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BINOMIAL IDEALS

DAVID EISENBUD AND BERND STURMFELS

Introduction. It is notoriously difficult to deduce anything about the struc-
ture of an ideal or scheme by directly examining its defining polynomials. A
notable exception is that of monomial ideals. Combined with techniques for
making fiat degenerations of arbitrary ideals into monomial ideals (typically,
using Gr6bner bases), the theory of monomial ideals becomes a useful tool for
studying general ideals. Any monomial ideal defines a scheme whose compo-
nents are coordinate planes. These objects have provided a useful medium for
exchanging information between commutative algebra, algebraic geometry, and
combinatorics.

This paper initiates the study of a larger class of ideals whose structure can
still be interpreted directly from their generators: binomial ideals. By a binomial
in a polynomial ring S k[xl,..., Xn], we mean a polynomial with at most two
terms, say axe+ bx, where a,b k and , fl Z_. We define a binomial ideal
to be an ideal of S generated by binomials, and a binomial scheme (or binomial
variety, or binomial algebra) to be a scheme (or variety or algebra) defined by a
binomial ideal. For example, it is well known that the ideal of algebraic relations
on a set of monomials is a prime binomial ideal (Corollary 1.3). In Corollary 2.6
we shall see that every binomial prime ideal has essentially this form.
A first hint that there is something special about binomial ideals is given by

the following result, a weak form of what is proved below (see Corollary 2.6 and
Theorem 6.1).

THEOREM. The components (isolated and embedded) of any binomial scheme
in affine or projective space over an algebraically closed field are rational varieties.

By contrast, every scheme may be defined by trinomials, that is, polynomials
with at most three terms. The trick is to introduce n- 3 new variables zi for each
equation alxml +... + anxmn --0 and replace this equation by the system of
n- 2 new equations

Z1 -- al Xml -- a2Xm2 --z1 z2 -- a3Xm3 --z2 -I- z3 --I- a4Xm4
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Our study of binomial ideals is partly motivated by the frequency with which
they occur in interesting contexts. For instance, varieties of minimal degree in
projective spaces are defined by binomial equations in a suitable system of co-
ordinates. More generally, any toric variety is defined by binomials. (Through-
out this paper, we use the term "toric variety" to include also toric varieties that
are not normal.) We shall see that the binomial ideals that are prime are pre-
cisely the defining ideals of toric varieties. Sections of toric varieties by linear
subspaces defined by coordinates or differences of coordinates give interesting
examples of binomial schemes. For varieties of minimal degree, such sections
were studied by Xamb6 IX].
More general than coordinate rings of toric varieties are commutative semi-

group algebras. An excellent general reference is Gilmer’s 1984 book [Gi], which
treats these algebras over arbitrary base rings. Gilmer shows in Theorem 7.13
that the semigroup algebras of commutative semigroups are precisely the homo-
morphic images of polynomial rings by ideals generated by pure difference bino-
mials, that is, polynomials x- x, where , fl Z_. In fact, the Zariski closure
of any subsemigroup of k n, regarded as a semigroup by pointwise multiplication,
or any of its translates is defined by binomials (see Proposition 2.3 and the re-
mark following). Generalizing in a different direction, we show that an algebra
over a field k is defined by binomial equations if and only if the algebra admits
a grading by a semigroup such that each graded component has dimension < 1
over k; see Proposition 1.11. An interesting special case that has been studied
intensively is given by the Aloebras of type A studied by Arnold [A], Korkina
[Kor], [KPR], and others. It may be possible to shed some light on their struc-
ture using the techniques developed here.

Further examples generalizing toric varieties are the face rinos of poly-
hedral complexes introduced by Stanley [Sta]. Geometrically, they are obtained
by gluing toric varieties along orbits in a nice way. They all have binomial
presentations (see Example 4.7). Some of them and their binomial sections are
geometrically interesting, for example as degenerations of special embeddings of
abelian varieties, and have played a role in the investigations of the Horrocks-
Mumford bundle by Decker, Manolache, and Schreyer [DMS].
Gr6bner basis techniques using a total monomial order on a polynomial ring

allow the fiat degeneration of an arbitrary algebra to an algebra defined by
monomial equations. Using orders that are somewhat less strict, we sometimes
get degenerations to algebras defined by binomial equations. In particular,
the subalgebra bases of Robbiano and Sweedler [RS] allow one to do this in a
systematic way. The resulting degenerate varieties may be better models of
the original varieties than those produced by a further degeneration to varieties
defined by monomials.

Complexity issues in computational algebraic geometry provide another
motivation for the study of binomial ideals. The main examples known to attain
worst case complexity for various classical problems are binomial: these are the
constructions of Mayr-Meyer [MM] and Yap [Y] for ideal membership, Bayer-
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Stillman [BS] for syzygies, and Brownawell [Br] and Kollir [K] for the effec-
tive Nullstellensatz. It has long been believed that the Mayr-Meyer schemes are so
bad because of the form of their primary decompositions. The theory developed
here provides tools for a systematic investigation of such schemes.

Binomial prime ideals arise naturally in a variety of settings in applied mathe-
matics, including dynamical systems (see, e.g., Hoveijn [HI), integer program-
ming (see Conti-Traverso [CT] and Thomas IT]), and computational statistics
(see Diaconis-Sturmfels [DS]). Within computer algebra, they arise in the ex,
tension of Grrbner basis theory to canonical subalgebra bases suggested by
Robbiano-Sweedler [RS], where the role of a single S-pair is played by an entire
binomial ideal. For real-world problems in these domains, it may be computa-
tionally prohibitive to work with the binomial prime ideal that solves the prob-
lem exactly, in which case one has to content oneself with proper subideals that
give approximate solutions. Those subideals are binomial but usually not prime,
so the theory developed here may be relevant.
We now describe the content of this paper. To simplify the exposition, we

assume that k is an algebraically closed field. Fundamental to our treatment is
the observation that every reduced Grrbner basis of a binomial ideal consists of
binomials. It follows, for example, that the intersection of a binomial ideal and a
monomial ideal is binomial, and any projection of a binomial scheme into a
coordinate subspace has binomial closure. Such facts are collected in Section 1
and are used frequently in what follows. We prove in Corollary 1.9 that the
blowup algebra, symmetric algebra, Rees algebra, and associated graded algebra
of a binomial algebra with respect to a monomial ideal are binomial algebras.
This generalizes the remark that toric blowups of toric varieties are toric.
The first step in our analysis of binomial schemes in an affine space k n is to

decompose kn into the 2n algebraic tori interior to the coordinate planes, and
study the intersection with each of these. In algebraic terms, we choose a subset
g_ {1,...,n} and consider the binomial ideals in the ring of Laurent poly-
nomials

k[d+ := k[{xi, x71}ie] k[xl,... ,xn][{xr }ie]/({xi}i),

corresponding to the torus

(k*) := {(p,...,pn) eknlpiOforieN, pi=Oforiq}.

In Section 2 we show that any binomial ideal in k[o+] is a complete intersection.
In characteristic zero, every such "Laurent binomial ideal" is equal to its own
radical, and the algebraic set it defines consists of several conjugate torus orbits.
In characteristic p > 0, binomial ideals may fail to be radical, as for example
(xP- 1) (x- 1)P c k[x,x-1], but this failure is easy to control. We establish a
one-to-one correspondence between Laurent binomial ideals and partial characters
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on the lattice Zg of monomials in k[g+], where we define a partial character p to
be a group homomorphism from a subgroup Lp Zg to the multiplicative group
k*. Properties of Laurent binomial ideals can be deduced from arithmetic pro-
perties of the associated partial characters. For example, the lattice Lp is saturated
if and only if the corresponding Laurent binomial ideal is prime.
The next step in our theory is the study of reduced binomial schemes. The

central result in Section 3 says that the radical of any binomial ideal is again
binomial. We prove a corresponding result for the "k-radical"that is, for the
ideal of the Zariski closure of a binomial algebraic set in k n even when k is not
algebraically closed.

In Section 4 we apply our result on radicals to characterize when the inter-
section of prime binomial ideals is binomial. In other words, we determine which
unions of toric varieties are defined by binomial equations.
A serious obstacle on our road to binomial primary decomposition lies in the

fact that if B is a binomial ideal and b is a binomial, then the ideal quotient
(B:b) is generally not binomial. This problem is confronted in Section 5. A
mainspring of our theory (Theorem 5.2) is the description of a delicate class of
instances where these quotients are binomial.

In Section 6 we prove that the associated primes of a binomial ideal are bi-
nomial. Before undertaking a primary decomposition, we pass to a "cellular
decomposition," in which the components are intersections of primary compo-
nents having generic points in a given cell (k*)g. We then decompose the cellular
binomial ideals further: Theorem 6.4 states that the (uniquely defined) minimal
primary components are still binomial. More generally, we prove that local-
izations of cellular binomial ideals at binomial primes intersect the polynomial
ring in binomial ideals.

In Section 7 we prove that every binomial ideal has a primary decomposition,
all of whose primary components are binomial. The form of the decomposition
is curiously different in characteristic zero from that in positive characteristic.

Section 8 contains a number of auxiliary results, among them an alternative
decomposition of a binomial ideal and a condition under which the cellular
components are primary. Perhaps most interesting, we give a systematic way of
finding a close approximation to a binomial prime ideal, the associated circuit
ideal.

In Section 9 we present some algorithms for decomposing binomial ideals that
emerge from the general theory. These differ markedly from the known algo-
rithms for primary decomposition in that they maintain extreme sparseness of
the polynomials involved.
Having learned that the operations of primary decomposition, radicals, pro-

jections, etc. described above take binomial ideals to binomial ideals, the reader
may think that binomiality is preserved by many common ideal-theoretic con-
structions. This is not the case; in fact, the set of "binomial-friendly" operations
is quite limited. This is what makes the main results of this paper difficult. Here
are some cautionary examples.
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If B is a binomial ideal and m is a monomial, then the ideal quotient (B m) is
binomial (Corollary 1.7). However, the monomial rn cannot be replaced by a
monomial ideal. Even an ideal (B: (xi, xj)) need not be binomial (Examples 1.8
and 4.6). Similarly, ideals (B:b) for a binomial ideal B and a binomial b need
not be binomial (Example 5.1).
Another difficulty is that very few intersections of binomial ideals are bi-

nomial. For example, a radical binomial ideal can have several components,
each of which must be binomial, as stated above, but such that only certain sub-
sets intersect in binomial ideals. The simplest case, in one variable, is given by
the ideal

(xd 1) (") (X-- m).
ek,a=l

Here the intersections of components that are again binomial are precisely the
ideals

(xd/e--1) N (X-(m)
(k,(e=l

where e divides d. Our characterization of binomial algebraic sets gives rise to
examples (such as Example 4.6) where the intersection of the primes of maximal
dimension containing a radical binomial ideal need not be binomial. Given such
waywardness, it still seems to us something of a miracle that binomial ideals have
binomial primary decompositions.

1. Griibner basis arguments. Throughout this paper, k denotes a field and
S := k[xl,..., xn] the polynomial ring in n variables over k. In this section, we
present some elementary facts about binomial ideals which are proved using
Gr/Sbner bases. The facts will be used frequently later on. For Gr6bner basics,
the reader may consult Buchberger [Bu], Cox, Little, and O’Shea [CLO], or
Eisenbud [E]. Recall that a term is by definition a scalar times a monomial

PROPOSITION 1.1. Let < be a monomial order on S, and let I c S be a binomial
ideal.

(a) The reduced Gr6bner basis of I with respect to < consists of binomials.
(b) The normalform with respect to < of any term modulo c is again a term.

Proof. (a) If we start with a binomial generating set for I, then the new
Grtibner basis elements produced by a step in the Buchberger algorithm are
binomials. (b) Each step of the division algorithm modulo a set of binomials
takes a term to another term. [--]

One immediate application is a test for binomiality. (Note that we are work-
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ing with a fixed coordinate system. We do not know how to test efficiently
whether an ideal can be made binomial by a linear change of coordinates.)

COROLLARY 1.2. Let < be a monomial order on S. An ideal I S is binomial if
and only if some (equivalently, every) reduced Gribner basis for I consists of
binomials. In particular, an ideal I S is binomial if and only if, for some field
extension k’ of k, the ideal kI in k’[xl,..., x,] is binomial.

Proof. This follows from Proposition 1.1(a) and the uniqueness of the
reduced Gr6bner basis with respect to a fixed monomial order "<".

A binomial ideal in k’[x] may have a nonbinomial contraction to k[x]. For
example, take I (x c) k’[x], where c k’ is algebraic over k but not a root
of an element of k.
The following consequence of Proposition 1.1 shows that coordinate projec-

tions of binomial schemes are binomial.

COROLLARY 1.3. If I k[xl,...,xn] is a binomial ideal, then the elimination
ideal I c k[x, xr] is a binomial ideal for every r < n.

Proof. The intersection is generated by a subset of the reduced Gr6bner basis
of I with respect to the lexicographic order.

The projective closure is also well behaved.

COROLLARY 1.4. IfX is an affine scheme in k defined by an ideal I in S, then
the ideal in Six0] defining the projective closure ofX is binomial if and only if ! is
binomial.

Proof. The ideal of the projective closure is generated by the homogeniza-
tions of the elements in the reduced Gr6bner basis for I with respect to the total
degree order.

As we have already mentioned, an intersection of binomial ideals is rarely
binomial. But when all but one of the ideals is generated by monomials, or even
generated by monomials modulo a common binomial ideal, then everything is
simple.

COROLLARY 1.5. If I,I,J1,...,Js are ideals in S k[Xl,...,Xn] such that I
and I’ are generated by binomials and J1,..., Js are generated by monomials, then

(I+I’) c (I+J1) c (I+J2) (I+Js)

is generated by binomials.

Proof. Suppose first that s 1. In the larger polynomial ring k[xl,..., Xn, t],
consider the binomial ideal L generated by I + tI’ + (1 t)J1. The claim follows
from Corollary 1.3 and the formula (I + I’) c (! + J1) Lck[xl,...,Xn]. For
the general case, use induction on s. V-]
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A slightly more subtle argument shows that there is a good theory of mono-
mial ideals modulo a binomial ideal. (See Proposition 3.4 for a further result in
this direction.)

COROLLARY 1.6. Let I be a binomial ideal and let J1,..., Js be monomial ideals
in S.

(a) The intersection (I + J1) c (I + Js) is generated by monomials
modulo I.

(b) Any monomial in the sum I + J1 q-’" q-Js lies in one of the ideals I + Jj.
In particular, if m, ml,...,ms are monomials and mI + (m,...,ms), then
m I + (mi)for some i.

Proof. Choose a monomial Order on S, and let ’ be the set of monomials
not in the initial ideal in(I) of I with respect to this order; these monomials are
called standard monomials mod I. The image ’ of ’ in S/I is a vector space
basis. Let jj be the image of J in S/I. By Proposition 1.1 (b), each j has a vec-
tor space basis that is a subset of ’. It follows that the intersection of these
bases is a basis for c J, which is thus spanned by monomials. Similarly, the
union of these bases is a basis for -’j j. Using Proposition 1.1(b) again, we see
that if m is a monomial in y4(I / J) then r S/I is represented by a standard
monomial in j j, and thus belongs to one of the Yj, whence m I + Jj as
required. The last statement is a special case. [--]

Here is a central result that serves as a bridge to connect the theory of
binomial ideals in a polynomial ring with that of Laurent binomial ideals devel-
oped in the next section. If I,J are ideals in a ring R, then we set (I" J):-
(fRlfJ=I }, and (I’J) := {fR[fjmIform>>O}. If gR, we
abbreviate (I" (g)) to (I" g).

COROLLAgY 1.7. Let I S be a binomial ideal, m,...,mt monomials, and
fl,..., j polynomials such that -i jmi I. Let fi, denote the terms of fi. For
each term j,j, either fi,jmi I or there is a term j,,j,, distinct from fi, j, .and a
scalar a k such that fi,jmi d- afi,,j,mi, I. In particular:

(a) For any monomial m the ideal quotients (I’m) and (I’m) are binomial.
(b) The first syzygies of monomials modulo a binomial ideal are generated by

binomial syzygies.

Proof. Choose a monomial order > on S. By Proposition 1.1(b) the normal
form of J,mi modulo I is either zero or a term m. If it is zero, we have J,mi I.
Otherwise, m must cancel against a sum of terms in the normal forms of some
fi,mi,. By Proposition 1.1(b), these are the normal forms of terms fi,,j,mi,. The
first statement follows.
To prove (a), suppose that f (I" m), that is, fm I. By the first part of

the corollary, with 1, we may write f as a sum of binomials in (I’m). Thus,
(I’m) is generated by binomials. Since (I’m) s (I’mS), the second state-
ment follows from the first. Part (b) follows similarly. V1
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Corollary 1.7 shows that the ideal quotient of a binomial ideal by a single
monomial is a binomial ideal. However, the quotient of a binomial ideal by a
monomial ideal need not be a binomial ideal, even if the monomial ideal is gen-
erated by two variables.

Example 1.8 (Quotients of binomial ideals by monomial ideals are generally
not binomial). Let I (axl ax3, aXE ax4, bxl bx4, bx2 bx3)
k[a,b, xl,... ,x4]. This ideal is the intersection of four binomial primes defining
linear subspaces:

I--(a,b) (a, xl x4, x2 x3)’ (b, x1-x3,x2-x4) ’ (x2-x3,x3 x4, x1 x4).

The equidimensional part of I of codimension 3 is (I: (a, b)), which is the inter-
section of the last three of these primes. But the homogeneous ideal

(I: (a,b)) (x1 -I- x2 x3 x4, a(x2 x4), (x2 x3)(x2 x4), b(x:z x3))

is not a binomial ideal. For example, it contains Xl / x. / x3 / x4, but no other
linear form. See also Example 4.6.

Corollaries 1.3 and 1.7 give us interesting sources of binomial algebras, for
example, the following corollary.

COROLLARY 1.9. Let B be a binomial ideal and M a monomial ideal in S. If we
set R S/B and I (B + M)/B R, then each of the following five algebras is
binomial: the symmetric al#ebras SymR I and SymR/I I/I, the blowup al#ebra
R[zI] R[z], the Rees algebra R[z-l,zI] R[z-l,z], and the associated #faded
algebra griR.

Proof Let M (ml,...,mr). By Corollary 1.7, there are binomial syzygies
-j ,jm 0 (mod B) that generate all the syzygies of I over R. The symmetric
algebra SymRI may be represented as a polynomial algebra R[y,..., Yt] modulo
the relations A,y 0. Each generator i ,Jyi is a binomial, so we see that
the symmetric algebra is binomial. It follows that SymR/iI/I2= SymR(I)/
! SymR(I is binomial, too.
The blowup algebra R[zI]

_
R[z] may be represented as R[y,..., Yt]/J, where

J is the ideal of algebraic relations satisfied over R by the elements miz R[z].
The ideal J is the intersection of R[yl,..., Yt] with the ideal

J’ (y mlz,...,yt- mtz) R[yl,...,yt, z].

Since J’ is binomial, Corollary 1.3 shows that J is binomial. An analogous con-
struction with two variables z and z’, and an ideal J’= (y- mz,... ,yt- mz,
zz’- 1) proves the statement about the Rees algebra.
The case of the associated graded algebra follows from the cases above, since

griR R[zIl/IR[zI] R[z-,zI]/z-lR[z-l,zI].
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Here is another useful fact about monomial ideals modulo binomial ideals.
The assertion is equivalent to the existence of the special Gr6bner basis con-
strueted in the proof.

PROPOSITION 1.10. Let B be a binomial ideal and M a monomial ideal in S. If
f B + M and ft is the sum ofthose terms off that are not individually contained
in B + M, then f B.

Proof We may harmlessly assume that f f’, and we must show that f B.
We shall construct a special Gr6bner basis for B + M.
Choose a monomial order on S. Let G be a Gr6bner basis for B, and let M’ be

a set of generators for the ideal of all monomials contained in B + M. Clearly,
G w M’ generates B + M. We claim that G w M’ is a Gr6bner basis. By Buch-
berger’s criterion, it is enough to check that all s-pairs made from G w M’ reduce
to zero modulo G w M’. Now the s-pairs made from pairs of elements of G
reduce to zero since G is a Gr6bner basis. The s-pairs made from an element of
G and an element of M’ yield monomials that lie in B + M and that therefore
reduce to zero through generators of M’. The s-pairs made from two elements of
M yield zero to begin with. This shows that G w M is a Gr6bner basis.
The normal form modulo G w M’ of a term of f is, by Proposition 1.1, a

monomial re(t), and our assumption implies that re(t) is nonzero. Consider the
division process that reduces t to re(t) by subtracting appropriate multiples of
elements of G w M’. At each stage the remainder is a monomial. If this mono-
mial were ever divisible by an element of M’ then it would reduce to zero. Thus,
the division process can use only elements from G. We conclude that f reduces
to zero under division by G, and hence f lies in B. [--1

An affine toric variety over k is a variety admitting an algebraic action by a
finite product of copies of the multiplicative group (Gin)d with a dense orbit
isomorphic to (Gm)". Such varieties may be characterized by saying that their
coordinate rings are Zd-graded in such a way that each homogeneous com-
ponent has dimension < 1. The following characterization of binomial algebras
extends this.

PROPOSITION 1.11. A finitely generated k-algebra R admits a presentation of
the form R S/B, where B is a binomial ideal, if and only if R can be graded by a
commutative semigroup with n generators in such a way that every homogeneous
component ofR has dimension < 1.

Proof First suppose that R admits a grading of the given type by the semi-
group E. We may map S onto R by sending the variables xi to nonzero elements
of the one-dimensional spaces of homogeneous elements of degree corresponding
to the n generators of E. The relations on these generators are generated by
homogeneous relations, that is, by relations that are sums of monomials all with
the same degree in Z. But for any two monomials m,m’ of S with the same
degree in Z, there is a scalar a k such that the binomial am- m’ S goes to
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zero in R. Thus, the ideal of all such binomials generates the kernel of the map
$Ro

Before proving the converse, a remark about semigroup gradings will be use-
ful. Suppose that R--S/B where B is any ideal. Let E be the set of all one-
dimensional subspaces (m) of R generated by monomials rn in the images of the
xi, together with the "formal" element (0). The set Y is an (additive) semigroup,
with operation (m) + (n) (mn) (this is where the element (0) may be neces-
sary) and neutral element (1). In order for R to be graded by E, it is necessary
and sufficient that the natural map

( (m)---, R
(m.,,
mO

be an isomorphism of vector spaces. The map is clearly surjective, but it is not
always injective.

If now B is a binomial ideal, and we choose a monomial order on S, then by
Proposition 1.1 the normal form of a monomial modulo B is a term. This implies
that if (m) is contained in the linear span of (ml),..., (mt) modulo B, then
is contained in one of the (mi) modulo B, and proves that the (m) in E with
rn 0 are linearly independent, as required. IS]

2. Laurent binomial ideals and binomial primes.
the ring

Let k be a field. We consider

k[x+1 := k[Z] k[x,..., xn, x-{I,..., x21]

of Laurent polynomials with coefficients in k. A binomial in k[x+] is an element
with at most two terms, say axe+ bx fl, where a, b e k and , fle Zn. A Laurent
binomial ideal is an ideal in k[x +/-] generated by binomials. Note that in k[x+/-] any
nonzero binomial that is not a unit can be written in the form xm- Cm for some
rn e Zn and Cm k*.

In this section, we analyze Laurent binomial ideals and their primary decom-
positions. We regard k[x +/-] as the coordinate ring of the algebraic torus (k*)n

Hom(Zn, k*), the group of characters of Z. A partial character on Zn is a
homomorphism p from a sublattice Lp of Z" to the multiplicative group k*.
Whenever we speak of a partial character p, we mean the pair consisting of the
map p and its domain Lp

_
Z". Given a partial character p, we define a Laurent

binomial ideal

I(p) := (xm p(m) rn Lp).

We shall see that all Laurent binomial ideals are of this form.
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THEOREM 2.1. Let k[x +/-] be a Laurent polynomial ring over a field k.
(a) For any proper Laurent binomial ideal I

_
k[x +/-] there is a unique partial

character p on Zn such that I I(p).
(b) If ml,..., mr is a basis of the lattice Lp, then the binomials

generate I(p) and form a regular sequence in k[x+/-]. After a change of variables in
k[x+/-], the ideal I may even be generated by a regular sequence of the form

dX11 Cl... X Cr.

In particular,

codim(I(p)) rank(Lp).

Now assume that k is algebraically closed.
(c) The ideal I(p) is prime if and only if Lp is a direct summand of Zn.
(d) Let char(k) p > O. Suppose that p is a partial character on Zn and Lp

_
L Zn are lattices with L/Lp finite of order g. If g is relatively prime to p, then
there are g distinct characters p on L that are extensions ofp on Lp, and

I(p) (") I(p’).
p extends p to L

Ifg is a power ofp, then there is a unique extension p’ ofp to L, and k[x+/-]/I(p) has
a filtration by k[x+/-]-modules

k[x+/-]/I(p) Mo = M1 = = Mg 0

with successive quotients Mi/Mi+l " k[x+/-]/I(p’).

Proof. (a) Any proper binomial ideal I in k[x +/-] is generated by its elements of
the form xm cm for m e Zn and c e k*. Let L be the subset of Zn consisting of
those m that appear. Since I is proper, Cm is uniquely determined by m. From the
basic formula

xm+m’ cd (xm c)xm’+ c(xm’- d), (2.1)

we see that if x"-Cm and xm’- Cm, are in I, then so is Xm+m’- CmCm’, while if
xm+m’ CmCm, and xm Cm are in I, then so is xm’ era,. Hence, L is a sublattice of
Zn, the map p: L k* taking m to cm is a character, and I I(p).
For the uniqueness part of (a), we shall show that if a binomial xu- Cu lies

in I(p), then u e Le and Cu p(u). We write k[x +/-] as the quotient of the poly-
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nomial ring T :--k[yl,...,yn, Zl,...,Zn] modulo the binomial ideal (yizi-1:
1,..., n). If I’(p) denotes the preimage of I(p) in T, then It(p) is generated

by the set

{yz p(a-b-c+d) yzd a,b,c,d N", a- b =_ c- d (mod Lp)}. (2.2)

By Buchberger’s criterion, this set is a Gr6bner basis for I’(p) with respect to any
monomial order on T, since the condition a b c d (mod Lp) on exponents is
preserved by the formation of s-pairs. If x u Cu lies in I(p), and we write u+, u_ for
the positive and negative parts of u, so that u u+ u_, then the normal form of
y"+z’- modulo this Gr6bner basis is the constant Cu. Each polynomial in the
reduction sequence is a term of the form p(a-b-c+d), yu+-a+czu--b+d where
a b c + d Lp. This proves that u Lp and p(u) Cu.

(b) Formula (2.1) shows that any set of additive generators {mi} of L, gives
rise to a set of generators x m’ -p(mi) of the ideal I(p). Diagonalizing a matrix
representing the inclusion Lt, Z",we see that I(p) can be generated by a

drsequence of elements of the form x -cl,..., x -cr as claimed. Since this is
obviously a regular sequence, we see at once that the codimension of I(p) is r.

If ml,...,mr are linearly independent elements that span Lt, it remains to
show that

X ml p(ml),..., Xmr p(mr)

is a regular sequence. By induction on r, we may suppose that the first r- 1 bi-
nomials form a regular sequence. In particular, all the associated primes of the
ideal they generate have codimension r- 1. Since I(p) has codimension r, the last
binomial is not in any of these associated primes, and we are done.

,r cr), as in part (b), it is clear(c) From the expression I(p) (Xal Cl,..., x
that I(p) is prime if and only if all the di are equal to 1. This holds if and only if
Lp is a direct summand, as claimed.

(d) Both statements reduce to the case where L/Lt, is a cyclic group of prime
order q. Diagonalizing a matrix for the inclusion Lp c L, we may choose a basis
ml,... ,mr of L such that Lp has the basis m,... ,mr-a,qmr. For any extension p
of p to L, the element pt(mr) is a qth root of p(qm). If c k* is one such qth root
and we let

J (xm’ p(ml),... ,x mr-’ p(mr-1)),

then each of the ideals I(p’) has the form I(p’) J + (Xmr C) for some qth root
of unity if, while I(p) J + (Xqmr cq).

If q :A P, then there are q distinct qth roots of unity in k. If and t are two of
them, then I(p’) J + (X, mr C) and I(p’) J + (xmr ’c) together generate
the unit ideal. Thus, in the ring R := k[x+]/J the intersection of these ideals is
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equal to their product, and we get

I(p)/J (xqm" cq)R H (xmr (c)R (xmr (c)R ( I(p’)/J.
C p’

It follows that I(p) p, I(p’) as required.
On the other hand, if q p, then ( 1 and xqmr Cq (X mr )q. By part (b),

the element xm" c is a nonzerodivisor modulo J. Therefore, in the filtration

k[x +] = I(p’) J + (xmr c) = J - (xmr )2 = = j

__
(xmr C) p i(p),

the successive quotients are isomorphic to k[x+]/I(p’). Reducing modulo I(p), we
get a filtration of k[x+]/I(p) with the desired properties. 7-]

Using Theorem 2.1 we can describe the primary decomposition and radical of
a Laurent binomial ideal in terms of operations on integer lattices. If L is a sub-
lattice of Zn, then the saturation of L is the lattice

Sat(L) := (m Znldm L for some d Z}.

The group Sat(L)/L is finite. We say that L is saturated if L Sat(L). If p is a
prime number, we further define Satp(L) and Sate(L) to be the largest sublattices
of Sat(L) such that Satp(L)/L has order a power of p and Sat’p(L)/L has order
relatively prime to p. (These can be computed by diagonalizing a matrix repre-
senting the inclusion of L in zn.) We adopt the convention that if p- 0, then
Satp(L) L and Sate(L) Sat(L).

If p is a partial character, we define the saturations of p to be the characters
p’ of Sat(Lp) that restrict to p on Lp, and we say that p is saturated if Lp is
saturated.

COROLLARY 2.2. Let k be an algebraically closed field of characteristic p O.
Let p be a partial character. Write g for the order of Satp(Lp)/Lp. There are g
distinct characters Pl,’’ ",Pg of Sat(Lp) extending p and for each j a unique
character p of Sat(Lp) extending pj. There is a unique partial character p’ of
Satp(Lp) extending p. The radical, associated primes, and minimal primary de-
composition of I(p) k[x+] are

V/I(p)=I(p’)

Ass(S/I(p)) {I(pj)lJ-- 1,...,g}

I(p) I(pj),
j=l

and I(pj) is I(p)-primary. In particular,/f p char(k) O, then I(p) is a radical
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ideal. The associated primes I(p) of I(p) are all minimal and have the same co-
dimension rank(Lp). The geometric multiplicity of each primary component I(pj) is
the order of the group Satp(Lp)/Lp.

Proof. For every prime q # p and every integer d > 0, the subgroup of k* of
elements of order qd is cyclic of order qd, while the subgroup of k* of elements
of order pd is trivial. This implies that there is a unique extension p’ of p to
Satp(L), exactly g extensions pj of p to Sat(Lp), and a unique extension pj of
pj to Sat(Lp). Since Sat(Lp)/Lp is finite, the rank of Sat(Lp) is the same as that
of L.
By Theorem 2.1(b) and (c), each I(pj) is a prime ideal of codimension

rank(L). By the first part of Theorem 2.1(d), we have I(p’) c I(p), so I(p’)
is a radical ideal. The second part of Theorem 2.1(d) shows that k[x+]/I(p) has a
finite filtration whose factors are isomorphic to k[x+]/I(p’), so that I(p’) is nil-
potent mod I(p). This shows that I(p’) is the radical of I(p).
The equality I(p) =11(p) follows directly from the first part of Theorem

2.1(d). Thus, to establish the assertions about associated primes and primary
decomposition, it suffices to show that each I(p) is I(pj)-primary of geometric
multiplicity card(Satp(Lp)/Lp). Applying the second part of Theorem 2.1(d), we
see that k[x+]/I(p) has a filtration of length g whose successive quotients are all
isomorphic to k[x+/-]/I(p]). Both the fact that I(pj) is primary and the assertion
about the geometric multiplicity follow.

We next characterize the algebraic sets corresponding to Laurent binomial
ideals: They are the translates of algebraic subgroups of (k*)n. It turns out that
the Zariski closure of any subsemigroup of the group (k*)n has this form. In the
statement below we identify (k*)n with the group of characters Hom(Z,k*), so
that k[zn] is naturally the coordinate ring of (k*) n.

PROPOSITION 2.3. Let k be any field.
(a) The ideal of polynomials vanishing on any translate of a submonoid of (k*)n

is generated by binomials, and thus has the form I(p) for some partial character p
on Z.

(b) The algebraic set Z(I(p)) of points in (k*)" Hom(Zn, k *) where all the
elements of I(p) vanish is the set ofcharacters ofZ that are extensions ofp. If it
is nonempty, it is the translate of the subgroup

Hom(Zn/Lp, k*)
_
Hom(Zn, k*)

by any such .
Proof. (a) Let F be a subsemigroup of (k*), and let z (k*)n be any element.

We must show that the ideal of Laurent polynomials vanishing on zF is gen-
erated by binomials. First suppose that z is trivial. Each monomial in k[Zn acts
as a character on F. A Laurent polynomial that vanishes on F is thus a linear
dependence relation on characters of F. Artin’s theorem (see, for example, Lang
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[L, VIII.4.7]) says that distinct characters are linearly independent, so the de-
pendence relations are generated by the differences of pairs of characters that are
equal on F, that is, by pure difference binomials.
A function p: (k*)n k vanishes on zF if and only if the function (z. p)(x) :=

p(z. x) vanishes on F. Thus, if the ideal of F is I(tr), where tr is the trivial char-
acter on the lattice L,, then the ideal of zF is

(b) The assertion is immediate from the identification of points of (k*)n with
characters of Zn.

Remark. The same argument shows that the ideal of polynomials vanishing
on a translate of a subsemigroup of k n, regarded as a semigroup by component-
wise multiplication, is generated by binomials. A variant of this proof shows that
any subsemigroup-scheme of An is defined by a binomial ideal. The point is the
following version of Artin’s theorem: If A is an algebra over a field k with an
algebra map A: A A (R) A and ml, ..., mr e A are distinct nonzero elements that
are primitive in the sense that A(mi)= mi (R) mi, then ml,...,mr are linearly
independent in A.

Recall that the k-radical p of an ideal I in an affine k-algebra A is the ideal
of functions vanishing at all the k-rational points of the variety associated to I;
that is, it is the intersection of all the maximal ideals of A with residue class field
k. We next show that the k-radical of a Laurent binomial ideal is again generated
by binomials. In Section 3 we shall use this result to prove the same statement
for ideals in a polynomial ring. This question was suggested to us by J. Gamboa.

COROLLARY 2.4. Let k be any field. If I is a binomial ideal in k[x+], then the k-
radical of I is 9enerated by binomials.

Proof By Proposition 2.3(b) the algebraic set defined by I is a translate of a
subgroup, and by Proposition 2.3(a) the ideal of polynomials vanishing on such
a set is binomial.

Here is an explicit formula for the radical of a Laurent binomial ideal:

(1) if the partial character p" Lp k* has no extension Sat(Lp) k*
Ip, where L’ is the largest sublattice of Sat(Lp) on which all

extensions of p to Sat(Lp) agree and p" L’ k* is their
common restriction.

The results of Theorem 2.1 can be transferred to certain affine binomial ideals.
As in the proof of Theorem 2.1(a), we let m+,m_ e zn+ denote the positive part
and negative part of a vector m e Zn. Given a partial character p on Zn, we
define the ideal

I+(p) := ({xm+ p(m)xm-:m e Lp}) in S k[xl,... ,Xn]. (2.3)

COROLLARY 2.5. If I is a binomial ideal in S k[xl,...,xn] not containing
any monomial, then there is a unique partial character p on Zn such that
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(I: (X1 Xn)) I+(p). The generators of I+(p) given in (2.3) form a Gr6bner
basis for any monomial order on S. The binomial ideals of the form I+(p) are pre-
cisely those whose associated points are off the coordinate hyperplanes. If k is
algebraically closed, then all the statements of Corollary 2.2 continue to hold if we
replace each I(-) by I+(-).

Proof. The ideal (I: (xl ...xn)) is equal to I. k[x +] cS, the contraction
from the Laurent polynomial ring. By Theorem 2.1(a), there exists a unique par-
tial character p such that I. k[x +] I(p). k[x+]. The map S k[x+] may be
factored through the ring T as in the proof of Theorem 2.1(a). With II(p) defined
as in that proof, we have I. k[x +] rS I’(p)cS. Since the elements in the
set (2.2) form a Gr6bner basis with respect to any monomial order on T, the
elements in this set not involving the variables yi form a Gr6bner basis of
I. k[x +] S. These are exactly the given generators of I+(p).
The third statement holds because an ideal in S whose associated points are

off the coordinate hyperplanes is contracted from k[x+]. The fourth statement
follows at once. U]

Consider a k-algebra homomorphism from S--k[xl,... ,Xn] to the Laurent
polynomial ring k[t+] := k[tl, t]-l,..., tr, tr--1] which sends each variable xi to a
monomial cit a’. Its kernel P is a prime ideal, which is generated by binomials.
The variety defined by P in k n is a (not necessarily normal) affine toric variety.
For details on toric varieties and their ideals, see Fulton IF], Sturmfels [Stul],
and the references given there. Corollary 2.2 implies that over an algebraically
closed field toric ideals are the same as binomial prime ideals.

COROLLARY 2.6. Let k be an algebraically closed field, and let P be a binomial
ideal in S:k[xl, ,Xn]. Set {yl, ys} :- {x,... ,Xn} c P and let {Zl,... ,zt} :--
{Xl,... ,Xn}\P. The ideal P is prime if and only if

P (Yl,...,Ys) + I+(p)

for a saturated partial character p in the lattice Z corresponding to z,... ,zt. In
this case, the prime P is the kernel of a ring homomorphism

k [Yl,..., Ys, z1,..., zt] k[ t+/-], yi O, zm v--+ (m)tn, (2.4)

where ff Zt/Lp denotes the image ofm Z t, the group algebra of Zt/Lp is iden-
tified with a Laurent polynomial ring kit+/-I, and is any extension ofp to Z t.

Proof We must prove the "only if" direction. Given a binomial prime P,
consider the binomial prime P/(y,...,ys) in k[Zl,...,zt]. Modulo this prime
each zj is a nonzerodivisor. By Corollary 2.2, we may write P/(y,...,ys)=
I+(p). Since Pk[z+/-] --I(p) is prime, Theorem 2.1(c) shows that p is saturated.
For the proof of the second statement, consider the surjective homomorphism
k[z +/-] kit+/-], Zm (m)trn. Its kernel obviously contains Pk[z+/-], and since
Pk[z +/-] is a prime of codimension rank(Lp) dim(k[z+/-]) dim(k[t+/-]), the kernel
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is precisely P. Since P is the preimage of Pk[z +] in S, we conclude that P is the
kernel of the composite map S k[z +] k[t+], which coincides with (2.4). [S]

3. The radical of a binomial ideal. The radical of an ideal I in S=
k[xl,..., Xn] is x/ := (f S Ifd I for d >> 0}. In this section, we show that the
family of binomial ideals is closed under taking radicals. We also prove the
analogous theorem for the k-radical (defined in the Section 2).

TI-IEOREt 3.1. Let k be afield, and let I S k[xl,..., Xn] be an ideal. If I is
binomial then the radical and k-radical of I are binomial.

In the special case where I is generated by pure difference binomials (mono-
mial minus monomial), the result on the ordinary radical was proved using dif-
ferent methods by Robert Gilmer [Gi, Section 9]. Gilmer shows that the radical
is again generated by pure difference binomials (something that can also be de-
duced from the argument below), and he proves a similar statement for the case
of an arbitrary base ring. An algorithmic and refined version of Theorem 3.1 for
the real radical was given by Becker, Grobe, and Niermann [BGN].
Our proof works by an induction on the number of variables and an applica-

tion of the Laurent case treated in Corollaries 2.2 (for the ordinary radical) and
2.4 (for the k-radical). For this we use the following lemma.

LEMMA 3.2. Let R be any commutative rin9, and let x 1,..., Xn R. If I is any
ideal in R, then the radical of I satisfies the relation

x/-- V/(I" (Xl Xn)) (’ V/I 4- (x1)(’’" (’ V/I + (Xn). (3.1)

For the k-radical we have the relation

/ (/k[x 4-] <=S) = fI + (x1) = /1 =l-(Xn). (3.2)

Proof. The right-hand side clearly contains x/. It suffices to show that every
prime P containing I contains one of the ideals on the right-hand side. If
(I" (Xl"" Xn))) e we are done. Otherwise, f. (XI’’" Xn)d I c P for some
integer d and some f R\P. This implies xi P for some i. Thus, P contains
I + (xi) as required.
To prove formula (3.2), note that the k-radical of I is the intersection of all the

maximal ideals P containing I such that k[x]/P- k. Such a maximal ideal P
either contains /Ik[x +] c S or it contains one of the variables xi.

The rest of the arguments we need are identical in the case of the ordinary
radical or the k-radical. Thus, for the rest of this section, we use the word "rad-
ical" and the symbol x/r( to denote either the ordinary radical or the k-radical.

LEMMA 3.3. Let I be a binomial ideal in S k[xl,...,Xn]. Set S=
k[xl,..., xn-1]. If I’= I c S’, then I + (Xn) is the sum of I’S + (Xn) and an ideal
oenerated by monomials in S’.
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Proof. Every binomial that involves Xn is either contained in (Xn) or is con-
gruent modulo (xn) to a monomial in S’. Thus, all generators of I which are not
in I’ may be replaced by monomials in S’ when forming a generating set for
I + (x.).

PROPOSITION 3.4. Let I be a radical binomial ideal in S. If M is a monomial
ideal, then vii + M I + M1 for some monomial ideal M1.
Remark. Once we have established Theorem 3.1, we can drop the hypothesis

that I is radical in Proposition 3.4 and change the conclusion to x/’I + M--
vq+M .

Proof We apply Lemma 3.2 to the ideal I+M. If M=(0) there is
nothing to prove, so we may assume that M actually contains a monomial.
In this case ((I/M): (xl...xn))=S, and Lemma 3.2 yields x/I+M=

ni=lV/I + M + (xi). By Corollary 1.5, it suffices to show that the radical of
! + M + (xi) is the sum of I and a monomial ideal.
For simplicity, let i--n and write S’--k[xl,... ,xn-1]. Since I is radical, the

ideal I’ I S’ is radical as well. By Lemma 3.3, I + M + (Xn) I’S + M’S +
(Xn) where M’ is a monomial ideal in S’. By induction on n, the radical of
I’ + M’ in S has the form I + M[, where M1’ is a monomial ideal of S’. Putting
this together, we get

V/I + M + (Xn) V/I’S + M’S + (Xn)

I’S + M(S + (xn)

1%- M[S %- (Xn)

v/I + M +

so V/I + M + (Xn) I + M(S + (Xn) is I plus a monomial ideal, as required. [2]

Proof of Theorem 3.1. We proceed by induction on n, the result being
trivial for n 0. Let I be a binomial ideal in S. Let Ij’-I Sj where Sj
k[Xl,..., xj_,x+l,..., x,]. By induction we may assume that the radical of each

I is binomial. Adding these binomial ideals to I, we may assume that each I is
radical to begin with.
We shall use formula (3.1) for v/ and formula (3.2) for x/. Either of the ideals

V/(I (xx x,)) or (/Ik[x +] S) is binomial by Corollaries 1.7, 2.2, and 2.4 or
2.5, and we can write it as I + I’ for some binomial ideal I’. By Corollary 1.5 the
intersection in formula (3.1) or (3.2) is binomial if V/I + (xj) is the sum of I and a
monomial ideal. By Lemma 3.3, we can write I + (x) IS + JS + (xj), where J
is a monomial ideal in Sj. Since I is radical, the ideal IS is radical, so we can
apply Proposition 3.4 with M JS + (xi) to see that there exists a monomial ideal
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M1 in S such that

V/I + (xj) V IjS + JS + (xj) IjS + MI.

It follows that V/I + (xj) I + M1 has the desired form.

Example 3.5. Permanental ideals. We do not know how to tell whether a
binomial ideal is radical just from the shape of a generating set. As an example,
consider the ideal Pm,n generated by the 2 2-subpermanents xijXkl + XilXkj of an
m x n-matrix (xi) of indeterminates over a field k with char(k) 2. If m < 2 or
n < 2, then Pm,n is a radical ideal. (This can be shown using the technique in
Proposition 4.8.) For instance, we have

P2,3 --(Xll,X12, x13) (x21,x22, x23) (x11x22 q- x12x21,x13,x23)

(3 (X11X23 "if- X13X21,X12, X22) C (X12X23 -at- X13X22, X11,X21).

However, if m,n > 3, then Pm,n is not radical: XlX22X33 Pm,n but XllX22X33
Pm,n. Of course, if the plus signs in the generators of Pm,n are changed to minus
signs, we get a determinantal ideal that is prime for every m and n.

Example 3.6. kP-radicals. We may interpolate between the ordinary radical
and the k-radical as follows: If k is a field containing k, define the k-radical of
I to be the intersection of those maximal ideals of S that contain I and have
residue class fields that are k-subalgebras of the given field k. However, the k-radical of a binomial ideal is not in general binomial. Consider, for example, the
ideal I in the polynomial ring k[x] in one variable generated by the binomial

b := x8 -a8 (x2- a2)(x2 + a2)(x4 + a2x2 + a4)
over a field k that contains a2. Let be a primitive eighth root of unity, and set
k := k[a]. The kt-radical of I is generated by the product of those irreducible
factors of b that have a root in k’. Suppose that k[a] and k[] are linearly disjoint
over k, of degrees 2 and 4, respectively. It follows that k’ :-- k[a] has degree 4 over
k, so the factor (x4 + agx + a4) is irreducible and has a root in k.
The roots of (x2- a2) are a and -a. If either of these were contained in k,

then we would have k k[ff, a]; since the field k[, a] has degree 8 over k, this is a
contradiction. A similar argument shows that neither root of (x2+ a) is in k.
Thus the k-radical of I is generated by (x4 + ax2 + a4), which is not a binomial.

4. Binomial algebraic sets. We next characterize intersections of prime bi-
nomial ideals that are generated by binomials. The result is best stated geo-
metrically. For this purpose, we define an algebraic set to be a reduced affine
algebraic scheme over k. (Alternately, one may work with ordinary algebraic sets
defined by equations with coefficients in k but having points with coordinates in
some fixed algebraic closure of k, or one may simply restrict to the case where k
is algebraically closed.) By Theorem 3.1, an algebraic set is cut out by binomials
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set-theoretically, if and only if its ideal is generated by binomials. Such a set is
called a binomial algebraic set.
We decompose affine n-space kn into tori corresponding to the 2n coordinate fiats

(k*) := {(pl,...,p) klpi 0 for i e, pi 0 for i }, (4.1)

where runs over all subsets of {1,...,n}. We shall refer to the tori (k*) as
coordinate cells. The closure of a coordinate cell (k*) in k is defined by the ideal

M(e) := ({xli o}) in S k[xl,... ,Xn].

The coordinate ring of (k*) is the Laurent polynomial ring

k[e+] "= k

There is a coordinate projection k ’ (k* whenever oz
_ _

(1,..., n}. It is
defined by setting all those coordinates not in to zero.

If X is any subscheme of k n, corresponding to an ideal I S, then the closure
of the intersection of X with the coordinate cell (k*) corresponds to the ideal

This ideal can be identified with the image of I in k[N+]. If I is radical, then it is
easy to see that I I (a more refined version of this is proved in Theorem
6.2). If I is generated by binomials, then by Corollary 1.7 the ideal I is also gen-
erated by binomials.
The binomial ideals in k[f+] are completely classified by Theorem 2.1, and

Corollary 2.2 tells just when they are radical. Thus, to classify all binomial alge-
braic sets X, it suffices to tell how the intersections of X with the coordinate cells
can fit together.

THEOREM 4.1. Let k be any field. An algebraic set X
_

kn is cut out by bino-
mials if and only if the following three conditions hold.

(i) For each coordinate cell (k*), the algebraic set X c (k*) is cut out by
binomials.

(ii) The family of sets U-- {
_

(1,...,n}lXc (k*) is closed under
taking intersections.

(iii) If ,’ U and c ’, then the coordinate projection (k*)’ -(k*)
maps X c (k*)’ onto a subset ofX c k*).
We shall use the following definition and result. A partially ordered set U is a

meet semilattice if every finite subset {Ul,...,Um} U has a unique greatest
lower bound in U. This lower bound is denoted ul A-.. AUm and called the meet
oful,...,Um in U.

LEMMA 4.2. Let U be a finite meet semilattice and R any commutative ring.
For each u e U, let Ju and Mu be ideals in R such that
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(a) if u < v, then v/, and
(b) x/’Mu^v x/Mu + Mv. Under these assumptions, the two ideals

I1 (’ (Ju + Mu)
uU

and

+

have the same radical v x/.

Proofi To prove that x/ , it suees to show that for all u, U we have

tu

If u v, then by condition (a), so contains the left-hand side, and
we are done. If, on the contrary, u v, then v is among the indices appearing on
the left-hand side, so M contains the left-hand side, and this suites as well.
To prove that , choose a prime P containing 12. We must show that

P also contains 11. Let V (v U[M P). From hypothesis (b), we see that
if v, v’ V, then v A v’ e V. Since P ueV Mu, the set V is nonempty. Thus,
there is a unique minimal element w e V. Since P I2 Jw twMt and P
does not contain any Mt with w, we see that P contains Jw. Thus, P contains
Jw + Mw and with it I1.
Here is the key part of the argument proving that binomial ideals satisfy

property (iii) of Theorem 4.1, isolated for future use.

LEMMA 4.3. Let

R :-- k[zl, Z-1 -1 R’ k[zl, zt, z Yl,...,,...,Zt, Z c Z-1 -1 Ys]

be a Laurent polynomial ring and a polynomial rin9 over it. IfB R’ is a binomial
ideal and M R’ is a monomial ideal such that B + M is a proper ideal in R’, then

B + M)cR B c R.

Proof Suppose f (B + M)c R. The terms of f are invertible in R’. Since
B + M R, no term of f is in B + M. Proposition 1.10 implies that f B. U]

Proof of Theorem 4.1. Let X = k" be any algebraic set with ideal I S. Let
U be the set of subsets {1,...,n} such that X c(k*) is nonempty, or
equivalently, I S.

Suppose X is a binomial algebraic set. The ideal Ig is binomial by Corollary
1.7, so X c (k*)

g
is cut out by binomials, proving condition (i). To prove condi-

tion (ii), we must show that if g, 2 U, then gx c g2 U. If, on the contrary,
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1 2 U, then for some integer d,

xi I+ M(g 2) I+ M(g) + M(g2).

Corollary 1.6(b) implies that (I-Iig xi)a is either in I + M(I) or I + M(2). Con-
sequently, either Ig or Ig is the unit ideal in S, contradicting our assumption.

Write k[g] for the polynomial ring k[{xi}ig]. The algebraic form of condition
(iii) is the statement that if g, g’ U with c g’, then Ig k[g]

_
Ig,. Since

Ig, (Ig, I-Iir xi), it suffices to prove this condition after inverting the xi for
g. That is, if we set R’ k[g+][{xi}ig], then we must show that

(I + M(g))R’ k[g+
__

Ig,R’.

Since U, the ideal (I + M(g))R’ is proper, and we may apply Lemma 4.3 to
get (I + M(o))R c k[g+ IR’ c k[o+ ]. Since I Ig,, we are done.

Conversely, suppose that X is any algebraic set satisfying conditions (i), (ii),
and (iii). We must show that the ideal I of X is generated by binomials. We have
already remarked that I (’]g v Ig. Note that U is a partially ordered set under
the inclusion relation for subsets of {1,... ,n}. By condition (ii), the set U is
closed under intersections, so U is a meet semilattice. For o U, we set J(g) :=
(I c k[])S and, as before, M(o) ((xili q o}). We shall apply Lemma 4.2 to
these ideals. Hypothesis (b) of Lemma 4.2 is obvious from the definition of
M(o), and hypothesis (a) is implied by the algebraic form of condition (iii) given
above. The ideal I1 ("]gv(J(g)+ M(g)) equals (’]v Ig I. Each J(g)is a
binomial ideal by Corollary 1.3, and each M(g) is a monomial ideal. Hence,
each term in the sum

is a binomial ideal by Corollary 1.5. This shows that 12 is binomial. Theorem 3.1
now implies that x/ I is binomial, as claimed.

Problem 4.4. Find the 9enerators. In the application of Lemma 4.2 made in
the proof of Theorem 4.1, are the ideals Ix and 12 actually equal? This is the case
when the set U is totally ordered and in other examples we have tried, such as
the following.

Example 4.5. Subsets of the vertex set of the coordinate cube. For each
{ 1,..., n}, let p be the point whose ith coordinate is 1 if and 0 other-

wise. Let U be a collection of subsets of { 1,..., n}. The finite algebraic set

Xv :-- (pl e U } k"
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is cut out by binomials if and only if U is closed under taking intersections. We
remark that for any collection U of subsets, the ideal of Xtr is generated by the n
binomials xi(xi- 1) for 1 < < n (these generate the ideal of all the 2n points p)
and the card(U) elements

II (xi- 1) II xi for u.

Example 4.6. A binomial algebraic set whose top-dimensional part is not bino-
mial. Consider the following three binomial varieties in affine 4-space k4:

V1 V(x1x2- 1,x3, x4), a hyperbola in the cell (k*)(l’2};

V2 g(x1,x2, x3x4- 1), a hyperbola in the cell (k*){3’4};

V3 V(x1, x2, x3, the unique point in the cell (k*)

The union of these varieties is defined by the binomial ideal

I(V1 w V2 w 1) I(V1)c I(V2) I(1)

(X21X2 X1, X1X22 X2, XX4 X3, X3X24 X4, X1X3, X1X4, X2X3, X2X4).

However, the union of V1 and V2, the top-dimensional components, is not cut out
by binomials. Its ideal I(V1 w V2) has the reduced Gr6bner basis

{X1X2 + X3X4 1, XX4 X3, X3X24 X4, X1X3, X1X4, X2X3, X2X4}.

By homogenizing these equations, we get a projective binomial scheme with the
same property. Note also that (I(V1 V2 1): (Xl,X4)) I(V1 w V2), so this
ideal also exhibits the phenomenon of Example 1.8. W1

Example 4.7. Face rinos ofpolyhedral complexes (cf Stanley [Sta, Section 4]).
By a lattice polytope in Rm, we mean the convex hull of a finite subset of Zm.
A (finite, integral) polyhedral complex A is a finite set of lattice polytopes in Rm,
satisfying

(i) any face of a polytope in A is a polytope in A;
(ii) any two of the polytopes in A intersect in a set that is a face of each of them.
The polytopes in A are called faces of A. The maximal faces are called facets.

We write (A) for the set of facets of A. For each face P A, we define a cone

Cp {(al,...,am, b) Rm+ll(al,...,am, b) (0,...,0,0)

or b 7 0 and (al/b,..., am/b) P}.
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Following Stanley [Sta], we define face ring k[A] of A to be the ring having
vector space basis over k the set of monomials {yl e Cp cZm+ for some
P e A} with multiplication

y"y
O,

if , fle Cp for some P e A;

otherwise.

If A has a single facet P, then the face ring of A is the homogeneous coordinate
ring kiP] of the projective toric variety associated with the lattice polytope P
(see, for example, Fulton IF] or Sturmfels [Stul]). We may represent it as

k[P] k[(xi)ie(p)l/I(P),

where the xi are variables indexed by the unique minimal set G(P)c Zm+l of
additive generators for the monoid Cp c Zm+l and I(P) is the binomial prime
ideal of relations among the monomials y/ for fl e G(P).
More generally, let G(A) :-- Pe:(A) G(P). We may represent the face ring of

A as

k[A]- k[(xi}ie(A)]/I(A)

for some ideal I(A). This ideal is an intersection of binomial primes satisfying
Theorem 4.1, so it is generated by binomials. The following more precise result is
implicit in Stanley [Sta]; the rproof was communicated to us privately by Stanley.
Its geometric interpretation is that the projective scheme Proj(k[A]) is the reduced
union of the toric varieties Proj(k[P]), glued along orbit closures corresponding to
intersections of facets in A.

PROPOSITION 4.8. The ideal I(A) defining the face ring k[A] is the intersection

of the binomial primes I(P) + ({Xi}ieG(A)\G(P)), where P ranges over the set of
facets -(A). The ideal I(A) is generated by -Pe=(A) I(e) together with all the
monomials Xil ...Xis such that il,..., is do not all lie in anyfacet of A.

Proof. The k-basis given for k[A] in the definition is a subset of the natural
vector space basis of I-Ipe(a)k[P]. The description of the multiplication gives
an inclusion of k-algebras k[A] c YIPe(a) k[P]. The ideal I(A) is by definition the
kernel of the natural map k[{xi}ie(A)] --* I-[P(a)kiP]. It follows that I(A) is the
intersection of the ideals J(P) := ker(k[{xi}ie(a)] k[e]) for P e o(A), and it is

immediate that J(P) I(P) + ({xi} ie6(A)\6(P)). This proves the first assertion.
Let ! be the ideal generated by Pe(a)I(P) and the nonfacial monomials

xi ""Xis. The inclusion I c__ I(A) is evident, so we get a surjection from
R := k[{xi}ie(a)]/1 onto k[A]. Each nonzero monomial in R is mapped to a
monomial y# in kiP] for some P. Any two preimages of y# differ by an element of
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I(P) c I, hence they are equal in R. This shows that the surjection is injective as
well, and therefore I equals I(A), as desired. [--1

Problem 4.9. Intersections of binomial ideals. It would be nice to have a result
like Theorem 4.1 for the intersections of arbitrary binomial ideals, not just
radical binomial ideals. A first step might be to answer the following question:
Which sets of primes can be the set of associated primes of a binomial ideal?

In some cases a fairly straightforward generalization to schemes of Theorem
4.1 seems to be all that is necessary. For example, the following union of three
lines, contained in the closures of the {x3}-cell, the {x2,x3}-cell, and the {Xl, x3}-
cell, respectively, is binomial:

(X1,X2) (X1,X2-- X3) (X2, X1 --X3).

If we thicken the line in the {x2, x3}-cell, then we get a scheme that is not binomial:

(X1,X2) (X],X2-- X3)(’ (X2, X1 X3).

However, if we also thicken the line in the {x3}-cell enough so that the line in the
x2, x3-cell projects into it,

then again we get a binomial scheme.

5. Some binomial ideal quotients. The theory of binomial ideals would be
much easier if the quotient of a binomial ideal by a binomial were again a bino-
mial ideal. Here is a simple example where this fails.

Example 5.1. Let I (xl yx2, x2 yx3, x3 yxl) c k[xl,X2, x3,y]. The
ideal (I’(1-y)) (xl+x2+x3, x22+x2x3+x,x2y+x2+x3, x3y-x2) is
not binomial: the given generators form a reduced Gr6bner basis, so Corollary
1.2 applies.

By reducing problems to coordinate cells (k*)g as in Section 4, we can often
assume that some variables are nonzerodivisors modulo a given binomial ideal
I. In such a case, certain ideal quotients of I by a binomial are again binomial.
These results will play a central role in the construction of a binomial primary
decomposition.
The ordinary powers of a binomial are not binomials. However, there is a

natural binomial operation that has many features in common with taking
powers: If m and n are terms, so that b :- m- n is a binomial, then we set b[d] :---
ma- nd and call it the dth quasi-power of b. If d is even, then (-n)a- (-m)d

-(ma -ha). Thus, the sign of the quasi-power depends on the choice of which
term of b is chosen to be "first." We may remove the ambiguity by choosing a
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monomial order on S and always choosing the expression for b with m < n. Note
that if d ]e, then b[d][b[e].

THEOREM 5.2. Let I be a binomial ideal in S k[xl,...,Xn] and < a mono-
mial order on S. Suppose b :--x- ax is a binomial and f S such that bf e I
but x is a nonzerodivisor mod I. Let fl +"" +fs be the normalform off modulo
I with respect to <, where fl,..., fs are monomials. If d is a sufficiently divisible
positive integer, then we have the following.

(a) The binomials b[d] fj lie in I for j 1,..., s.
(b) (I: b[d]) is generated by monomials modulo I, and is thus a binomial ideal.
(c) Let p char(k). Ifp O, let q 1, while ifp > O, let q be the largest power

ofp that divides d. If e is a divisor old that is divisible by q, then (I: (b[d]/b[e])) is a
binomial ideal.

Proof. (a) To say that fl +’" +fs is the normal form of f modulo I means
that f fl +’-" +fs (mod I) and that the J are terms not in in< (I). By Propo-
sition 1.1(b), the normal form of each term xfi or axlf is a term. Since x

s, have normal formsis a nonzerodivisor modulo I, the terms x J, i= 1,...,
that are nonzero scalars times distinct monomials. The equation (x ax)f
0 mod I shows that for each of the s terms xj, there exists a term axf with the
same normal form, and by counting we see that j is uniquely determined. Thus,
there is a permutation zr of { 1,..., s} such that xJ axlf(i) for all i. It follows
at once by induction on d that

(X)dfi =_ (ax)df(i) (mod I).

Taking d divisible by the order of r, part (a) follows.
(b) If d and d’ are positive integers such that d divides d’, then the binomial b

divides the binomial b[d’], so that (I:b[d]) (I big’I). Since S is Noetherian, we
may choose d sufficiently divisible so that equality holds for all integers d’ divis-
ible by d. We claim that for such a choice of d, the conclusion of part (b) is sat-
isfied. Let f (I: big]). By induction on the number of terms J in the normal
form of f modulo I, it suffices to show that the first term fl is in (I:b[d]). By
part (a) applied to b[d], there is an integer d’ such that fl (I:b[da’]). By the
choice of d, we have fl (I: b[]) as desired.
For the proof of part (c), we use a general fact.

LEMMA 5.3. Let R be any commutative ring and f, g R. If (f, g)= R, then
(O" g) (O" fg)f.

Proof It is immediate that (O:g) (0 :fg)f. For the opposite inclusion,
suppose x (0: 9). Since (f, 9) R, we may write 1 af + b9 with a, b R,
so we have x xaf + box xaf Since xa.fg x9 af O. af O, we get x
xaf (0: fg)f. [--1



BINOMIAL IDEALS 27

Proof of Theorem 5.2(c). We apply Lemma 5.3 to the ring R (S/I)[1/x]
with f b[e] and # b[d]/b[e]. The hypothesis (f,g)- R of Lemma 5.3 holds
because over the algebraic closure k of k we have the factorizations

f H (xq laqxql)
tl k*, tle/q=l

I-[ (xq (ax).
(k*, (d/q=l, (e/ql

Any factor of f together with any factor of g generates the unit ideal, and hence
(f,g) R.

If J is an arbitrary ideal of S, then the preimage of JR in S is ((I + J) (x")).
If J (I:a) then I

_
(I: a). Since x" is a nonzerodivisor modulo I, it is also a

nonzerodivisor modulo (I: a). Thus, the preceding formula simplifies, and the
preimage of (I: #)R in S is equal to (I: #). Applying Lemma 5.3 and pulling
everything back to S, we get

(I’ll) ((I + (I" ft)f) (x)) in S.

By part (b), the ideal (I" fg)= (I" b[d]) is generated modulo I by monomials.
Since f b[e] is a binomial, I + (I" fg)f is binomial. By Corollary 1.7, the
quotient ((I + (I’f#)f) (x)) is a binomial ideal, and thus (I" g) is binomial
as desired. [2

Example 5.1, continued. For I= (X,l- yx2,x2- yx3,x,3- yxl), the ideals
(I" (1 y3)) (Xl,XE, X3) and (I" (1 + y + y2)) (Xl xa,x2 xa, xay x3) are
binomial.

Example 5.4. The hypothesis that x is a nonzerodivisor is necessary for
Theorem 5.2(b) to hold. For instance, consider the radical binomial ideal

I (ux- uy, uz- vx, vy- vz)

(x, y, z) c (u, v) c (u, x, y z) (v, z, x y) c (x y, y z, u v)

in k[x, y, z, u, v]. Both u and v are zero divisors mod I. For each positive integer d,
we have

(I" (ud vd)) (x y + z, uz, yz z2, vy vz).

This quotient is not a binomial ideal.
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6. Associated primes, isolated components, and cellular decomposition.
decompositions in a univariate polynomial ring

The

(xd 1) (x- 1) n (xd-1 +... + x + 1)

(Xd-1 + + X + 1)
(6.1)

show that in order for the associated primes of a binomial ideal to be binomial, we
must work over a field k containing the roots of unity. Further, for the minimal
primes of (xa- a) to have the form given in Corollary 2.6, the scalar a k must
have all its dth roots in k. This is the reason why k is taken to be algebraically
closed in the following theorem.

THEOREM 6.1. Let k be an algebraically closed field. If I is a binomial ideal in
S k[xl,..., Xn], then every associated prime of I is generated by binomials.

Proof If I I+(p) I(p) nk[xl,...,xn] for some partial character p on
Zn, then Corollary 2.5 implies the desired result. We may therefore assume that
there is a variable xi such that (I:xi) :/: I. If xi e I, we may reduce modulo xi
and do induction on the number of variables. Hence, we may assume that xi I.
From the short exact sequence

0 S/(I: xi)-+ S/I S/(I, xi) 0, (6.2)

we see that Ass(S/I) Ass(S/(I:xi))u Ass(S/(I, xi)). By Noetherian induction
and Corollary 1.7, both sets consist of binomial primes.

Corollary 2.5 does primary decomposition for binomial ideals whose asso-
ciated points are all contained in the open cell away from the coordinate hyper-
planes. This suggests dividing up the primary components according to which
coordinate cells they lie in. We define an ideal I of S to be cellular if, for some
o { 1,... ,n}, we have I (I (I-Iig xi)) and I contains a power of M(o)
({xi}ig). This means that the scheme defined by I has each of its associated
points in the cell (k*)g.
Given any ideal I S, we can manufacture cellular ideals from I as fol-

lows. For each vector of positive integers d (dl,..., dn) and each subset o of
{ 1, 2,..., n}, we set

Ig(a) := (I + ((xai’}i)) xj (6.3)

For d (1,..., 1) we have I(d) Ig, the ideal considered for I radical in Section 4.
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THEOREM 6.2. The ideal Ia) is a cellular binomial ideal for all I, d and o. For
distinct and o’ the sets ofassociated primes Ass(Ija)) and Ass(I(d, )) are disjoint. If
the integers di are chosen sufficiently large, then

I I(d) (6.4)
___{1 n}

Thus, an irredundant primary decomposition of I is obtained from given primary
decompositions of the I() by deleting redundant components. Equation (6.4) holds,
in particular, iffor some primary decomposition I- Qj we have xi if and
only if xdi Qj for all and j.

We say that the binomial ideals in (6.3) form a cellular decomposition of I.

Proof. The IJa) are binomial by Corollary 1.7. They are obviously cellular.
The primes associated to I(d) contain the variable xi if and only if 8, and this
shows that the sets of associated primes Ass(It()) are pairwise disjoint.
We next show that if the di are chosen to have the property specified with

respect to a primary decomposition I [ Qj, then I is the intersection of the
ideals I(g). Our assertion about primary decomposition follows at once from
this. Since I is obviously contained in the intersection of the I(), it suffices to
prove that for each f Ski, there exists an index set o (1,... ,n} such that
y

Let m-- XilXi2"’’Xir bca maximal product of variables such that f (I m),
and define :- (il,..., Jr). Wc have (I: m) ( (Qj m). Thus, there exists
a primary component s with f (Q m). It follows that (Qs m) S; hence,
(Qs m) Qs andfQs.
By the maximality in our choice of m, each variable xj with j o has a power

throwing f into (I:m) and hence throwing f into (Qs :m) Qs. We see that
the variables xj, j q , are zero divisors modulo Qs, and hence, they are nilpotent
modulo Qs. This implies x] e Qs for j . This proves that

( 2s +

This ideal contains IJ), as can be seen from (6.3), and therefore f q I(d) l-q

Problem 6.3. It would be nice to have a criterion for when the di are large
enough for (6.4) that does not require the knowledge of a primary decomposition
I Qj. Perhaps such a criterion can be found using the methods in the proof
of the effective Nullstellensatz given by Kolltr [Kol]. We remark that the con-

diditions (I x (I" xT) are not sufficient. For instance, let I := (xlx24 x2x,
3 3 4 2 X2X84 6x3xs) and d (2, 2, 0, 4, 5). Then (I" x (I" x) for all i,X1X X2X4

but I is properly contained in Ia) (There are only two cellular components in
this example: = { 1, 2, 3, 4, 5} and {3}.)
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The main results of this section are the following theorem and its corollary,
which say that in certain cases the localization of a cellular binomial ideal is
binomial. If I, J are ideals of S, then we define I(j) to be the intersection of all
those primary components of I that are contained in some minimal prime of J.
(The notation is motivated by the fact that if J is prime, then I(s)= S c IS,
where Ss is the usual localization.)

THEORE 6.4. If I and J are binomial ideals in S k[xa,...,Xn] that are
cellular with respect to the same index set o {1, 2,..., n}, then the ideal I() is
binomial.

Proof We may harmlessly replace J by its radical and thus assume that
J M(g) + I+(a) for some partial character a on Z. By Corollary 1.2, we may
assume that k is algebraically closed. Further, by Noetherian induction, we may
suppose that the result is true for any binomial ideal strictly containing I.

If all the associated primes of I are contained in a minimal prime of J, then
1 I(j), and we are done. Or else, let P M(o) + I+(p) be a prime associated
to 1 that is not contained in any minimal prime of J. We consider the following
sublattice of Zg,

L {m L Lp" tr(m) p(m)), (6.5)

and we distinguish two cases.

Case 1. L has finite index in Lp. Since L La, we see in this case that
Lp Sat(L). We first claim that L - Lp c L. In the contrary case, we could
define a partial character z on Lp + L by the formula z(m + rh) p(m) +
for m Lp and rh L. Since k* is a divisible group, one of the saturations a’ of
a would extend , and thus I+(p) would be contained in the minimal prime
I+(a’) of I+(a), contradicting our hypothesis and establishing the claim. It
follows that we may choose an element m e Lp cL that is not in L, so that
a(m) - p(m). The binomial b xm+ a(m)xm- is in J but not in P.

Since the index of L in L, is finite, there is a root of unity ( such that
p(m) (a(m). If d is a sufficiently divisible integer, and q is the largest power of
the characteristic of k that divides d (or q 1 if char(k)= 0), then the ratio
of quasi-powers 9 b[a]/b[q] lies in P, but not in any minimal prime of J. By
Theorem 5.2(c), the ideal I’ := (I" O) is binomial. It is larger than I because
9 P Ass(S/I). On the other hand, lj) I(s) because 9 is not in any minimal
prime of J, so we are done by Noetherian induction.

Case 2. L does not have finite index in Lp. We may choose an element m L,
whose image in Lp/L has infinite order. Set b xm+ p(m)xm- For any integer
d > 0, the quasi-power b[d] is in P but not in any minimal prime of J. By Theo-
rem 5.2(b), the ideal I’ := (I" b[d]) is binomial for suitably divisible d. Again,
this quotient is strictly larger than I but I)- I(), so again we are done by
Noetherian induction. V]
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As a corollary, we deduce that the minimal primary components of a binomial
ideal are all binomial. Following Eisenbud-Huneke-Vasconcelos [EHV], we
write Hull(I) for the intersection of the minimal primary components of an ideal
I. Note that Hull(/) I().
COROLLARY 6.5. IfI c S is a binomial ideal and P is a minimal prime of I, then

the P-primary component of I is binomial. If I is a cellular binomial ideal, then
Hull(l) is also binomial.

Proof. By Theorem 6.2, we may assume that I is cellular for the first state-
ment, as well. For the first statement, take J P in Theorem 6.4. For the second
statement, take J x/7 in Theorem 6.4.

Problem 6.6.
ideal I?

Is Hull(I) binomial for every (not necessarily cellular) binomial

7. Primary decomposition into binomial ideals

THEOREM 7.1. Let k be an algebraically closed field. Any binomial ideal in the
polynomial ring S k[x l,..., Xn] has a minimal primary decomposition in terms of
binomial ideals.

Our attack is a Noetherian induction based on the following elementary
result.

PROPOSITION 7.2. Let I be an ideal in a Noetherian ring S. If g S and
(I: g) (i: #oo), then:

(a) I (I: #) (I + (g)) and Ass(S/(I: g)) c Ass(S/(I + (g))) O.
(b) The components in a minimal primary decomposition of I may be taken

to be the components in minimal primary decompositions of (I:g) and I + (g),
after deleting the components of I + (g) corresponding to primes that are not in

Ass(S/I).
We include a proof for the reader’s convenience.

Proof. (a) We obviously have I
_

(I: g) (I + (g)), and we must prove the
reverse inclusion. Suppose f (I: g) (I + (g)). Subtracting an element of I, we
may assume that f sg for some s S. Since f (I: g), we have sg2 e I, whence
s (I: g2)

_
(i: goo), and this is (I: g) by hypothesis. Thus, f sg I, proving

the equality.
From the hypothesis, we see that either g I or g is a nonzerodivisor modulo

(I: g). In either case, g is not contained in any associated prime of S/(I:g). On
the other hand, g is contained in every associated prime of S/(I + (g)). This
proves the disjointness of the two sets of associated primes.

(b) Putting together primary decompositions of (I: g) and I + (g) and using
part (a), we get a (possibly nonminimal) primary decomposition I 0 Qi such
that each Qi is a primary ideal and the prime ideals Pi are distinct. A
minimal primary decomposition of I may be obtained simply by dropping
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from the intersection those Qj such that Pj is not an associated prime of I.
Since S/(I:g) is isomorphic to the submodule gS/I of S/l, it follows that
Ass(S/(I: g)) Ass(S/I), and the assertion of part (b) is a consequence.

In order to use Proposition 7.2 to find a binomial primary decomposition of a
binomial ideal I, we need a supply of binomials g e S such that (I g) is binomial
and such that (I:g) (I: g). By Corollary 1.7, we may take g to be a large
power of a monomial. The following key result guarantees a further supply.

PROPOSITION 7.3. Let I S be a binomial ideal, and let b x- ax be a
binomial such that x is a nonzerodivisor modulo I. For sufficiently divisible pos-
itive integers d, we have

(I" btdl)- (I. (b[])).

Proof. It suffices to show that (I" b[d]) (I" (b[d])2). By Theorem 5.2(b), the
quotient (I:b[d]) is generated by monomials mod I, and this ideal is indepen-
dent of d for sufficiently divisible d. Using Theorem 5.2(b) again, we see that
(I" (bid]) 2) --((I" b[d]) b[d]) is generated by monomials mod I, and it suffices
to show that if m e (I" (btdl) 2) is a monomial then m (I" bid]). By Proposition
1.1(b), the normal form of m mod I is a term, and we may assume that it equals m.
Now (b[d])2m I by hypothesis, so Theorem 5.2(a) implies that b[d]xdm I. Since
xa is a nonzerodivisor mod I, we see that b[a]m I as required.

Although we shall not apply it here, we mention a natural consequence.

COROLLARY 7.4. Let I be a binomial ideal in S, and let
_

{1,...,n} be a
subset such that xi is a nonzerodivisor modulo I for each e . If tr is a partial
character on Z and ad is the restriction of tr to dL,, then for sufficiently divisible
integer d we have

(I: I+(trd)) (I: I+(trd)).

Proofi The ideal I+(tra) is generated by the dth quasi-powers of all binomials
in I+(tr), and of course a finite set {bl,... ,bs} I+(tr) suffices. For each i, the
two monomials of bi are nonzerodivisors mod I because they are monomials in
k[6]. By Proposition 7.3, we have (I" bl]) (I" (bl])2). Since the quasi-powers

bla] generate I+(trd), we get

(I" I+(t))= (I" bt]
_

(I. I+(rd))- (I" (bld]) 2).
i=1 i=1

The reverse inclusion is obvious.

Proof of Theorem 7.1. Let I be a binomial ideal. We do Noetherian in-
duction, assuming that every binomial ideal of S strictly larger than I admits a
binomial primary decomposition.
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d satisfies the conditionsIf xi is a variable, then for large d, the element g-- x
of Proposition 7.2, so I (I" g) c (! + (g)), and we may derive a binomial mini-
mal primary decomposition of I from binomial minimal primary decompositions
of the ideals (I" g) and (I + (g)). By Corollary 1.7, (I" g) is a binomial ideal, and
of course the same is true for (I + (g)). If xi is a zero divisor modulo I but is not
nilpotent modulo I, then both (I" g) and (I + (g)) are strictly larger than 1, and
we are done by induction.

Thus, we may assume that every variable is either a nonzerodivisor modulo I
or is nilpotent modulo I. That is, in the terminology of Section 6, I is cellular.
Let o# be the set of variables that are nonzerodivisors modulo I, and let M be the
ideal generated by the variables xi that are nilpotent modulo I.

Let J I c k[]. By Corollary 1.3, J is a binomial ideal. By Corollary 2.5, J
has the form I+(p) for some partial character p with domain of definition Lp con-
tained in the lattice of monomials in the variables . Any prime ideal containing I
must contain a minimal prime of I+(p), and by Corollary 2.5 these have the form
I+(pi), where the Pi are the extensions of p to the saturation of Lp. Since M is
nilpotent modulo I, the minimal prime ideals of I have the form I+(pi + M.

If every associated prime ideal of I is minimal, then the (unique) primary
components of I may be obtained by localizing, in the sense of Theorem 6.4, and
are thus binomial. On the other hand, suppose I has an embedded prime ideal P.
By Theorem 6.1, P is binomial. The ideal P contains M, and the variables x in

are nonzerodivisors modulo P, so P--I(a) + M for some saturated partial
character a of the lattice of monomials in k[o]. We have I+(p) c I+(r), so r is
an extension of p to the lattice L.

Since P is not minimal over J, the lattice L contains an element that is not
in the saturation of Lp; equivalently, no multiple of is in Lp. Thus, the quasi-
powers of the binomial b x+ a()x- are all outside of I, though they are all
zero divisors modulo I. If d is a sufficiently divisible integer and we set 9 bid],
then (I" 9) is a binomial ideal by Theorem 5.2, and by Theorem 7.3 we have
(I" 9)= (I" 9). Applying Proposition 7.2, we reduce our problem to the bi-
nomial primary decomposition of the strictly larger ideals (I" 9) and I + (9), and
we are done by Noetherian induction.

We can make the result of Theorem 7.1 a little more explicit. The situation
turns out to be quite different in characteristic zero and in characteristic p > 0.
To express the result, we introduce some further notation: If I is a binomial

ideal in S k[xl,...,xn], then we write I - {1,... ,n} for the set of indices
such that xi is a nonzerodivisor modulo I, and k[i] for the polynomial subring
of S generated by the variables in Ct. We write M(I) ({xi}ig,) for the ideal
generated by the other variables. If the characteristic of k is p > 0 and c/= pe is a
power of p, then we write I[q] for the ideal generated by the qth powers of ele-
ments of I.

THEOREM 7.1’.
cally closed.

Let I be a binomial ideal in k[xl,..., xn], where k is algebrai-
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(a) If k has characteristic p > O, then, for sufficiently large powers q pC,

I Hull(/+ P[q]) (7.1)
P Ass(S/I)

is a minimal primary decomposition into binomial ideals.
(b) If k has characteristic zero, and e is a sufficiently.large integer, then

I Hull(/+ M(P) + (P c k[ep])) (7.2)
P Ass(S/I)

is a minimal primary decomposition into binomial ideals.

Remark. (a) Formula (7.1) does not even make sense in characteristic
zero, while Formula (7.2) fails in positive characteristic. For example, if p
{1,... ,n} for all P Ass(S/I) (the Laurent case),, then (7.2) states that I is the
intersection of its associated primes, or, equivalently, I is radical. This is true
only in characteristic zero.

(b) The proof given below of part (a) yields a simple alternative proof of
Theorem 7.1 in the case of characteristic p > 0.

Proof of Theorem 7.1’. Let I (i Qi be a minimal primary decomposition
of I and set Pi x/-Q-. By Theorem 6.1, each Pi is binomial.

(a) The "beginner’s binomial theorem" (x + y)q xq + yq shows that P[q] is
binomial. For large e we have

I
_
Hull(/+ PIq]) Hull(/+ Pqi) - Qi

so

I_ Hull(/+Plq]) Q, I.

By Corollary 6.5, the terms Hull(/+ P[q]) are binomial, and we are done.
(b) By Theorem 7.1, we may assume that each Qi is binomial. By the same

argument as in part (a), it suffices to show that I + M(Pi)e + (Pi k[p,]) Qi.
Since Pi is nilpotent modulo Qi, we have M(Pi) c Qi for large e, and it suffices
in fact to show that P[ Pi k[p,] Qi k[p,] Q[. Since Qi contains a
power of Pi, it follows that a power of P lies in Q[. By Corollary 1.3, Q; is bino-
mial. Since the characteristic of k is zero, Q; is radical by Corollary 2.5, and we
are done. ]

In spite of Theorem 7.1, there are still many open questions about the decom-
position of binomial ideals.
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Problem 7.5. Does every binomial ideal have an irreducible decomposi-
tion into binomial ideals? Find a combinatorial characterization of irreducible
binomial ideals.

8. Other decompositions and circuit ideals. In this section we discuss some
special results related to primary decomposition. We also introduce a systematic
way of "approximating" binomial prime ideals.

If we are given any ideal I in S, then a prime ideal P is associated to I if
and only if there exists an f S such that (I’f) P. Such a polynomial f might
be called a witness for the prime P. In the case where I is binomial and hence P
is binomial, one may ask whether there exists a binomial witness. The answer
to this question is easily seen to be "no": take P (x-1) and I (xa- 1),
where every witness, like 1 / x +... + xa-l, has at least d terms; or take P--
(xl,x2,...,Xn) and I ({x,2. -xi}i=l n), the ideal of the vertices of the cube,
where it is easy to show that any witness, like I-[ (xi- 1), has at least 2" terms.
However, the following "witness theorem" provides a monomial witness in a
restricted sense.

TI-IOR.M 8.1. Let I be a cellular binomial ideal in S k[xl,..., Xn], and let
(I). If P I+(tr)+ M() is an associated prime of I, then there exists a

monomial m in the variables (Xiiq and a partial character z on Z such that tr is
saturation of z and

(I’m) c k[e]- I+(z).

Proof. The proof is by Noetherian induction. First, if I contains all the vari-
ables {xi}i, then we are in the Laurent case: I- I+(z) + M() for some z, by
Corollary 2.5. In this case, the assertion holds with m 1. Otherwise, there exists
a variable, say X after relabeling, such that both the cellular ideals (I" x) and

strictly contain I.
By Noetherian induction, we may assume that Theorem 8.1 holds for (I" x l)

and I. As in the proof of Theorem 6.1, every associated prime P of I is asso-
ciated to (I xl) or to Ip. If P is associated to (I: x), then we have a presentation

((I" X1)" m’) k[] I+ (z)

for some monomial m’. Taking m xm’, the claim follows.
We may therefore assume that P is associated to I’. By the Noetherian induc-

tion again, there exists a monomial m and a partial character z with saturation tr
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such that

(8.1)

We claim that this ideal equals (I m) c k[]. Certainly, (I m) c k[g] is con-
tained in (8.1). Note also that (8.1) is a proper ideal.

Let f be any polynomial in (8.1). Suppose that mf has a term in I + (x 1). Since
the terms in f are all in k[g], we would have rn ((I + (xa)) (I-Ii, Xi)), and
the ideal in (8.1) would not be proper. Therefore, no term of mf is in I + (Xl).
Using Proposition 1.10, we conclude that mf I, as required.

Using Theorem 8.1, we get the following alternative decomposition of a bino-
mial ideal. We conjecture that Corollary 8.2 holds in finite characteristic as well.

COROLLARY 8.2. Let k be a field of characteristic zero, let I be a cellular bino-
mial ideal in S- k[xl,... ,Xn], and let (I). Then I has the followin9 pre-
sentation as a finite intersection of unmixed binomial ideals:

I 0 Hull(/+ ((I’m)c k[g])). (8.2)
m a monomial in (xi}

Proof The intersection given in (8.2) clearly contains I. On the other hand, if
P- I+(a)+ M(g) is an associated prime of I, then by Theorem 8.1 there is a
monomial rn in the variables (xi}i, such that (I’m) k[g] I+(z), and a is a
saturation of z. Thus,

Hull(/+ ((I’m)c k[g])) Hull(/+ I+(z))
_
Hull(/+ I+(tr))

Hull(/+ (P k[g]));

hence the intersection in Formula (8.2) is contained in the intersection in Formula
(7.2). [--]

The first step in the computation of a primary decomposition of a binomial
ideal I is to find a cellular decomposition as in (6.3). In certain cases, the cellular
decomposition is already a primary decomposition. We next show that this
event happens when the algebraic set defined by I is irreducible and not con-
tained in any coordinate hyperplane.

THEOREM 8.3. Let I c S be a binomial ideal. If x/ is prime and does not con-
tain any of the variables, then for each subset of the variables and sequence d
of sufficiently large integers, the ideal I(gd) is primary. Thus, the cellular decom-
position (6.3) is a (possibly nonminimal) primary decomposition of I.
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Proof. Set P x/, and let 60 be any subset of { 1,..., n}. We define I(gd) as in

Formula (6.3) and P8 as in Formula (4.2). Clearly, I(a)
_
P

_
V/-(d), so that I(td)

is a proper ideal if and only if Pg is a proper ideal. In this case, Pt c k[o]
P c k[o], by Lemma 4.3, and thus P8 (P c k[]) + M(6). This shows that P is

prime, so P,, I(8d). We conclude that every associated prime of I(,el) contains
P.

Let Q be any associated prime of I(8a). By Theorem 6.1 and Corollary 2.6,
we can write Q I+(a)S + M(o), where a is a partial character on Z. By The-

orem 8.1, there exists a positive integer e and a monomial rn q I(ga) such that

I+(ae)m c I(ga). (Here 6e denotes the restriction of a to the lattice eL L.)
Let f be any element of I+(re). Then fm I(gd), so there exists a monomial m’

in k[] such that fmm’ I + ({xdi’}i8). Since mm’ I(a) and f k[], the terms

of from’ are not in I + ({xai’}i8). It follows by Proposition 1.10 that fmm’e
I
_

P. Since the prime P does not contain any monomials, it follows that f P.
This shows that I+(re) is contained in P. Since P c k[] is contained in I+(a), it
follows that I+(a) P k[] and consequently Q P. We conclude that P8 is
the only associated prime of I. [-1

Example 8.4. Theorem 8.3 does not hold in general for binomial ideals
I whose radical is prime but contains a variable xi. For example, I-
(X21,X1(X2 X3)) (X1)t (X21,X2 X3) has radical (X1,X2 X3), but if

{2, 3} then I I(d) is not primary.

We next determine which of the ideals P8 arising in the proof of Theorem 8.3
is proper. (This is somewhat weaker than saying that the corresponding cell
(k*) contains an associated point of I.) This condition is phrased in terms of
combinatorial convexity. It is well known in the theory of toric varieties. Let
P I+(tr) be a binomial prime ideal in S such that xi q P for all i. Let d
dim(P). Then Zn/L is a free abelian group of rank d, and V (Zn/L) (R)z R is
a d-dimensional real vector space. Let i denote the image in V of the ith unit
vector in Zn. We consider the d-dimensional convex polyhedral cone

(8.3)

A subset o of (1,...,n} is said to be aface of P if pos({i: i 6}) is a face of Cg.

PROPOSITION 8.5.
is a face of P.

With notation as above, the ideal P8 is proper ifand only if

Proof. Suppose o is not a face. By elementary convexity, this is equivalent
to the following: the generators of cg satisfy a linear dependency of the form
21g’il +"" + 2s,is #l,jl q-"" "+- #tP,jt, where 21,... ,2s,#1,... ,#t are positive in-
tegers, {il,... ,is}

____ , and {jl,... ,jr} . The ideal P therefore contains some
binomial , j,, c k This shows that a power of xil is
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lies in P + M(8), and consequently PC contains a unit. Conversely, let be a face.
Then there is no linear dependency as above, which means that every binomial in
P lies in k[] or in M(). Therefore, Pc (P c k[]) + M(), and this is clearly a
proper ideal.

Proposition 8.5 can be rephrased as follows. If an ideal I satisfies the hypoth-
esis of Theorem 8.3, then its associated points are in natural bijection with a
subset of the faces of vq. We close this section by describing a class of binomial
ideals with these properties.

Example 8.6. Circuit ideals. Let p be a saturated partial character on Zn. If
v Zn, then the support of v is the set of basis elements of Zn that appear with
nonzero coefficient in the expression of v. A primitive nonzero element v of the
lattice L is said to be a circuit if the support of v is minimal with respect
to inclusion. The circuit ideal C(p) is the ideal generated by the binomials
x/ p(e)x-, where e runs over all circuits of L. Clearly, C(p) is contained in
the prime ideal I+(p). For certain special lattices Lp arising in combinatorics, we
have C(p) I+(p); for instance, this is the case for lattices presented by totally
unimodular matrices (see Section 4 of [Stu2]). In general, we have only the
following proposition.

PROPOSITION 8.7. With notation as above,

v/C(p) I+(p).

In particular, we see that Proposition 8.5 applies to circuit ideals. For the
proof, we need to know that L is generated by circuits, which is a special case of
the following.

LEMMA 8.8. Let R be an inte#ral domain. If q: Rn Rd is an epimorphism,
then the kernel of is the image of the map : Ad+ Rn -, Rn, - Ad . The
circuits in the kernel of q are, up to multiplication by elements of the quotient field,
precisely the nonzero images of the standard basis vectors of Ad+l Rn. These
images are the relations given by Cramer’s rule,

d

(eio A ei, A... A ei) (-1). det(i i_,,i,+, i)’ei
j=O

Proof. To prove the first statement, let U be a d x n-integer matrix such that. U is the d x d-identity matrix. If v ker(), then an elementary computation
in multilinear algebra gives:

(AdU A v) (AdU A v) Ad ((Ad). (AU)) v v.

Call the relations ff (eio A ei, A... A eid) Cramer relations. If a Cramer relation is
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nonzero, then it is a relation among d / 1 elements of Ra that generate a sub-
module of rank d in Ra. Any relation among these d + 1 images must be a multiple
of the Cramer relation by an element of the quotient field. In particular, the
Cramer relation is a circuit in ker(b).
To show conversely that every circuit in ker(b) is, up to multiplication by an

element of the quotient field, a Cramer relation, it now suffices to prove that
every circuit has support contained in a set of d + 1 vectors whose images gen-
erate a module of rank d. For every circuit c there is a number r such that c is a
relation among r + 1 vectors spanning a submodule of rank exactly r. (If the
rank were lower, then there would be two independent relations, and thus a
relation involving a subset of the terms.) Since the images of the basis vectors of
Rn span a submodule of rank d > r, we can find d r such vectors whose images,
together with the images of the vectors in the support of c, span a submodule of
rank d, and we are done. 1

Remarks. The statements about circuits are false if R is not an integral
domain: if x is a zero divisor, then the only circuits in the kernel of the map
(1, x): R2 R are the column vector with entries 0, y, where xy O, so the rela-
tion defined by Cramer’s rule is not a circuit, and the circuits do not generate all
the relations. However, the Cramer relations still do generate, and this fact has
been extended by Buchsbaum and Rim [BR] to a natural free resolution.

Proof of Proposition 8.7. It is easy to see that every element of Lt, is a pos-
itive rational linear combination of circuits. Therefore, the convexity argument
in the proof of Proposition 8.5 applies to circuit ideals as well, and C(p) is a
proper ideal if and only if is a face of I+(p). Now, suppose that c { 1,..., n}
is a face. Let pie denote the restriction of p to the sublattice Lp c Z. By
Lemma 8.8 applied to this sublattice, we have I+(p]g) (C(plg) (I-ling xi))
Clearly, the circuits of Lp Zg are just the circuits of Lp that have support in .
Hence, C(pI) --- C(p) c k[], and we conclude

- C(plg) x, + M(e) I+(p[g)+ M()- I+(p)g.

Since the reverse inclusion is obvious, we have C(p) I+(p). Our claim follows
by taking the intersection over all faces of I+(p).

Problem. It remains an interesting combinatorial problem to characterize the
embedded primary components of the circuit ideal C(p). In particular, which
faces of (the polyhedral cone associated with the prime) I+(p) support an asso-
ciated prime of C(p)? An answer to this question might be valuable for the ap-
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plieations of binomial ideals to integer programming and statistics mentioned in
the introduction.

9. Algorithms. In this final section, we present algorithms for computing
various aspects of the primary decomposition of a binomial ideal. In each case,
we outline only the basic steps, and we disregard questions of efficiency. It
remains an interesting problem to find best possible procedures. Our Algorithms
9.1-9.7 differ greatly from the known algorithms for general polynomial ideals,
given for example by Gianni-Trager-Zacharias [GTZ] and Eisenbud-Huneke-
Vasconcelos [EHV]. The older algorithms immediately leave the category of
binomial ideals (in the sense that they either make changes of coordinates or
use syzygy computations and Jacobian ideals). The algorithms presented below
work almost entirely with binomials and thus maintain maximal sparseness.
This is an important advantage because sparseness is a significant factor in the
effectiveness of computations.

Algorithm 9.1. Radical
Input: A binomial ideal I in S k[xl,..., Xn].
Output: A finite set of binomials generating the radical vq of I.
1. If I (0), output (0}. If I-- S, output (1}.
2. Otherwise, compute J- (I: (Xl ""Xn)), for instance, by introducing a

new variable and eliminating from I + xl... Xn 1 ).
3. If char(k) p > 0 compute the radical of J by computing the p-saturation

of its associated lattice as in Corollary 2.2. Set J :--
4. For 1,...,n:

4.1 Replace xi by 0 in all generators of I.
Let Ji be the resulting ideal in k[x1,... ,Xi-l,Xi+l,... ,Xn].

4.2 Compute x/-f by recursively calling Algorithm 9.1.
5. Compute and output a reduced Gr6bner basis for the intersection

J ’ (v/S --]-- (x1)) (3 (2S -q- (x2)) t"3 t"3 (nS -- (Xn)).

Comments. The correctness follows from the results in Sections 2 and 3, in
particular Theorem 3.1 and Formula (3.1). If the characteristic of k is zero, then
Step 3 is unnecessary: in this case J is already radical by Corollary 2.2. As it
stands, Algorithm 9.1 requires n! recursive calls. The following algorithm accom-
plishes the same task in 2n iterations.

In what follows we use the abbreviation M := m(g) ({xi}i).
Algorithm 9.2. Minimal primes
Input: A binomial ideal I in S k[xl,..., Xn].
Output: Binomial prime ideals P1,... ,Ps whose intersection is irredundant

and equals x/.
For each subset o of (1,..., n}:
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1. Decide whether the ideal

is proper. If not, stop here. Otherwise continue.
2. Determine the unique partial character p on Zg such that Ig

I+(p) + M().
3. If char(k)= p, then replace p by the unique extension p’ of p to the

p-saturation of Lv as in Corollary 2.2.
4. Compute the saturations p,.. ",Pa of p, and save the g primes I+(pi)+
M().

Among all prime ideals computed, remove the redundant ones and output
the others.

Comments. The correctness of Algorithm 9.2 follows from Theorem 6.1 and
the results in Section 4. In the worst case, each of the 2n subsets will contribute
a minimal prime: this happens for ({x xi, 1,..., n}) as in Example 4.5. On
the other hand, for many binomial ideals we can avoid having to inspect all 2"
cells. One natural shortcut arises if (in the course of the algorithm) we find
that Id’l--S and I8 # S for 1 o2 Then we may ignore all subsets o with
ff t o2 --o1: for such o the ideal I8 cannot be proper by Theorem 4.1(ii). Also
Proposition 8.5 allows some savings: if I is a cellular radical ideal, then one may
precompute the faces of the cone c in Formula (8.3) using some convex hull
algorithm. The same techniques can be used to speed up the next algorithm. The
correctness of Algorithm 9.3 is essentially the content of Theorem 6.2.

Algorithm 9.3. Cellular decomposition
Input: A binomial ideal I in S k[xl,..., Xn].
Output: Cellular ideals J, indexed by a set of subsets of {1,..., n}, such that

J I.
1. Fix a vector d (dl,..., d,) of sufficiently large integers (see Problem 6.3).
2. For each o

_
{ 1,..., n}, let Je’= I(d) as defined in Formula (6.3).

3. Output those proper ideals J which are minimal with respect to inclusion.

In the remaining four algorithms, we shall restrict ourselves to ideals which
are cellular (i.e., I I(d) for di >> 0). For general ideals, this requires to run
Algorithm 9.3 beforehand.

Algorithm 9.4. Testfor primary ideals
Input: A subset oz c {1,..., n} and a binomial ideal I which is cellular with

respect to f.
Output: The radical of I, and the decision ("YES", "NO") whether I is pri-

mary. In the negative case, the algorithm generates two distinct associated prime
ideals of I.

1. Compute the unique partial character a on Z such that I c k[oz] I+(a).
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If the characteristic is p > 0, replace tr by its p-saturation. Output: "The
radical of I equals 1+(tr) + M."

2. If a is not saturated, then output "NO, the radical of I is not prime," choose
two distinct saturations tr and trj of tr, output the two associated primes
I+(tri) + M and I+(trj) + M, and STOP.

3. Compute a Gr6bner basis of I, and let " be the set of maximally standard
monomials in the variables {xi}i. In other words, 7- is equal to the set of
monomials in (in(l): M)\(in(I) + (x, j )).

4. If (I m) c k[] G I+(a) for all m e 7-, then output "YES, I is primary."
5. Otherwise, choose m - such that (I m) k[] I+(p) I+(tr). Let p’

be any saturation of p. Output: "NO, I is not primary. The primes I+(a)+
M and I+(p’) + M are both associated to I."

Comments. In light of Theorem 8.1, every associated prime of I is associated
to ((I: m) c k[]) + M for some monomial m in the variables {xi}. The max-
imal proper ideals of the form (I:m) are gotten from monomials m in the finite
set ’- constructed in Step 3. In Step 5, the ideal I+(p) properly contains the
prime ideal I+(tr). Therefore, I+(tr) is properly contained in any associated
prime I+ (p’) of I+ (p).

Algorithm 9.5. Associated primes
Input: A subset c {1,..., n} and a binomial ideal I which is cellular with

respect to .
Output: The list of associated primes P1,... ,Ps of I.
1. Compute a Gr6bner basis of I.
2. Let q/be the set of standard monomials in the variables {xi}i.
3. For each m

3.1. Compute the partial character z that satisfies l+(z) (I:m) c k[].
3.2. For each saturation z’ of z, output the prime ideal I+(z’) + M.

Comments. The standard monomials in Step 2 are those not contained in the
initial ideal of I. The primes I+(z’) + M are associated to l+(z) + M. It follows
that I+(z’)+ M is associated to I. Theorem 8.1 shows that every associated
prime of I occurs in this way. The set q/ is finite because a power of M
(xi, q ) lies in I. Note that the set " in Step 3 of Algorithm 9.4 consists pre-
cisely of the maximal (with respect to divisibility) monomials in

Algorithm 9.6. Minimal primary component
Input: A cellular binomial ideal I whose radical x/ is prime.
Output: A set of binomial generators for the primary ideal Hull(I) I(vq)
0. Set J v/ and let tr be the saturated partial character such that "J

I+(tr) + M.
1. Call Algorithm 9.4 to determine whether I is primary. If yes, output I and

STOP. If no, we get another associated prime P I+(p)+ M properly
containing J.

2. We shall now follow the proof of Theorem 6.4 verbatim. First, compute the
lattice L in Formula (6.5).
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3. If L has finite index in Lp, then proceed as in Case 1 of the proof of
Theorem 6.4:
3.1 Compute a binomial b P \J.
3.2 Select an integer d which might be sufficiently divisible.
3.3 Let q be the largest power of char(k) that divides d and set

g := b[a]/b[q].
3.4 Compute a reduced Gr6bner basis ff for the ideal (I: g).
3.5 If (g consists of binomials, call Algorithm 9.6 recursively with input ft.

Otherwise, return to Step 3.2 and try a multiple of d.
4. If L has infinite index in Lp then proceed as in Case 2 of the proof of

Theorem 6.4:
4.1 Compute a vector m Lp whose image in the quotient lattice Lp/L has

infinite order. Set b := x+ p(g)xm-.
4.2 Select an integer d which might be sufficiently divisible.
4.3 Compute a reduced Gr6bner basis ff for the ideal (I: b[a]).
4.5 If ( consists of binomials, call Algorithm 9.6 recursively with input (.

Otherwise, return to Step 4.2 and try a multiple of d.
Comments. The correctness of Algorithm 9.6 follows from Theorem 6.4.

Algorithm 9.7. Primary decomposition
Input: A cellular binomial ideal I.
Output: Primary binomial ideals Qi whose intersection is irredundant and

equals I.
1. Compute the associated primes P1,..., P, using Algorithm 9.5.
2. Choose a sufficiently large integer e.
3. For each prime Pi"

3.1 If char(k) p > 0, then let Ri "= I + P!P]
--l

3.2 If char(k) 0, then let Ri := 14- Me + (Pi k[]).
3.3 Compute Hull(Ri) using Algorithm 9.6. Output Qi Hull(R/).

Comments. The correctness of this algorithm follows from Theorem 7.1’.
When computing with concrete binomial ideals, it makes sense to replace M in
Step 3.2 by (x’, i ) for sufficiently large integers ei. Good choices of these
integers, and many other algorithmic details, will require further theoretical
study and experimentation.

Examples 9.8. Here are a few examples of binomial primary decompositions.
(a) The ideal I (ab-cd, a2, b2, c,ac, bc) is primary but I+ (a) is not

primary.
(b) The ideal I (x3-y3,x4y5-x5y4) has the following two primary

decompositions:

I (x y) c (I + (x9, y9)) (x y) (3 (x2 -b xy + y2, x4y5 xSy4, xlO, ylO).

It can be shown that each primary decomposition of I in which the embedded
component has a quadratic generator is not binomial. This proves that binomial
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ideals behave differently from monomial ideals with regard to the following result
of Bayer, Galligo and Stillman: Every monomial ideal has a unique "maximal
primary decomposition" in which each component is a monomial ideal (see
Eisenbud [E, Exercise 3.11]).

(c) The homogeneous ideal I (c5- b2d 3, aSd2- b7, b5- a3c2, a2d5- C7) is
a circuit ideal (cf. Example 8.6). Its radical is the prime P I + (ab- cd). The
projective toric variety defined by P is the rational normal curve of degree 7. The
polyhedral cone c in Formula (8.3) has dimension dim(P) 2. The faces of P
are {a, b, c,d}, {a}, {d} and 3. The cellular decomposition has one component
for each face:

I P ca (b2c2 a2d 2, b a3c2, b2d2, c4, c2d 2, d 4)

ca (b2c2- a2d2, c5- b2d 3, a2c2, b4, a2b2, a4) c3 (I + (a7, b9, c9, d7)).

This intersection is a primary decomposition of I, as predicted by Theorem 8.3.
(d) The following radical binomial ideal appears in Eisenbud-Sturmfels [ES,

Example 2.9]"

J (X2X5 X1X6, X3,X4)ca (X1X4 X3X5, X2, X6) ca (X3X6 X2X4, gl,X5)

to show that the Noether complexity of an ideal can be lower than that of any
initial ideal. Note that J I(A) for a polyhedral complex A consisting of three
quadrangles (cf. Example 4.7 and Proposition 4.8). It would be interesting to study
the Noether complexity of binomial ideals in general.

(e) The following binomial ideal appears in Koll/tr [Kol, Example 2.3]:

(xdl Xl--n X2Xn ,... ,.a,n-2.a,n Xn_1,Xn-IXn

This ideal has radical (x0, X1,... ,Xn-1) and it is primary. This ideal provides a
lower bound for the effective Nullstellensatz because it contains x0

al’’’a" but not

Xod ...d. 1.
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