Chains of maps between indecomposable modules

By David Eisenbud at Berkeley and J. A. de la Peña at Mexico City¹)

We shall call a sequence of homomorphisms of modules (or objects in some other Abelian category)

$$\varepsilon: M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{s-1}} M_s$$

a Harada-Sai sequence if each M_i is an indecomposable *R*-module of finite length, no f_i is an isomorphism, and the composite map $M_1 \rightarrow M_s$ is nonzero. We write $\lambda(M_i)$ for the length of M_i . Suppose that all the $\lambda(M_i)$ are bounded by a number *b*. Fitting's lemma shows that if all the M_i were equal and all the f_i were equal, then the length *s* of the sequence ε is at most b - 1. A significant generalization, the Harada-Sai Lemma [4], says that even with distinct M_i and f_i the length *s* is bounded, this time by $2^b - 1$. For typical applications see Bongartz [1], Gabriel [3], and Ringel [5].

The aim of this note is to sharpen the Harada-Sai Lemma by showing exactly which *length sequences* $(\lambda(M_1), \ldots, \lambda(M_s))$ are possible, and what the length of the image of the composite map $M_1 \rightarrow M_s$, which we call the *composite rank* of ε , can be. Here are some simple examples:

• There is a Harada-Sai sequence with all $\lambda(M_i) = b$ iff $s \leq 2^{b-1}$, just over half the maximal length of Harada-Sai sequence where all the $\lambda(M_i) \leq b$.

• There is no Harada-Sai sequence with length sequence (2, 3, 3, 3, 4, 4).

• There are Harada-Sai sequences with length sequence (3, 2, 3, 3, 3), but none with the permuted sequences (3, 3, 2, 3, 3) or (2, 3, 3, 3, 3).

• There are Harada-Sai sequences with length sequence (4, 4, 2, 4, 3, 4) and composite rank 1 and 2, but if we *increase* the length 2 to length 3, producing a length sequence (4, 4, 3, 4, 3, 4), then the largest composite rank *decreases* to 1.

¹) The first author gratefully acknowledges support from NSF and the second author from CONACYT and DGAPA, UNAM.

To state the full result we introduce what will be the universal sequences $\lambda^{(b)}$ of lengths: Set $\lambda^{(1)} = (1)$ and, inductively, take $\lambda^{(b)}$ to be the result of adding b at the beginning of, at the end of, and in between every pair of elements of, $\lambda^{(b-1)}$. Thus for example

$$\lambda^{(1)} = (1),$$

$$\lambda^{(2)} = (2, 1, 2),$$

$$\lambda^{(3)} = (3, 2, 3, 1, 3, 2, 3),$$

$$\lambda^{(4)} = (4, 3, 4, 2, 4, 3, 4, 1, 4, 3, 4, 2, 4, 3, 4).$$

Note that $\lambda^{(b)}$ has $2^b - 1$ elements.

We say that a sequence $\lambda \in \mathbb{N}^m$ is *embeddable* in $\mu \in \mathbb{N}^n$ if there is a strictly increasing function $\sigma : \{1, \ldots, m\} \to \{1, \ldots, n\}$ such that $\lambda_i = \mu_{\sigma(i)}$ for all $1 \leq i \leq m$ (we write $\sigma : \lambda \to \mu$).

Theorem 1 (Embedding). There is a Harada-Sai sequence with length sequence λ iff there is an embedding $\sigma : \lambda \to \lambda^{(b)}$ for some b.

The classic Harada-Sai Lemma follows from the "only if" statement, since the length of the sequence $\lambda^{(b)}$ is $2^b - 1$. The proof of the embedding theorem given at the beginning of the next section, seems to us simpler than the previously known proof of the Harada-Sai Lemma (Ringel [5]). A further consequence of the "if" statement of the embedding theorem is that in any Harada-Sai sequence of maximal lengths the composite ranks of all subsequences are determined:

Corollary 2. If ε as above is a Harada-Sai sequence of length $s = 2^b - 1$ with $\lambda(M_i) \leq b$ for all *i*, then the composite rank of any subsequence $M_{i_1} \rightarrow \cdots \rightarrow M_{i_t}$ is precisely $\min \{\lambda_i^{(b)} | i_1 \leq j \leq i_t\}$.

From the embedding theorem we also get a sharper Harada-Sai bound, taking into account the structure of the ring:

Corollary 3. Let R be an Artinian algebra and let l = l(R) be the maximum, over all simple left R-modules N, of the minimum of the lengths of the projective cover and the injective hull of N. The length s of any Harada-Sai sequence ε of left modules with lengths $\leq b$ is bounded by $s \leq 2^{b-l+1}(2^{l-1}-1)+1$.

For example, if R is the ring of $n \times n$ lower-triangular matrices, then $l(R) = \lceil n/2 \rceil$.

In view of Corollary 2, we define the *rank* of an embedding $\sigma : \lambda = (\lambda_1 \dots \lambda_s) \rightarrow \lambda^{(b)}$ to be rank $(\sigma) = \min \{\lambda_j^{(b)} | \sigma(1) \le j \le \sigma(s)\}$. The following more precise version of Theorem 1 is the main result of this paper.

Theorem 4 (Rank). There is a Harada-Sai sequence with length sequence λ and composite rank r iff there is an embedding $\sigma : \lambda \to \lambda^{(b)}$ such that $r = \operatorname{rank}(\sigma)$.

It is easy to decide whether or not a sequence $\lambda = (\lambda_1, ..., \lambda_s)$ is embeddable with given rank in $\lambda^{(b)}$ (of course we may take $b = \max{\{\lambda_i\}}$): We define the "optimal" embedding inductively by

$$\sigma_{\text{opt}}(i) = \min\{j \mid j > \sigma_{\text{opt}}(i-1) \text{ and } \lambda_i = \lambda_i^{(b)}\}$$

as long as such an index j exists.

Proposition 5. A length sequence $\lambda = (\lambda_1, ..., \lambda_s)$ is embeddable in $\lambda^{(b)}$, iff $\sigma_{opt}(i)$ is defined for all $i \leq s$. There exists a rank r embedding of λ in $\lambda^{(b)}$ iff $r \leq \operatorname{rank}(\sigma_{opt})$.

Here is an open problem: Find a generalization of Theorem 1 with hypothesis depending on the maps f_i and not the modules M_i in ε . For example, one might want to assume that no composition of the maps f_i is an isomorphism, and no image of such a composition is a direct summand. Does this suffice to bound the length of the sequence?

Proofs

Proof of Theorem 1. We begin by showing that the length sequence $\lambda = (\lambda_1, ..., \lambda_s)$ of a Harada-Sai sequence ε as above is embeddable in $\lambda^{(b)}$, where $b = \max \{\lambda_i\}$. We do this by induction on b, the case b = 1 being trivial.

If $\lambda_i = \lambda_{i+1} = b$ then we can interpolate some indecomposable summand of the image of M_i in M_{i+1} between M_i and M_{i+1} and get a new Harada-Sai sequence one step longer than the original. Repeating this process, we may assume that no two consecutive λ_i are equal to b.

Any composition $g := f_j f_{j-1} \cdots f_i \colon M_i \to M_j$ of consecutive maps in a Harada-Sai sequence is a non-isomorphism. For if g were an isomorphism then $\lambda(M_{i+1}) > \lambda(M_i)$ to avoid f_i being an isomorphism, and thus $M_i \to M_{i+1} \to M_j \xrightarrow{g^{-1}} M_i$ exhibits M_i as a proper direct summand of M_{i+1} , contradicting the definition.

Let $\mu = (\mu_1, ..., \mu_t)$ be the subsequence of λ consisting of those terms that are $\langle b \rangle$. By induction there is an embedding $\sigma': \mu \to \lambda^{(b-1)}$. Since every second element of $\lambda^{(b)}$ is b, and the remaining elements of $\lambda^{(b)}$ make up $\lambda^{(b-1)}$, this embedding can be extended to the desired embedding of λ in $\lambda^{(b)}$, completing the proof of embeddability.

The other implication of Theorem 1 follows from the existence of a maximal Harada-Sai sequence, constructed below. \Box

Proof of Corollary 2. It is clear that the given rank is an upper bound. If the actual rank were less, we could form a new Harada-Sai sequence of the form

$$M_1 \to M_2 \to \cdots \to M_{i_1} \to N \to M_{i_t} \to M_{i_t+1} \to M_s$$

where N is an indecomposable summand of $\text{Im } M_{i_1} \rightarrow M_{i_t}$, and the length sequence of this new sequence would not be embeddable. \Box

Proof of Corollary 3. Let ε be a Harada-Sai sequence of *R*-modules of lengths bounded by *b*, and consider the projective cover $P(M_1) \to M_1$. There is an indecomposable direct summand P' of $P(M_1)$ such that the composition $P' \to M_1 \to M_2 \to \cdots \to M_s$ is not zero. Let *P* be the image of P' in M_1 . Let *N* be the simple module which is the top of *P*. The module *N* must occur in the image of the composite map $P \to M_1 \to M_s$, so we can find a map $M_s \to I'$, where I' = I(N) is the injective hull of *N*, so that the composite $P \to M_1 \to M_s \to I'$ is nonzero. We let *I* be the image of M_s in *I'*. Both *P* and *I* have lengths $\leq \min(b, l)$. By the embeddability statement of Theorem 1, the sequence $(\lambda(P), \lambda(M_1), \dots, \lambda(M_s), \lambda(I))$ is embeddable in $\lambda^{(b)}$. But the lengths of the subsequences of $\lambda^{(b)}$ starting and ending with numbers $\leq l$ are bounded by $2^{b-l+1}(2^{l-1}-1)+1$. \Box

Proof of Proposition 5. The first statement is immediate, and it is easy to see that no embedding has rank > $\tau_{opt} := \operatorname{rank}(\sigma_{opt})$. If $0 < r < r_{opt}$ then we construct a new embedding $\tau : \lambda \to \lambda^{(b)}$ such that $r = \operatorname{rank}(\tau)$. Let s, t, u, v be the smallest integers such that $\lambda_s^{(b)} = r_{opt}, \ \lambda_t^{(b)} = r_{opt} - 1, \ \lambda_u^{(b)} = r, \ \lambda_v^{(b)} = r - 1$. We set $\tau(i) = \sigma(i)$ if $\sigma(i) \leq t$. There is an embedding γ identifying that part of the sequence $\lambda^{(b)}$ between s and t with that part between u and v. We define $\tau(i) = \gamma \sigma(i)$ for i such that $\sigma(i) > t$. \Box

Proof of Theorem 4. Let ε be a Harada-Sai sequence and let σ_{opt} be its optimal embedding into $\lambda^{(b)}$. We now proceed by induction on the length s. Set

$$m = \min\left\{\lambda_i^{(b)} \mid \sigma_{\text{opt}}(1) \leq i \leq \sigma_{\text{opt}}(s)\right\},\$$

the desired bound. If any λ_i is equal to *m* we are done, so we assume $\lambda_i > m$ for all *i*. Let k_0 be the smallest integer *k* such that $\lambda_{k_0}^{(b)} = m$. Since the embedding σ_{opt} is optimal, we have $\sigma_{opt}(1) < k_0 < \sigma_{opt}(s)$. On the other hand, if $k_0 < \sigma_{opt}(s-1)$ we are done by induction, so we may assume that $\sigma_{opt}(s-1) < k_0 < \sigma_{opt}(s)$.

Suppose that for some i < j we have $\lambda_i = \lambda_j = m + 1$. As in the proof of Theorem 1 we see that the rank of the composite $M_i \to M_j$, and with it the composite rank of ε , is $\leq m$ as required. Thus we may further assume that at most one λ_i is equal to m + 1.

The cases $s \leq 2$ are trivial. Assuming that $s \geq 3$ we will show that for some integer 1 < t < s the compositions $g: M_1 \to M_t$ and $h: M_t \to M_s$ both have rank $\leq m + 1$, while M_t has length > m + 1. It follows that the rank of the composite $hg: M_1 \to M_s$ has rank at most m + 1; and if its rank is equal to m + 1, then as above the maps

$$\operatorname{Im} g \to M_t \to \operatorname{Im} hg \cong \operatorname{Im} g$$

show that the image of g is a proper summand of M_t , contradicting the definition. Thus it suffices for the rank statement to produce a t with the properties above.

Since every number greater than *m* comes before *m* in the sequence $\lambda^{(b)}$ there is a number $k < k_0$ with $\sigma_{opt}(1) \le k \le \sigma_{opt}(s)$ and $\lambda_k^{(b)} = m + 1$. Let k_1 be the minimal such number, and choose *t'* minimal such that $\sigma_{opt}(t') \ge k_1$. If $\lambda_{t'} > m + 1$ then we choose t = t', while if $\lambda_{t'} = m + 1$ then we choose t = t' + 1. We check the properties of *t* as follows, using

repeatedly the remark that every number between b and $\lambda_i^{(b)}$ appears before $\lambda_i^{(b)}$ in the sequence $\lambda^{(b)}$:

• t > 1: The case t = 1 would require $k_1 < \sigma_{opt}(1) = \sigma_{opt}(t) = \sigma_{opt}(t') < k_0$. As the subsequence of $\lambda^{(b)}$ between $m + 1 = \lambda_{k_1}^{(b)}$ and $m = \lambda_{k_0}^{(b)}$ is a repeat of the part of the sequence before $\lambda_{k_1}^{(b)}$, this contradicts the optimality of σ_{opt} .

• t < s: If $\sigma_{opt}(s-1) < k_1$ then since every number $\ge m+1$ occurs between $\lambda_{k_1}^{(b)}$ and $\lambda_{k_0}^{(b)}$, we would have $\sigma_{opt}(s) < k_0$, a contradiction. If actually $\sigma_{opt}(s-1) = k_1$, so that $\lambda_{s-1} = m+1$, then the same contradiction would occur unless $\lambda_s = m+1$, contradicting our assumption that at most one of the λ_k is equal to m+1. Thus $\sigma_{opt}(s-1) > k_1$. It follows that $t \le s-1$ unless t' = s-1, $\lambda_{s-1} = m+1$. This last case again contradicts the optimality of σ_{opt} , since λ_s could be found strictly between $\lambda_{t'}^{(b)} = m+1$ and $\lambda_{k_0}^{(b)} = m$.

• rank $(g: M_1 \to M_t) \leq m + 1$: This follows from the induction, since

$$\sigma_{\text{opt}}(1) \leq k_1 \leq \sigma_{\text{opt}}(t)$$
.

• rank $(h: M_t \to M_s) \leq m+1$: The sequence $(\lambda_1^{(b)}, \ldots, \lambda_{k_1-1}^{(b)})$ is the same as the sequence $(\lambda_{k_1+1}^{(b)}, \ldots, \lambda_{k_0-1}^{(b)})$; it follows that if τ is the optimal embedding of the length sequence $(\mu_1 := \lambda_t, \ldots, \mu_{s-t+1} := \lambda_s)$ then $\tau(1) \leq k_1 \leq \tau(s-t+1)$. The desired conclusion then follows by our induction.

• length $(M_t) > m + 1$: In the sequence $\lambda^{(b)}$ there is an occurence of *m* between the first two occurences of m + 1. The first occurence of m + 1 is in the k_1 place, that of *m* is in the k_0 place. Since $k_1 < \sigma_{opt}(t) < k_0$ we thus have $\sigma_{opt}(t) \neq m + 1$, and it follows that $\sigma_{opt}(t) > m + 1$. This completes the proof of the rank condition.

Construction of examples

By Corollary 2 the existence statements of Theorems 1 and 4 follow from the existence, for each b, of a Harada-Sai sequence with length sequence $\lambda^{(b)}$. By Corollary 3 there is no ring of finite length over which all such possibilities exist. One of the simplest rings over which they could all exist is the ring R = K[x, y]/(xy), where K is a field and K[x, y]denotes the commutative polynomial ring; we shall construct them there. (Harada-Sai sequences of maximum length have been constructed over certain noncommutative rings of finite representation type by Bongartz [1].)

For any (noncommutative) word w in x and y we construct an indecomposable *R*-module M(w) of length one more than the number of letters in the word. Each module is constructed with a particular basis, and we will only consider maps that take basis elements to basis elements. Among the basis elements, one is distinguished; we call it \star .

Rather than give a formal definition we describe the module M(w) for the word $w = yx^2y^2x^3$: In this case M(w) has a K-basis of 8 = (1 + 2 + 2 + 3) elements labelled \bullet and one element labelled \bigstar , with multiplication table given by

Note that $y \neq 0$ and $\neq x M(w)$; equivalently, \neq appears at the right hand side of the diagram above.

To construct the Harada-Sai sequences we use three functors:

♦ $D = \operatorname{Hom}_{K}(-, K) : \operatorname{mod}_{R} \to \operatorname{mod}_{R}$ is the duality functor; the distinguished basis vector \star of $\operatorname{Hom}_{K}(M, K)$ is taken to be the dual basis vector to the distinguished basis vector \star of M.

 $\diamond E: \operatorname{mod}_R \to \operatorname{mod}_R$ the functor induced by the ring automorphism

$$R \to R$$
, $x \mapsto y$, $y \mapsto x$.

Observe that $EM(w) = M(\hat{w})$, where \hat{w} is obtained from w by exchanging x and y. If $f: M(w_1) \to M(w_2)$ satisfies $f(\bigstar) = \bigstar$, then $E(f): M(\hat{w}_2) \to M(\hat{w}_1)$ satisfies $E(f)(\bigstar) = \bigstar$.

♦ F(M(w)) := M(wx). Note that M(w) is naturally a submodule of M(wx); we take the new ★ to be the newly added basis vector. If $f: M(v) \to M(w)$ is a map preserving ★, then we take $F(f): M(vx) \to M(wx)$ to be f extended in such a way as to preserve the new ★.

For each $b \in \mathbb{N}$, we construct a Harada-Sai sequence $\varepsilon^{(b)}$ in mod_R , having length sequence $\lambda^{(b)}$. We proceed by induction on b, taking $\varepsilon^{(1)}$ to be the sequence whose only terms is the one-dimensional module M(1), where 1 represents the empty word.

Suppose that $\varepsilon^{(b)}$ has the form

 $\varepsilon^{(b)}: M(w_1) \longrightarrow M(w_2) \longrightarrow \cdots \longrightarrow M(w_{2^{b-1}}) \longrightarrow \cdots \longrightarrow M(w_{2^{b-1}})$

and all maps take \bigstar to \bigstar . Note that $\lambda_{2^{b-1}}^{(b)} = 1$, so $w_{2^{b-1}} = 1$. We define $\varepsilon^{(b+1)}$ to be the sequence with left segment

$$\alpha : F(M(w_1)) \longrightarrow F(M(w_2)) \longrightarrow \cdots$$
$$\longrightarrow F(M(w_{2^{b-1}})) = M(x) = FE(M(w_{2^{b-1}})) \longrightarrow \cdots$$
$$\longrightarrow FE(M(w_{2^{b-1}})).$$

In all these modules \star is outside the radical. Thus we may continue the sequence α with the map $f: FE(M(w_{2^{b}-1})) \to M(1)$ sending \star to \star and sending all the other basis vectors to 0. We define the right-hand segment of $\varepsilon^{(b+1)}$ to be $D(\alpha)$. The whole sequence $\varepsilon^{(b+1)}$

consists of these two together with the module M(1) in the middle. We may represent this symbolically as

$$\varepsilon^{(b+1)}: \alpha \xrightarrow{f} M(1) \xrightarrow{D(f)} D(\alpha)$$
.

Since the composition of all the maps in the sequence sends \star to \star it is nonzero, and we are done. \Box

References

- [1] K. Bongartz, Treue einfach zusammenhängende Algebren, Comment. Math. Helv. 57 (1982), 282-330.
- [2] H. Fitting, Über direkte Produktzerlegungen einer Gruppe in unzerlegbare, Math. Z. 39 (1934), 16-30.
- [3] P. Gabriel and A.V. Roiter, Representation of finite-dimensional algebras, Algebra VIII, Encycl. Math. Sc. 73, Springer, 1992.
- [4] M. Harada and Y. Sai, On categories of indecomposable modules I, Osaka J. Math. 7 (1970), 323-344.
- [5] C. M. Ringel, Report on the Brauer-Thrall conjecture, in: Representation Theory II, Springer Lect. Notes Math. 832 (1980), 104–135.

Department of Mathematics, University of California, Berkeley CA 94720 e-mail: eisenbud@msri.org

Instituto de Matemáticas, UNAM, Mexico City, Mexico e-mail: jap@penelope.matem.unam.mx

Eingegangen 12. Mai 1997