
entries of degrees

} } 1 1 1
} } 1 1 1

,1 1 } 2 2
1 1 2 } 2� 0
1 1 2 2 }

where the dashes denote zero entries, or
Ž . Ž .c there is a smooth quadric Q and a dï isor C of type 2, 0 on Q such

that G is a Cartier dï isor on C in the class 4H , where H denotes theC C
Žhyperplane class that is, G consists of a degree 4 subscheme on each of two

disjoint lines, or a subscheme of degree 8 on a double line meeting the reduced
.line in a degree 4 subscheme .

Ž . Ž .Proof. The schemes G described in a and b are arithmetically
Ž .Gorenstein of degree 8, and thus are self-associated. For part c we may

apply Corollary 3.2 to the linearly normal curve C. The restriction map
Ž . Ž .Pic C ª Pic C is an isomorphism and writing H for the hyperplanered C

class on C it follows that G q K y H s H , so G is indeed self-associ-C C C
ated.

For the converse, suppose first that G is arithmetically Gorenstein. By
Ž w x.the structure theorem Buchsbaum and Eisenbud 5 for codimension-

three arithmetically Gorenstein schemes, G has ideal I generated by theG

Ž . Ž .2n = 2n-Pfaffians of a 2n q 1 = 2n q 1 skew symmetric matrix. From
the Hilbert function we know that I contains three quadrics and isG

moreover 3-regular. If n s 1, the ideal is generated by these three quadrics
Ž Ž ..and is thus a complete intersection Case a . If n s 2 there must be 2

cubic generators in addition to the 3 quadrics, and the given degree
Ž Ž ..pattern is easy to deduce Case b . Finally, if n ) 2, then the Pfaffians

would all have degree ) 2, which is impossible.
On the other hand, suppose that G is not arithmetically Gorenstein. By

Proposition 5.2, G lies on the scheme defined by the 2 = 2 minors of a
Ž . Ž .matrix of the form ) . By Lemma 9.4 we have t s 1. If V l , l is disjoint2 3

Ž .from V x , x , then G lies on the disjoint union of two lines and is of0 1
course a degree 8 Cartier divisor there. Any two disjoint lines lie on a
smooth quadric, so we are done in this case.

Ž . Ž .If on the contrary V l , l meets or coincides with V x , x then the2 3 0 1
Ž .matrix ) can be reduced by a linear change of variables and columns to

the form
x x x x0 1 2 3 ,ž /0 0 x l0 3

with l equal to x , x , or x .3 1 2 3
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If l s x or l s x , then we see that x corresponds to an element of3 2 3 3 0
Ž .the socle of the local ring of G at the point V x , x , l and vanishes on0 1 3

any component of G supported away from this point. Since G is nondegen-
erate, x / 0 in this local ring. Since OO is Gorenstein, x generates the0 G

socle of the local ring. It follows that the line x s 0 contains a codegree 1
Ž .subscheme of G, contradicting part a of Lemma 9.4.

Thus we may suppose l s x . In this case G lies on a double line on the3 1
Ž .smooth quadric V x x y x x , and it remains to see that G is a Cartier0 3 1 2

Ž .divisor there. By Lemma 9.4 a the reduced line can intersect G in a
subscheme of degree at most 4. Passing to the affine case, we may take a
polynomial f in the ideal of G in the double line which restricts to the
reduced line to define the same scheme of degree 4. Since f is a
nonzero-divisor in the ideal of the double line it defines a subscheme of
degree 8, and thus f generates the ideal of G in the double line. It follows
that G is Cartier, which concludes the proof of the proposition.

Remark 9.7. The classification in Proposition 9.6 is also the classifica-
tion by numerical type of the free resolution or, as it turns out, by the
length of the 2-linear part of the resolution, the ‘‘resolution Clifford

Ž w x.index’’ in an obvious sense see Eisenbud 24 . The analogue here of
Green’s conjecture might be to show that the resolution Clifford index is
always determined by the ‘‘geometric Clifford index,’’ that is, the types of

Ž .matrices of the form ) that arise. Be this as it may in general, the
w x Ž . Ž . Ž .possible free resolutions of S over k x , . . . , x in Cases a , b , and cG 0 3

respectively are

Degree

0 1 } } }

1 } 3 } }

2 } } 3 }

3 } } } 1

Degree

0 1 } } }

1 } 3 2 }

2 } 2 3 }

3 } } } 1

Degree

0 1 } } }

1 } 4 4 1
2 } } } }

3 } 2 4 2
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Ž .Remark 9.8. Case b in Proposition 9.6 above corresponds in fact to
Ž .schemes of degree 8 on a possibly degenerate twisted cubic curve.

Indeed, the determinantal ideal in the first two rows of the 5 = 5 skew
Žsymmetric matrix must actually have codimension 2 Proof. Its minors

appear among the five minimal generators and are thus linearly indepen-
dent. We may reduce modulo a general linear form and reduce to a
problem in three variables. If the three minors had a common divisor x,

Ž .then x would be in the socle module of the reduced ideal of the points,
.which is impossible, as the socle is entirely in degree 3. Therefore, the

Pfaffians define a scheme of degree 8 on a determinantal curve of degree
3 in P 3. Note also that two general quadrics in the ideal of the curve define
in general an arithmetic genus 1 quartic curve containing the eight points;
but they are not a quadric section of this quartic.

Ž .Here is a geometric description of a special case of Case c :

EXAMPLE 9.9. Suppose G ; P 3 is a scheme of degree 8 consisting of
four double points. Suppose further that the degree 4 scheme G isred
contained in a line R. Then G is self-associated iff the components of G
are tangent to four rulings on a smooth quadric surface iff the four points
of P1 corresponding to the tangent vectors to G in the normal bundle of R
have the same cross-ratio as the corresponding points of G in R.red

In P 4 we have a less complete result. The extra hypothesis of a linear
general position excludes in particular the nonarithmetically Gorenstein
cases such as the union of four points on a line and six points on a conic
spanning a disjoint plane. The result was enunciated by Bath in the
reduced ‘‘sufficiently general’’ case.

THEOREM 9.10. Let G ; P 4 be a finite, local complete intersection scheme
Žwhich is in linearly general position. Then G is self-associated and in fact

.arithmetically Gorenstein if and only if either

Ž . Ža G is a quadric section of an elliptic normal quintic cur̈ e equï -
alently a hyperplane section of a non-trigonal canonical cur̈ e of genus 6 in

5.P , or
Ž .b G is a scheme of degree 10 on a rational normal quartic cur̈ e.

Proof. From the general position hypothesis, Corollary 5.3, and Theo-
rem 7.2 it follows that G is self-associated iff G is arithmetically Goren-
stein. In particular, G fails exactly by one to impose independent condition

0Ž Ž ..on quadrics, and thus h II 2 s 6.G

w x w xA structure theorem of Kustin and Miller 52 , Herzog and Miller 43 ,
w xand Vasconcelos and Villareal 69 asserts that a generic local complete

intersection Gorenstein ideal I, of grade 4 and deviation 2, is of the type
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² : Ž .I s J, f , where J is a Gorenstein codimension 3 ideal defined by the
4 = 4 Pfaffians of a skew symmetric matrix and f is a non-zero divisor
modulo J. Thus, in case the six quadrics in I generate the homogeneousG

ideal, that is, I is Gorenstein of grade 4 and deviation 2, then G is aG

quadric section of an arithmetically Gorenstein scheme L ; P 4 defined by
the Pfaffians of a 5 = 5-skew symmetric matrix with linear entries, which is

Ž .case a in the statement of the theorem.
0Ž Ž ..Assume now that the quadrics in H II 2 do not generate the Goren-G

stein ideal I . In this case, there are also cubic generators in the ideal, andG
SŽ .by symmetry their number matches the dimension of Tor I , S , which is3 G 2

w xthus nonzero. By the ‘‘Strong Castelnuovo Lemma’’ of Green 40 , Yana-
w x w x Ž w x.gawa 72 , and Cavaliere et al. 6 see also Eisenbud and Popescu 33 it

follows that G is divisor of degree 10 on a smooth rational normal quartic
Ž .curve, which is case b in the statement of the proposition.

w x 4Remark 9.11. Bath 2 claims that the general self-associated set in P
Ž Ž .is a quadric section of a quintic elliptic normal curve Case a in Theorem

w x.9.10; see also Babbage 1 . Here is an outline of his argument:
� 4 4A general self-associated ordered set G s p , . . . , p ; P fails by 11 10

0Ž Ž ..to impose independent conditions on quadrics, so h II 2 s 6. Either GG

is contained in a rational normal quartic curve or three general quadrics in
0Ž Ž .. 4H II 2 meet along a genus 5 canonical curve C ; P , passing throughG

0Ž Ž .. 2the set G. In the latter case, the quadrics in H II 2 cut out a gG 6
residual to G on the curve C. However, a g 2 on C is special, and this6
means that any divisor in this linear system spans only a P 3. Let S be a
Ž . 2general divisor in the g , so that S is reduced, disjoint from G, and in6

Žlinearly general position in its span since C is cut out by quadrics and is
. Ž .not hyperelliptic . By Castelnuovo’s lemma see for instance Theorem 4.1

3 Ž .there is a unique twisted cubic curve D ; P the linear span of S which
passes through S. Now G j S is the complete intersection of four quadrics

0Ž Ž ..from H II 2 , and since it is only necessary to make a quadric containG

one more point of D for the whole twisted cubic D to lie on the quadric, it
0Ž Ž ..follows that D lies on three independent quadrics in H II 2 . TheyG

define a complete intersection curve in P 4, which has as components D
Ž .and another arithmetically Gorenstein curve E of degree 5, passing

� 4through the 10 points G s p , . . . , p . The curve E is an elliptic quintic1 10
curve and G is a quadric section of it.

� 4 4In a general self-associated, ordered set G s p , . . . , p ; P , one can1 10
always arbitrarily prescribe the first eight points. As in the proof of
Theorem 8.6, one sees that among the non-singular bilinear diagonal

� 4forms, for which S s p , . . . , p forms an orthogonal basis, there is a1 5
X � 4pencil B of bilinear forms for which the points S s p , p , p areŽ s : t . 6 7 8

also mutually orthogonal. The conditions that p is orthogonal on S
X are9
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Ž .expressed by a system of three bilinear equations in s : t and the
coordinates of the ambient P 4. The system has a solution B iff the 3 = 2
matrix of the linear system drops rank iff the point p lies on X ; P 4, the9

Žvariety defined by the maximal minors of the 3 = 2 matrix which has
4.linear entries in the coordinates of the ambient P . For general choices,

the bilinear form B is unique and nonsingular, and X ; P 4 is a smooth
rational cubic scroll. Analogously, the point p is orthogonal on S

X, with10
respect to B, iff p lies also on the scroll X. Interpreting X ; P 4 as the10
image of P 2 via conics through a point, one sees readily that there is a

� 4pencil of elliptic quintic normal curves through p , . . . , p , which are all1 8
bisections for the ruling of the scroll X, and for any given choice of such

� 4an elliptic quintic normal curve E one has to pick p , p as the9 10
intersection points of E with a ruling of X.

w xRemark 9.12. Mukai 56 proved that every canonical curve of genus 7
Ž .and Clifford index 3 i.e., the general canonical curve of genus 7 is a linear

section of the spinor variety S ; P15 of isotropic P 4 ’s in the eight-dimen-10
9 w xsional quadric Q ; P . In the same spirit, Ranestad and Schreyer 58

showed that the ‘‘general empty arithmetically Gorenstein scheme of
4 Ždegree 12 in P ’’ i.e., the general graded Artinian Gorenstein with Hilbert

Ž ..function 1, 5, 5, 1 is always a linear section of the same spinor variety. It
seems natural to expect a similar result in our case:

Conjecture 9.13. The general arithmetically Gorenstein, nondegenerate
zero-dimensional scheme of degree 12 in P 5 is a linear section of the
spinor variety S ; P15.10

w xRemark 9.14. We refer the reader to Babbage 1 for a description in
the spirit of Remark 9.11 of the general set of 12 self-associated points
in P 5.
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