Chains of maps between indecomposable modules

By David Eisenbud at Berkeley and J.A. de la Peña at Mexico City ${ }^{1}$)

We shall call a sequence of homomorphisms of modules (or objects in some other Abelian category)

$$
\varepsilon: M_{1} \xrightarrow{f_{1}} M_{2} \xrightarrow{f_{2}} \cdots \xrightarrow{f_{s-1}} M_{s}
$$

a Harada-Sai sequence if each M_{i} is an indecomposable R-module of finite length, no f_{i} is an isomorphism, and the composite map $M_{1} \rightarrow M_{s}$ is nonzero. We write $\lambda\left(M_{i}\right)$ for the length of M_{i}. Suppose that all the $\lambda\left(M_{i}\right)$ are bounded by a number b. Fitting's lemma shows that if all the M_{i} were equal and all the f_{i} were equal, then the length s of the sequence ε is at most $b-1$. A significant generalization, the Harada-Sai Lemma [4], says that even with distinct M_{i} and f_{i} the length s is bounded, this time by $2^{b}-1$. For typical applications see Bongartz [1], Gabriel [3], and Ringel [5].

The aim of this note is to sharpen the Harada-Sai Lemma by showing exactly which length sequences $\left(\lambda\left(M_{1}\right), \ldots, \lambda\left(M_{s}\right)\right)$ are possible, and what the length of the image of the composite map $M_{1} \rightarrow M_{s}$, which we call the composite rank of ε, can be. Here are some simple examples:

- There is a Harada-Sai sequence with all $\lambda\left(M_{i}\right)=b$ iff $s \leqq 2^{b-1}$, just over half the maximal length of Harada-Sai sequence where all the $\lambda\left(M_{i}\right) \leqq b$.
- There is no Harada-Sai sequence with length sequence (2, 3, 3, 3, 4, 4).
- There are Harada-Sai sequences with length sequence ($3,2,3,3,3$), but none with the permuted sequences $(3,3,2,3,3)$ or $(2,3,3,3,3)$.
- There are Harada-Sai sequences with length sequence (4, 4, 2, 4, 3, 4) and composite rank 1 and 2, but if we increase the length 2 to length 3 , producing a length sequence $(4,4,3,4,3,4)$, then the largest composite rank decreases to 1 .

[^0]To state the full result we introduce what will be the universal sequences $\lambda^{(b)}$ of lengths: Set $\lambda^{(1)}=(1)$ and, inductively, take $\lambda^{(b)}$ to be the result of adding b at the beginning of, at the end of, and in between every pair of elements of, $\lambda^{(b-1)}$. Thus for example

$$
\begin{gathered}
\lambda^{(1)}=(1), \\
\lambda^{(2)}=(2,1,2), \\
\lambda^{(3)}=(3,2,3,1,3,2,3), \\
\lambda^{(4)}=(4,3,4,2,4,3,4,1,4,3,4,2,4,3,4) .
\end{gathered}
$$

Note that $\lambda^{(b)}$ has $2^{b}-1$ elements.

We say that a sequence $\lambda \in \mathbb{N}^{m}$ is embeddable in $\mu \in \mathbb{N}^{n}$ if there is a strictly increasing function $\sigma:\{1, \ldots, m\} \rightarrow\{1, \ldots, n\}$ such that $\lambda_{i}=\mu_{\sigma(i)}$ for all $1 \leqq i \leqq m$ (we write $\sigma: \lambda \rightarrow \mu)$.

Theorem 1 (Embedding). There is a Harada-Sai sequence with length sequence λ iff there is an embedding $\sigma: \lambda \rightarrow \lambda^{(b)}$ for some b.

The classic Harada-Sai Lemma follows from the "only if" statement, since the length of the sequence $\lambda^{(b)}$ is $2^{b}-1$. The proof of the embedding theorem given at the beginning of the next section, seems to us simpler than the previously known proof of the Harada-Sai Lemma (Ringel [5]). A further consequence of the "if" statement of the embedding theorem is that in any Harada-Sai sequence of maximal lengths the composite ranks of all subsequences are determined:

Corollary 2. If ε as above is a Harada-Sai sequence of length $s=2^{b}-1$ with $\lambda\left(M_{i}\right) \leqq b$ for all i, then the composite rank of any subsequence $M_{i_{1}} \rightarrow \cdots \rightarrow M_{i_{t}}$ is precisely $\min \left\{\lambda_{j}^{(b)} \mid i_{1} \leqq j \leqq i_{t}\right\}$.

From the embedding theorem we also get a sharper Harada-Sai bound, taking into account the structure of the ring:

Corollary 3. Let R be an Artinian algebra and let $l=l(R)$ be the maximum, over all simple left R-modules N, of the minimum of the lengths of the projective cover and the injective hull of N. The length s of any Harada-Sai sequence ε of left modules with lengths $\leqq b$ is bounded by $s \leqq 2^{b-l+1}\left(2^{l-1}-1\right)+1$.

For example, if R is the ring of $n \times n$ lower-triangular matrices, then $l(R)=\lceil n / 2\rceil$.
In view of Corollary 2 , we define the rank of an embedding $\sigma: \lambda=\left(\lambda_{1} \ldots \lambda_{s}\right) \rightarrow \lambda^{(b)}$ to be $\operatorname{rank}(\sigma)=\min \left\{\lambda_{j}^{(b)} \mid \sigma(1) \leqq j \leqq \sigma(s)\right\}$. The following more precise version of Theorem 1 is the main result of this paper.

Theorem 4 (Rank). There is a Harada-Sai sequence with length sequence λ and composite rank r iff there is an embedding $\sigma: \lambda \rightarrow \lambda^{(b)}$ such that $r=\operatorname{rank}(\sigma)$.

It is easy to decide whether or not a sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ is embeddable with given rank in $\lambda^{(b)}$ (of course we may take $b=\max \left\{\lambda_{i}\right\}$): We define the "optimal" embedding inductively by

$$
\sigma_{\mathrm{opt}}(i)=\min \left\{j \mid j>\sigma_{\mathrm{opt}}(i-1) \text { and } \lambda_{i}=\lambda_{j}^{(b)}\right\}
$$

as long as such an index j exists.
Proposition 5. A length sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ is embeddable in $\lambda^{(b)}$, iff $\sigma_{\text {opt }}(i)$ is defined for all $i \leqq s$. There exists a rank r embedding of λ in $\lambda^{(b)}$ iff $r \leqq \operatorname{rank}\left(\sigma_{\text {opt }}\right)$.

Here is an open problem: Find a generalization of Theorem 1 with hypothesis depending on the maps f_{i} and not the modules M_{i} in ε. For example, one might want to assume that no composition of the maps f_{i} is an isomorphism, and no image of such a composition is a direct summand. Does this suffice to bound the length of the sequence?

Proofs

Proof of Theorem 1. We begin by showing that the length sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ of a Harada-Sai sequence ε as above is embeddable in $\lambda^{(b)}$, where $b=\max \left\{\lambda_{i}\right\}$. We do this by induction on b, the case $b=1$ being trivial.

If $\lambda_{i}=\lambda_{i+1}=b$ then we can interpolate some indecomposable summand of the image of M_{i} in M_{i+1} between M_{i} and M_{i+1} and get a new Harada-Sai sequence one step longer than the original. Repeating this process, we may assume that no two consecutive λ_{i} are equal to b.

Any composition $g:=f_{j} f_{j-1} \cdots f_{i}: M_{i} \rightarrow M_{j}$ of consecutive maps in a Harada-Sai sequence is a non-isomorphism. For if g were an isomorphism then $\lambda\left(M_{i+1}\right)>\lambda\left(M_{i}\right)$ to avoid f_{i} being an isomorphism, and thus $M_{i} \rightarrow M_{i+1} \rightarrow M_{j} \xrightarrow{g^{-1}} M_{i}$ exhibits M_{i} as a proper direct summand of M_{i+1}, contradicting the definition.

Let $\mu=\left(\mu_{1}, \ldots, \mu_{t}\right)$ be the subsequence of λ consisting of those terms that are $<b$. By induction there is an embedding $\sigma^{\prime}: \mu \rightarrow \lambda^{(b-1)}$. Since every second element of $\lambda^{(b)}$ is b, and the remaining elements of $\lambda^{(b)}$ make up $\lambda^{(b-1)}$, this embedding can be extended to the desired embedding of λ in $\lambda^{(b)}$, completing the proof of embeddability.

The other implication of Theorem 1 follows from the existence of a maximal HaradaSai sequence, constructed below.

Proof of Corollary 2. It is clear that the given rank is an upper bound. If the actual rank were less, we could form a new Harada-Sai sequence of the form

$$
M_{1} \rightarrow M_{2} \rightarrow \cdots \rightarrow M_{i_{1}} \rightarrow N \rightarrow M_{i_{t}} \rightarrow M_{i_{t}+1} \rightarrow M_{s}
$$

where N is an indecomposable summand of $\operatorname{Im} M_{i_{1}} \rightarrow M_{i_{t}}$, and the length sequence of this new sequence would not be embeddable.

Proof of Corollary 3. Let ε be a Harada-Sai sequence of R-modules of lengths bounded by b, and consider the projective cover $P\left(M_{1}\right) \rightarrow M_{1}$. There is an indecomposable direct summand P^{\prime} of $P\left(M_{1}\right)$ such that the composition $P^{\prime} \rightarrow M_{1} \rightarrow M_{2} \rightarrow \cdots \rightarrow M_{s}$ is not zero. Let P be the image of P^{\prime} in M_{1}. Let N be the simple module which is the top of P. The module N must occur in the image of the composite map $P \rightarrow M_{1} \rightarrow M_{s}$, so we can find a map $M_{s} \rightarrow I^{\prime}$, where $I^{\prime}=I(N)$ is the injective hull of N, so that the composite $P \rightarrow M_{1} \rightarrow M_{s} \rightarrow I^{\prime}$ is nonzero. We let I be the image of M_{s} in I^{\prime}. Both P and I have lengths $\leqq \min (b, l)$. By the embeddability statement of Theorem 1 , the sequence $\left(\lambda(P), \lambda\left(M_{1}\right), \ldots, \lambda\left(M_{s}\right), \lambda(I)\right)$ is embeddable in $\lambda^{(b)}$. But the lengths of the subsequences of $\lambda^{(b)}$ starting and ending with numbers $\leqq l$ are bounded by $2^{b-l+1}\left(2^{l-1}-1\right)+1$.

Proof of Proposition 5. The first statement is immediate, and it is easy to see that no embedding has rank $>\tau_{\text {opt }}:=\operatorname{rank}\left(\sigma_{\text {opt }}\right)$. If $0<r<r_{\text {opt }}$ then we construct a new embedding $\tau: \lambda \rightarrow \lambda^{(b)}$ such that $r=\operatorname{rank}(\tau)$. Let s, t, u, v be the smallest integers such that $\lambda_{s}^{(b)}=r_{\text {opt }}, \lambda_{t}^{(b)}=r_{\text {opt }}-1, \lambda_{u}^{(b)}=r, \lambda_{v}^{(b)}=r-1$. We set $\tau(i)=\sigma(i)$ if $\sigma(i) \leqq t$. There is an embedding γ identifying that part of the sequence $\lambda^{(b)}$ between s and t with that part between u and v. We define $\tau(i)=\gamma \sigma(i)$ for i such that $\sigma(i)>t$.

Proof of Theorem 4. Let ε be a Harada-Sai sequence and let $\sigma_{\text {opt }}$ be its optimal embedding into $\lambda^{(b)}$. We now proceed by induction on the length s. Set

$$
m=\min \left\{\lambda_{i}^{(b)} \mid \sigma_{\mathrm{opt}}(1) \leqq i \leqq \sigma_{\mathrm{opt}}(s)\right\},
$$

the desired bound. If any λ_{i} is equal to m we are done, so we assume $\lambda_{i}>m$ for all i. Let k_{0} be the smallest integer k such that $\lambda_{k_{0}}^{(b)}=m$. Since the embedding $\sigma_{\text {opt }}$ is optimal, we have $\sigma_{\text {opt }}(1)<k_{0}<\sigma_{\text {opt }}(s)$. On the other hand, if $k_{0}<\sigma_{\text {opt }}(s-1)$ we are done by induction, so we may assume that $\sigma_{\text {opt }}(s-1)<k_{0}<\sigma_{\text {opt }}(s)$.

Suppose that for some $i<j$ we have $\lambda_{i}=\lambda_{j}=m+1$. As in the proof of Theorem 1 we see that the rank of the composite $M_{i} \rightarrow M_{j}$, and with it the composite rank of ε, is $\leqq m$ as required. Thus we may further assume that at most one λ_{i} is equal to $m+1$.

The cases $s \leqq 2$ are trivial. Assuming that $s \geqq 3$ we will show that for some integer $1<t<s$ the compositions $g: M_{1} \rightarrow M_{t}$ and $h: M_{t} \rightarrow M_{s}$ both have rank $\leqq m+1$, while M_{t} has length $>m+1$. It follows that the rank of the composite $h g: M_{1} \rightarrow M_{s}$ has rank at most $m+1$; and if its rank is equal to $m+1$, then as above the maps

$$
\operatorname{Im} g \rightarrow M_{t} \rightarrow \operatorname{Im} h g \cong \operatorname{Im} g
$$

show that the image of g is a proper summand of M_{t}, contradicting the definition. Thus it suffices for the rank statement to produce a t with the properties above.

Since every number greater than m comes before m in the sequence $\lambda^{(b)}$ there is a number $k<k_{0}$ with $\sigma_{\text {opt }}(1) \leqq k \leqq \sigma_{\text {opt }}(s)$ and $\lambda_{k}^{(b)}=m+1$. Let k_{1} be the minimal such number, and choose t^{\prime} minimal such that $\sigma_{\mathrm{opt}}\left(t^{\prime}\right) \geqq k_{1}$. If $\lambda_{t^{\prime}}>m+1$ then we choose $t=t^{\prime}$, while if $\lambda_{t^{\prime}}=m+1$ then we choose $t=t^{\prime}+1$. We check the properties of t as follows, using
repeatedly the remark that every number between b and $\lambda_{i}^{(b)}$ appears before $\lambda_{i}^{(b)}$ in the sequence $\lambda^{(b)}$:

- $t>1$: The case $t=1$ would require $k_{1}<\sigma_{\text {opt }}(1)=\sigma_{\text {opt }}(t)=\sigma_{\text {opt }}\left(t^{\prime}\right)<k_{0}$. As the subsequence of $\lambda^{(b)}$ between $m+1=\lambda_{k_{1}}^{(b)}$ and $m=\lambda_{k_{0}}^{(b)}$ is a repeat of the part of the sequence before $\lambda_{k_{1}}^{(b)}$, this contradicts the optimality of σ_{opt}.
- $t<s$: If $\sigma_{\text {opt }}(s-1)<k_{1}$ then since every number $\geqq m+1$ occurs between $\lambda_{k_{1}}^{(b)}$ and $\lambda_{k_{0}}^{(b)}$, we would have $\sigma_{\text {opt }}(s)<k_{0}$, a contradiction. If actually $\sigma_{\text {opt }}(s-1)=k_{1}$, so that $\lambda_{s-1}=m+1$, then the same contradiction would occur unless $\lambda_{s}=m+1$, contradicting our assumption that at most one of the λ_{k} is equal to $m+1$. Thus $\sigma_{\text {opt }}(s-1)>k_{1}$. It follows that $t \leqq s-1$ unless $t^{\prime}=s-1, \lambda_{s-1}=m+1$. This last case again contradicts the optimality of $\sigma_{\text {opt }}$, since λ_{s} could be found strictly between $\lambda_{t^{\prime}}^{(b)}=m+1$ and $\lambda_{k_{0}}^{(b)}=m$.
- $\operatorname{rank}\left(g: M_{1} \rightarrow M_{t}\right) \leqq m+1:$ This follows from the induction, since

$$
\sigma_{\mathrm{opt}}(1) \leqq k_{1} \leqq \sigma_{\mathrm{opt}}(t)
$$

- $\operatorname{rank}\left(h: M_{t} \rightarrow M_{s}\right) \leqq m+1$: The sequence $\left(\lambda_{1}^{(b)}, \ldots, \lambda_{k_{1}-1}^{(b)}\right)$ is the same as the sequence $\left(\lambda_{k_{1}+1}^{(b)}, \ldots, \lambda_{k_{0}-1}^{(b)}\right)$; it follows that if τ is the optimal embedding of the length sequence ($\mu_{1}:=\lambda_{t}, \ldots, \mu_{s-t+1}:=\lambda_{s}$) then $\tau(1) \leqq k_{1} \leqq \tau(s-t+1)$. The desired conclusion then follows by our induction.
- length $\left(M_{t}\right)>m+1$: In the sequence $\lambda^{(b)}$ there is an occurence of m between the first two occurences of $m+1$. The first occurence of $m+1$ is in the k_{1} place, that of m is in the k_{0} place. Since $k_{1}<\sigma_{\text {opt }}(t)<k_{0}$ we thus have $\sigma_{\text {opt }}(t) \neq m+1$, and it follows that $\sigma_{\text {opt }}(t)>m+1$. This completes the proof of the rank condition.

Construction of examples

By Corollary 2 the existence statements of Theorems 1 and 4 follow from the existence, for each b, of a Harada-Sai sequence with length sequence $\lambda^{(b)}$. By Corollary 3 there is no ring of finite length over which all such possibilities exist. One of the simplest rings over which they could all exist is the ring $R=K[x, y] /(x y)$, where K is a field and $K[x, y]$ denotes the commutative polynomial ring; we shall construct them there. (Harada-Sai sequences of maximum length have been constructed over certain noncommutative rings of finite representation type by Bongartz [1].)

For any (noncommutative) word w in x and y we construct an indecomposable R-module $M(w)$ of length one more than the number of letters in the word. Each module is constructed with a particular basis, and we will only consider maps that take basis elements to basis elements. Among the basis elements, one is distinguished; we call it \star.

Rather than give a formal definition we describe the module $M(w)$ for the word $w=y x^{2} y^{2} x^{3}$: In this case $M(w)$ has a K-basis of $8=(1+2+2+3)$ elements labelled and one element labelled \star, with multiplication table given by

Note that $y \star=0$ and $\star \notin x M(w)$; equivalently, \star appears at the right hand side of the diagram above.

To construct the Harada-Sai sequences we use three functors:
$\diamond D=\operatorname{Hom}_{K}(-, K): \bmod _{R} \rightarrow \bmod _{R}$ is the duality functor; the distinguished basis vector \star of $\operatorname{Hom}_{K}(M, K)$ is taken to be the dual basis vector to the distinguished basis vector \star of M.
$\diamond E: \bmod _{R} \rightarrow \bmod _{R}$ the functor induced by the ring automorphism

$$
R \rightarrow R, \quad x \mapsto y, \quad y \mapsto x .
$$

Observe that $E M(w)=M(\hat{w})$, where \hat{w} is obtained from w by exchanging x and y. If $f: M\left(w_{1}\right) \rightarrow M\left(w_{2}\right)$ satisfies $f(\star)=\star$, then $E(f): M\left(\hat{w}_{2}\right) \rightarrow M\left(\hat{w}_{1}\right)$ satisfies $E(f)(\star)=\star$.
$\diamond F(M(w)):=M(w x)$. Note that $M(w)$ is naturally a submodule of $M(w x)$; we take the new \star to be the newly added basis vector. If $f: M(v) \rightarrow M(w)$ is a map preserving \star, then we take $F(f): M(v x) \rightarrow M(w x)$ to be f extended in such a way as to preserve the new \star.

For each $b \in \mathbb{N}$, we construct a Harada-Sai sequence $\varepsilon^{(b)}$ in $\bmod _{R}$, having length sequence $\lambda^{(b)}$. We proceed by induction on b, taking $\varepsilon^{(1)}$ to be the sequence whose only terms is the one-dimensional module $M(1)$, where 1 represents the empty word.

Suppose that $\varepsilon^{(b)}$ has the form

$$
\varepsilon^{(b)}: M\left(w_{1}\right) \longrightarrow M\left(w_{2}\right) \longrightarrow \cdots \longrightarrow M\left(w_{2^{b-1}}\right) \longrightarrow \cdots \longrightarrow M\left(w_{2^{b}-1}\right)
$$

and all maps take \star to \star. Note that $\lambda_{2^{b-1}}^{(b)}=1$, so $w_{2^{b-1}}=1$. We define $\varepsilon^{(b+1)}$ to be the sequence with left segment

$$
\begin{aligned}
& \alpha: F\left(M\left(w_{1}\right)\right) \longrightarrow F\left(M\left(w_{2}\right)\right) \longrightarrow \cdots \\
& \longrightarrow F\left(M\left(w_{2^{b-1}}\right)\right)=M(x)=F E\left(M\left(w_{2^{b-1}}\right)\right) \\
& \longrightarrow \cdots \\
& \longrightarrow F E\left(M\left(w_{2^{b}-1}\right)\right) .
\end{aligned}
$$

In all these modules \star is outside the radical. Thus we may continue the sequence α with the map $f: F E\left(M\left(w_{2^{b}-1}\right)\right) \rightarrow M(1)$ sending \star to \star and sending all the other basis vectors to 0 . We define the right-hand segment of $\varepsilon^{(b+1)}$ to be $D(\alpha)$. The whole sequence $\varepsilon^{(b+1)}$
consists of these two together with the module $M(1)$ in the middle. We may represent this symbolically as

$$
\varepsilon^{(b+1)}: \alpha \xrightarrow{f} M(1) \xrightarrow{D(f)} D(\alpha) .
$$

Since the composition of all the maps in the sequence sends \star to \star it is nonzero, and we are done.

References

[1] K. Bongartz, Treue einfach zusammenhängende Algebren, Comment. Math. Helv. 57 (1982), 282-330.
[2] H. Fitting, Über direkte Produktzerlegungen einer Gruppe in unzerlegbare, Math. Z. 39 (1934), 16-30.
[3] P. Gabriel and A.V. Roiter, Representation of finite-dimensional algebras, Algebra VIII, Encycl. Math. Sc. 73, Springer, 1992.
[4] M. Harada and Y. Sai, On categories of indecomposable modules I, Osaka J. Math. 7 (1970), 323-344.
[5] C. M. Ringel, Report on the Brauer-Thrall conjecture, in: Representation Theory II, Springer Lect. Notes Math. 832 (1980), 104-135.

Department of Mathematics, University of California, Berkeley CA 94720
e-mail: eisenbud@msri.org
Instituto de Matemáticas, UNAM, Mexico City, Mexico
e-mail: jap@penelope.matem.unam.mx

[^0]: ${ }^{1}$) The first author gratefully acknowledges support from NSF and the second author from CONACYT and DGAPA, UNAM.

