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RIBBONS AND THEIR CANONICAL EMBEDDINGS

DAVE BAYER AND DAVID EISENBUD

ABSTRACT. We study double structures on the projective line and on certain
other varieties, with a view to having a nice family of degenerations of curves
and K3 surfaces of given genus and Clifford index. Our main interest is in the
canonical embeddings of these objects, with a view toward Green’s Conjecture
on the free resolutions of canonical curves. We give the canonical embeddings
explicitly, and exhibit an approach to determining a minimal free resolution.

INTRODUCTION

What is the limit of the canonical model of a smooth curve as the curve
degenerates to a hyperelliptic curve? “A ribbon” — more precisely “a ribbon
on P!” — may be defined as the answer to this riddle. A ribbon on P! is a
double structure on the projective line. Such ribbons represent a little-studied
degeneration of smooth curves that shows promise especially for dealing with
questions about the Clifford indices of curves.

The theory of ribbons is in some respects remarkably close to that of smooth
curves, but ribbons are much easier to construct and work with. In this paper we
discuss the classification of ribbons and their maps. In particular, we construct
the “holomorphic differentials” — sections of the canonical bundle — of a
ribbon, and study properties of the canonical embedding. Aside from the genus,
the main invariant of a ribbon is a number we call the “Clifford index”, although
the definition for it that we give is completely different from the definition for
smooth curves. This name is partially justified here, and but much more so by
two subsequent works: In the paper of Fong [1993] a strong smoothing result
for ribbons is proved. In the paper of Eisenbud-Green [1995] it is shown that
the Clifford index of a ribbon may be re-expressed in terms of a certain notion
of generalized linear series, and the semicontinuity of the Clifford index as a
smooth curve degenerates to a ribbon is established. Together, these results
imply that any ribbon may be deformed to a smooth curve of the same Clifford
index.

Our original motivation for studying ribbons came from an attack on a con-
jecture of Mark Green concerning the free resolution of a canonical curve. Be-
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fore stating the conjecture, we introduce two notions. If
ICS=kx,...,Xg]

is the homogeneous ideal of a canonically embedded curve C of arithmetic
genus g, then the free resolution of S/I is known to have the form

0-8(-g—1)— 8%3(-g+2)@S%3(-g+1) —
oo S (=i 1)@ Shi(—i-2)— ...

— S4(=2)a 8" (-3) =S —S/[—0

with a,_,_; = b; forall i. In this situation the free modules notated S%(—i—1)
above form a subcomplex, which we think of as the “two-linear part” of the
resolution, since it begins with the quadrics in the ideal of the canonical curve
and continues with matrices of linear forms. Because of Green’s conjecture,
which we are about to state, we will define the RESOLUTION CLIFFORD INDEX of
C to be the length of the 2-linear part of this resolution — that is, the largest
i for which a; #0.

By contrast, the usual CLIFFORD INDEX of a smooth curve C of genus g > 3
is defined as the maximum, over all line bundles L on C such that hO(L) > 1

and h'(L) > 1 of the quantity

Cliff L % degree L — 2(h°(L) — 1)
=g+1-h%L)-h!(L).

With this terminology, GREEN’S CONJECTURE ON CANONICAL CURVES is the
assertion that the Clifford index and the resolution Clifford index agree for
smooth curves over an algebraically closed field of characteristic 0. In terms of
the new Clifford index we define for a ribbon, we make the

Canonical Ribbon Conjecture. The resolution Clifford index and the Clifford in-
dex agree for ribbons over a field of characteristic 0.

Because of the smoothing results of Fong [1993] and Eisenbud-Green [1995,
Proposition 2.3], a proof of our conjecture for some ribbon of each genus and
Clifford index would imply Green’s conjecture for a generic curve of each Clif-
ford index (that is, for a generic curve in some component of the locus of curves
of each Clifford index). The restriction to characteristic 0 is really necessary in
both cases, since examples of Schreyer for smooth curves and examples given
below for ribbons show that the conjectures sometimes fail in finite character-
istic.

Perhaps the most important difference between the case of ribbons and in the
case of smooth curves is that two smooth curves of the same Clifford index and
genus may have different graded betti numbers, but the graded betti numbers
of a ribbon are completely determined by the genus and Clifford index. This
is because all ribbons of given genus and Clifford index are hyperplane sections
of a particular “K3 carpet” — a double structure on a 2-dimensional rational
normal scroll (at least over an algebraically closed field of characteristic 0, this
is the unique double structure on the scroll with trivial canonical bundle that
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can be embedded in the ambient space of the usual embedding of the scroll —
see Hulek and Van de Ven [1985]). K3 carpets are the subject of a planned
paper by Eisenbud and Schreyer.

Aside from this, what we know about the canonical ribbon conjecture is
rather similar to what we know of Green’s conjecture itself. We can prove
the analogues of Noether’s and Petri’s Theorems, which deal with the cases of
Clifford index 1 and 2. We can also prove, by machine computation, that the
conjecture is true in all cases up to genus 12 (see the table of results at the end
of section 8). The proofs of these special cases are quite different in the case
of ribbons, and are in a sense more direct and algebraic, than in the case of
smooth curves, so that we are hopeful that the study of ribbons will be useful
in further work on Green’s conjecture.

We next discuss the material of this paper in more detail: The first section
below is devoted to the general theory of ribbons. Here we work with double
‘structures on a more general reduced scheme D. First we classify the ribbons
on D by certain extensions of the sheaf of differentials of D (this familiar
idea goes back at least to Lichtenbaum-Schlessinger [1967]). Next we describe
morphisms: given a morphism from D to another scheme X, we explain
what data is necessary to describe morphisms from the ribbon to X. From
this description we show how to tell when the extended morphism is a closed
immersion. In case X is a projective space, we further explain how to tell
whether the image of the ribbon is “arithmetically of depth > 2 ”, the analogue
of the condition “projectively normal” for smooth varieties. Finally we show
that the morphisms from the ribbon to another ribbon on D which induce the
identity on D are precisely those obtained by blowing up closed subschemes of
D.

For most of the rest of the paper we specialize to the case where the underlying
scheme D is the projective line over an algebraically closed field k (although
many of our results could be generalized at least to the case where D is a
nonsingular curve over an arbitrary field). We will call such a ribbon a RATIONAL
RIBBON, or simply a ribbon when the context is clear.

In section 2 we specialize the classification theory to rational ribbons. Here
the two fundamental invariants are the (arithmetic) genus and the Clifford in-
dex. The latter is defined in terms of the restricted cotangent sequence. An
alternate, and perhaps the quickest definition is the following: We say that a
ribbon is split, or “hyperelliptic” if it is isomorphic to P! x Spec k[e]/(€?) and
we define the Clifford index of a ribbon C as the minimum number of blow-
ups of C at reduced points of C.yq necessary to obtain a split ribbon. Some
preliminary evidence is given that this notion of Clifford index is the “right”
one, in the sense that it parallels the properties of the Clifford index for smooth
curves. For example it is shown that a ribbon of Clifford index a has a “gener-
alized linear series” of dimension 1 and degree a+ 2 in a suitable sense. Much
further justification may be found in the rest of the paper. Thus the theory of
ribbons gives one direct access to curves of arbitrary genus and Clifford index.

In section 3 we present a different view of the construction and classification
of ribbons, this time by gluing together ribbons on the affine line (such a ribbon
is necessarily of the form Spec k[s, €]/(¢)?.) We give the translation between
the necessary “gluing data” and the data of the restricted cotangent sequence
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of the ribbon. This version of the classification, though somewhat computa-
tional, is necessary for our treatment of line bundles, and in particular for our
computation of the canonical embedding of the ribbon.

In section 4 we discuss line bundles and their global sections on a ribbon.
The Picard group of line bundles on a ribbon of genus g is simply k& x Z,
where the second factor is given by the degree of the restriction of the line
bundle to P! (equal to half the degree of the line bundle itself). The line
bundles of degree 0 form a formally principle homogeneous space under the
group H!(&pi(—g — 1)) = k¢, and this accounts for the first factor. The global
sections of line bundles are computed in terms of an exact sequence coming
from restriction to P!.

After these preliminaries, we turn to the main concern of the paper, the
canonical embedding of a ribbon. The canonical bundle is discussed in section
5, using the theory developed in sections 3 and 4 to identify the global sections.
We prove “Noether’s Theorem for Ribbons™: the canonical series provides an
embedding of any nonhyperelliptic ribbon, and the canonical image is arith-
metically Cohen-Macaulay (and thus Gorenstein). (One of the proofs we give
of this fact involves knowing the structure of the normal bundle of the rational
normal curve explicitly. This structure is folklore, but we know no reference;
we provide a proof, together with the corresponding results for all the osculat-
ing bundles and their quotients, in an appendix at the end of the paper.) The
canonical embedding gives a third view of the the classification of ribbons: giv-
ing a nonhyperelliptic ribbon of genus g is the same as giving a line bundle
contained in the normal bundle of the rational normal curve of degree g — 1.

In section 6 we present a result obtained jointly with Joe Harris which shows
that ribbons always represent smooth points on the Hilbert scheme of canoni-
cally embedded curves.

Unlike the case of smooth curves, it is possible to deal with canonical em-
beddings of ribbons by induction on the genus. To do this, we prove in section
7 that the image in P8—2 of the projection of a canonically embedded ribbon
in P2-1 from a point on the ribbon is the canonical embedding of the ribbon
obtained from C by blowing up the point. This also leads to an easy proof of
one inequality of the canonical ribbon conjecture: The resolution Clifford index
is always > the Clifford index.

In this section we also show that the only nonhyperelliptic ribbon that can
be embedded in a smooth surface is the double conic in P?. This suggests one
reason why the theory of ribbons has not been pursued so much before: The
double structures on P! that one sees most often are all split ribbons, and thus
not of much interest.

We have already mentioned that all ribbons are hyperplane sections of suit-
able (nonreduced) K3 surfaces. In the last section of the paper we give the part
of the theory of these K3 carpets which is most relevant to the canonical ribbon
conjecture, explaining in particular how to construct a nonminimal free resolu-
tion for the homogeneous coordinate ring of a ribbon, and — conjecturally —
how to make it minimal. We include some numerical evidence, produced by
the program Macaulay of Bayer and Stillman [1990] for our conjectures, and
thus for Green’s Conjecture.

A quasi-mathematical remark: Each of the people who has worked on Green’s
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Conjecture probably has his/her own favorite nonmimal resolution of some
degenerate curve of genus g, and a conjecture about minimalizing it that would
imply at least the generic case of Green’s conjecture. So far as we know the
method of ribbons is the only one that gives such possibilities for the generic
curve of each Clifford index. There are several ways of making nonmiminal
resolutions of ribbons, and attempting to minimalize them. The method of
K3 carpets, presented in section 8, seems to us the one with the fewest choices
involved.

We are grateful as always to Joe Harris for numerous helpful comments and
suggestions, as well as for a number of specific results, which are attributed to
him below.

Throughout this paper, we work over a fixed field k. By a scheme we shall
mean a scheme of finite type over k.

1. GENERAL RIBBONS AND THEIR MORPHISMS

We begin with some basic definitions and remarks. Throughout this section,
D will denote a reduced connected scheme over the ground field k.

A RIBBON ON D is a scheme C equipped with an isomorphism D — Cieq,
the reduced scheme of C, such that the ideal sheaf . of D in C satisfies

Z?2=0.

Because of this condition, . may be regarded as a sheaf on D, and we further

require that
Z is a line bundle on D.

Note that the subscheme D is determined by C as C,q4. The line bundle
Z is the CONORMAL BUNDLE of D in C.

A RIBBON is simply a scheme C which is a ribbon on Ciq .

We shall say that the the ribbon C is spLIT if the inclusion D — C admits
a retraction C — D.

The following result is an elementary but important special case of the Clas-
sification Theorem below:

Propesition 1.1. Given a reduced connected scheme D and a line bundle & on
D there is a unique split ribbon on D with conormal bundle Z .

Proof. If we embed D in the total space X of .#, then the first infinitesimal
neighborhood of D in X is a split ribbon on D with conormal bundle .Z .

To prove uniqueness, let C be any split ribbon with conormal bundle .& .
Because C is split, the natural exact sequence

0 » L » Oc &p 0

is a sequence of @p-modules. It is split as a sequence of @p-modules because
the identity element of & lifts the identity element of @ . Because .#2 =0,
the algebra structure of O¢ is determined by the module structure of .& .

There are also lots of ribbons that are not split—we shall see in the next
section that the simplest example is given by the quartic plane curve whose
equation is the square of that of a nonsingular conic in P2. To classify the
nonsplit ribbons, we will say that two ribbons C and C’ on D are ISOMORPHIC
OoVER D if there is an isomorphism between them that extends the identity on
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D. More generally, a morphism C — C’ over D is by definition a morphism
extending the identity morphism D — D.

Given a ribbon C on D with conormal bundle . we define the RE-
STRICTED COTANGENT SEQUENCE of C to be the natural short exact sequence

Oﬁg—*gclp——*gp—*().
The restricted cotangent sequence defines the EXTENSION CLASS
ec € ExtL(Qp, Z)

of C.
The following classification is closely related to the ideas of Lichtenbaum and

Schlessinger [1967]:

Theorem 1.2 (Classification Theorem). Given any line bundle £ on a reduced
connected scheme D, and any class

e € Ext)(Qp, £)

there is a unique ribbon C on D with e = ec.

If D is proper over k and €' € Extb(QD , Z) is another class, corresponding
to a ribbon C', then C = C' iff e = ae’ for some a € k*.
Proof. Let d : @p — Qp be the canonical derivation, and consider an extension

e: 0—».?——»?-LQD—->O.
Define & as a sheaf of abelian groups to be the pullback

Oc — Op

! L

g —;—" QD
so that we have the commutative diagram
0 <z Oc Op 0
|| e e
e: 0 — 7 y & 4 QD 0.

We make @ into a sheaf of k-algebras as follows: if a;, a, are sections of
@p over an open set U of D, and x;, x, are sections of & over U with

da; = ¢x;
so that each (a;, x;) is a section of &¢ on U, we define
(a1, x1)(az, x2) = (m1a2, a1x2 + axxy),

the last being again a section of &¢ because d is a derivation. We may now
define
C = Spec&¢
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and check that it is a ribbon on D . It is also easy to check that
d: @C - &

is the universal k-linear derivation of @c to an &p-module. Thus 4’ is the
restriction of the universal k-linear derivation, and

ggQCID

is the restriction of the module of differentials Q.. This shows that C is a
ribbon with extension class e, proving the first part of the Theorem.

To prove the second part, note first that if C and C’ are ribbons over D
then a morphism f : C — C’ over D is a map f* : @c — ¢ of sheaves
of k-algebras inducing the identity on &) . Such a map induces a map of the
restricted cotangent sequences

0 » & Qclp Qp 0
] dl |
0 ' Qclp Q 0

where g is the map induced by df* and a is the map induced by . If f
is an isomorphism, then the S is an isomorphism and it follows that a is too.
Since D is reduced, connected, and proper over k, and .% is a line bundle, the
only automorphisms of % are the elements of k*, so a € k*. The given map
of exact sequences corresponds to the map induced by a on Ext},(QD ,-Z), 80
that e and ¢’ differ by an element of k* as required.

Conversely, any element of k*, regarded as a map

0:F -2,

induces an isomorphism of exact sequences as above. Using the constructions
of C and C’ from their restricted cotangent sequences, we may reverse the
process and see that if ¢ and ¢’ differ by an element of k* then C = (C’.

Corollary 1.3. If D is a smooth affine variety over k, then every ribbon on D is
split.

Proof. In this case Qp is a projective @p-module, so
Exth(Qp, #)=0. O

Corollary 1.4. If D is reduced, connected, and proper over k, then the set of
nonsplit ribbons on D with conormal bundle Z , up to isomorphism over D,

is in one~to-one correspondence with the points of the projective space of lines in
Ext}(Qp, Z).

So far our classification has been up to “isomorphism over D ”, that is, up
to isomorphisms inducing the identity on D. It is easy to turn this into a
classification up to abstract isomorphism:

-Corollary 1.5. If D is reduced, connected, and proper over k, then the set of
isomorphism classes of nonsplit ribbons C such that Creq = D, and such that the
conormal bundle of Creq is isomorphic to a given line bundle & on Cieq, isthe
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projective space of lines in Ext},(QD ,-Z) modulo the group of automorphisms
of D preserving & .

Proof. Given a ribbon C as in the Corollary, two choices of the structure of a
ribbon on D differ by a unique element of AutD.

The morphisms from a ribbon C to a scheme X admit a simple description
in terms of the induced map f: D = Crq — X. Given such a map [, we write
df : *Qx — Qp for the induced map on the sheaves of differentials, and we
write

df* : Exty(Qp, &) — Exth(/*Qx, &)

for the map induced by df on Ext. Note that if C is aribbon,and f:D — C
is the inclusion, then f*Qy = Qc|p. We shall often write Qx|p for f*Qx
also in the general case.

Theorem 1.6. If C is a ribbon on D with restricted cotangent sequence
O—-—»_C/—-—»fzc|p7gp——+0,
then the morphisms from C to a scheme X extending a given morphism f :

D — X are in one-to-one correspondence with the splittings of the exact sequence
df*ec ; that is, with the maps of sheaves

g:Qx|p — Qclp

making the diagram
d
Qxlp —4— Qp

d ||

Qclp - Qp

commutative.
In particular a morphism extending f exists iff

d f 'ec =0.
Proof. Since & is a sheaf of k-algebras on D, f.Oc is a sheaf of k-algebras
on X, and the morphisms f : C — X _extending f are in one-to-one cor-
respondence with the maps of algebras f* : @y — f.@c lifting the map f*:
Ox — f.0p.
Since f, is left exact, f.@c is the pullback of the diagram

fbp
Q — £.Qp.
£Qclp = LQp

Thus the desired algebra maps are in one-to-one correspondence with the deriva-
tions of sheaves @x — f.Qc|p lifting the derivation

&y L £.0p — £.9p.
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Such derivations correspond uniquely to maps of sheaves of modules
g :Qx — £i.Qclp

making the diagram

QX ——d.'f—’ #QD

) ll

LQclp ——— £.Qp

commute. By the adjointness of f. and f*, such g’ are in one-to-one corre-
spondence with the maps g described in the theorem.

Corollary 1.7. If C is a ribbon on D with restricted cotangent sequence ec,
then the maps f : C — D such that the composite

D‘—»C—LD

is the identity are in one-to-one correspondence with the splittings of ec .

The following gives a useful criterion for a map from a ribbon to be a closed
immersion. Given a closed immersion into projective space, it also tells us
when the homogeneous coordinate ring of the image has depth > 2, which is
the analogue for ribbons of projective normality for smooth varieties.

If f:C — X is a morphism such that f|p is a closed immersion, then we
shall write Nj, . for the pullback to D of the conormal sheaf of f(D) in X;

that is,

D f = f (‘ff(D)/X/']f(D)/x)
where % p)/x is the ideal sheaf of f(D) in X. In this situation we define
ar:Np = -Z to be the pullback of the quotient map % p)/x — Ffc)/x -

Theorem 1.8. Let C be a ribbon on D with conormal bundle & .

m I
f:C-X
is a morphism, then f is a closed immersion iff the restriction of f to
D is a closed immersion and oy is an epimorphism.
2 I
f:C—-P
is a closed immersion, and the homogeneous coordinate ring of f(D)
has depth > 2, then the homogeneous coordinate ring of f(C) has
depth > 2 iff the map

ayz.(n) : HY(Np ((n)) —» HY(ZL (n))
induced by oy is surjective for all integers n

Proof. (1) f is a closed immersion iff the induced map f* : @y — f.Oc is
an epimorphism, and similarly for the restriction of f to D. Since D is a
subscheme of C, it is clear that f can be a closed immersion on C only if it
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is a closed immersion on D . Now suppose that f is a closed immersion on D
and consider the diagram

0 — H — O L fi —— 0

! ! |

0 — f,.F —— fillc —— f.b0p —— 0.

From the snake lemma we see that the middle vertical map is an epimorphism
iff the left-hand vertical map is. Since f,.2 is supported on f(D) = D, this
map is an epimorphism iff o is, proving part (1).

(2) The homogeneous coordinate ring of f(C) has depth > 2 iff the map

fu(n) : H(Ger(m)) —» HY(@c(n))

induced by f is surjective for all integers n. Note that, because of our hypoth-
esis on D, the maps

fu(n) : H (G (n)) — HY(Op(n))

are all surjective. Thus setting X = P” in the above diagram, twisting by
Op-(n) , and taking H° , the desired result follows again from the snake lemma.

The maps between ribbons on D which induce the identity map on D have
a particularly nice description: they are just the blow-ups of Cartier divisors on
D (these are Weil divisors on C ). First we analyze such blow-ups.

Let 0 ¢ D be an effective Cartier divisor in D, and let C be a ribbon on
D with conormal bundle .# and extension class ec. Let a:. ¥ — £ (J) be
multiplication by a section of &@p(d) corresponding to J, and let C’ be the
ribbon corresponding to the extension class

ec' = a(ec),
where we have written a again for the induced map
Ext}(Qp, -Z) — Ext},(Qp, Z).
With this notation we have:

Theorem 1.9. If X — C is the blow-up of C along &, and C' is the ribbon
corresponding to a(ec) as above, then X = C’, and the blow-up map corresponds
to the map of exact sequences .

0 —— Z(6) —— Qcilp Qp 0
‘| I H
00— ¢ — QC|D QD 0

induced by «.

Proof. The matter is local on C, so we may assume that C = Spec 4, that &
is the trivial bundle, so that the nilpotent ideal of A4 is generated by one element
v, and that the ideal of 4 in D is principal. Let x € A be any element of A
lifting the generator of the ideal of § in &p(D) = 4/(y). Since J is Cartier,
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x is a nonzerodivisor on 4/(y) and thus on 4. Of course y? = 0. With these
choices it is easy to check that

C' = Spec A[y/x],

where A[y/x] is the subring generated by y/x in the localization A[x~!].

“Consider now the blow-up. Let B=4® (x,y)®(x,y)’®...,sothat X =
Proj(B). Since y is nilpotent X is affine, and we have X = Spec(B[x~1]y).
Since (x, y)" =x""!(x,y), we get B[x~']o = A[y/x] as required.

It follows that we can describe all maps of ribbons over D in these terms.
For simplicity we stick to the case where D is irreducible:

Corollary 1.10. Suppose that D is irreducible, and let f:C' — C be a map of
ribbons over D. If the image of f is contained in D, then C' is split and f
is the projection. Otherwise, f is the blowup of C along a subscheme that is a
Cartier divisor in D.

Proof. Let .Z and &’ be the conormal bundles of C and C’. The map
Qclp = Qcilp

corresponding to f induces a map a :.¥ — .2’ as in the preceding theorem.
Since D is irreducible, o is an inclusion corresponding to some Cartier divisor
d . The rest follows as in the theorem.

2. RATIONAL RIBBONS 1: THE RESTRICTED COTANGENT SEQUENCE

In this section we shall suppose that the field k is algebraically closed, and
we shall consider only ribbons C on D = P! = P.. Here the classification
described in section 1 becomes much more concrete.

As usual with curves, the fundamental invariant of C is its genus, here
defined as the arithmetic genus

g(C)=1-y(@c)=1-H'G +H &.

From the additivity of y and the fact that x(@p:i(n)) = n+ 1 we see that C
has genus g iff the conormal bundle . of P! = C,eq in C is Gpi(—g—1).

C is split iff the the inclusion D — C admits a section. Such a section is a
map C — P!, which will have degree 2 in the sense that the scheme-theoretic
fiber of a point in P! has length 2. Conversely, any degree 2 map f:C — P!,
induces a degree 1 map f.q : D — C — P!. Composing f with the inverse of
this isomorphism of P! we obtain a section of D — C. Because of this we
will call C HYPERELLIPTIC if C is split.

We have used the word hyperelliptic because hyperelliptic ribbons have many
properties in common with smooth hyperelliptic curves. As a first example, we
note that if g > 2, then there are no nontrivial maps Qpi — @pi(—g — 1), so
by Corollary 1.7 there is at most one splitting of ec, and the two to one map
C — P! is unique if it exists. On the other hand, in the cases g =0 and g =1
there are, again by Corollary 1.7, one-parameter and two-parameter families of
such two-to-one maps, respectively, just as in the case of smooth curves.

From Corollaries 1.4 and 1.5 we deduce:
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Theorem 2.1. The set of nonhyperelliptic ribbons of genus g on P!, up to iso-
morphism on P!, is the set

P¢=3 = PHY (G (g - 3))),

the space of 1-quotients of H*(Gpi(g - 3)).
"~ The set of abstract isomorphism classes of nonhyperelliptic ribbons of genus g
on P! is thus this set modulo AutP!.

Proof. By Corollary 1.4, it is enough to identify the lines in

Extp(Qp, Gpi(-g — 1)) = H(Q} @ Gpi(—g — 1))
=H'(@p(-g +1)),

with the 1-quotients of H°(@pi(g — 3)), and this is simply Serre duality.

For ribbons on P! we may write the restricted cotangent sequence in the
simple form

0= Gpi(—g = 1) = Gpi(—a ~ 2) & Bpi(=b — 2) = Gpi(—2) = 0

for some integers a and b with 0<a<b<g-landa+b=g-1. We
define the CLIFFORD INDEX of C to be the integer a. Note that the sequence
and thus the ribbon is split, that is, hyperelliptic, iff a = 0, as for a smooth
curve. And just as in the case of smooth curves, the Clifford index takes values
fromOto (g —1)/2.

To give a sequence of the sort above, it suffices to specify the right-hand map

Opi(—a —2) & Gpi (b — 2) — Cpi (=2),

which must be an epimorphism of sheaves. If we choose coordinates, and thus
identify the homogeneous coordinate ring of P! with the polynomial ring in
2 variables S = k[s, t], then such a map is given by a pair of homogeneous
polynomials « and B of degrees a and b respectively. The condition that
the map be an epimorphism is then simply the condition that «, 8 is a regular
sequence, and the restricted cotangent sequence itself is the Koszul complex of
a, B twisted by —2. We shall write Ic = (a, B) for the ideal associated in this
way to the ribbon C. It is easy to see that I~ is an invariant of the sequence
ec and thus of C.

To make a connection with Theorem 2.1 we recall a result that seems to have
been discovered by Macaulay. To express it, we write S; for H(Gpi(d)), the
vectorspace of homogeneous forms of degree d .

Theorem 2.2. There is a one-to-one correspondence between hyperplanes in Sg_3
and ideals generated by regular sequences (o, B) C S whose generators have
degrees a, b with a+b = g — 1, given as follows: If I = (a, ) C S is such
an ideal, then the subspace

H(I) = (a, B) N Sg-3

is a hyperplane, and if H C S is a hyperplane, then the ideal I(H) consisting
of all homogeneous polynomials y of degree ¢ < g — 3 such that

y(s, )83 CcH
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together with all forms of degrees > g — 3 is generated bya regular sequence of
elements of suitable degrees.

In the situation of the theorem, we will call any functional ¢ : Sg—3 = k
with kernel H(I) a DUAL SOCLE GENERATOR for I. The following additional
information is also well-known:

Propesition 2.3. The lines in
Extp(Qp, Gpi(—g — 1)) = H(Q}) ® Gpi (—g — 1)) = (H'(@pi1 (g — 3)))*

spanned by the class of the Koszul complex of (o, B) and the class of a dual
socle generator for (a, B) are the same.

Thus the element in P(H(&p:(g — 3))), associated by Theorem 2.1 to a
ribbon C is the same as the element corresponding to a dual socle generator f
for Ic.

Using this, we can make the classification theorem more geometric:

Corollary 2.4. A ribbon C on P! is determined by the set of divisors 6 C P!
such that the blow-up of C along J is hyperelliptic.
In fact, if we write 6 € S for a polynomial defining the divisor &, then the set
of divisors .
{d|the blow-up of C along & is hyperelliptic}

is the same as the set of forms
{60 € I¢}.

In particular, the Clifford index of C is the minimal number of blow-ups of C
at reduced points necessary to reach a hyperelliptic ribbon.

Proof. If we write C’ for the blown-up ribbon, then ec: is obtained by pushing
forward the sequence ec- along the map induced by J,

0 — Z©) — Qclp — Q —0

d I H

() (@,B)
0 — & =% Gp(-a-2)00u(-b-2) -2 Gp(-2) — 0

where & = &pi(—g — 1), and it is obvious that the upper sequence splits iff
oelc=(a, B).

Corollary 2.4 provides another significant justification for using the name
“Clifford index” for the invariant of a ribbon that we have defined:

We define a GENERALIZED LINEAR SERIES OF DEGREE 7 AND DIMENSION 7 On
aribbon C to be an ordinary linear series (line bundle and space of sections) of
degree n—d on the blow-up of C at some divisor J of length d in D. Note
that blowing up C corresponds to removing base points; if C were smooth,
we could remove base points without changing C, so that the given definition
is a natural extension of the smooth case.

From Corollary 2.4 we can say that a ribbon of Clifford index a has a gener-
alized linear series of degree a + 2 and dimension 1, corresponding to a linear
series of Clifford index a (in the usual sense!). For this we need only take
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the degree 2 map to P! of the hyperelliptic a-fold blow-up guaranteed by the
Corollary.

We shall see that there is a good notion of torsion-free sheaf on a ribbon
corresponding to the notion of generalized linear series, and also that C does
not have any generalized linear series of dimension 1 and degree n for n < a+2
— that is, none of Clifford index less than the Clifford index of the ribbon. The
same is true of generalized linear series of higher dimension, as is proved in
Eisenbud-Green [1995].

The same technique proves:

Corollary 2.5. The ideal Ic: corresponding to the blow-up C' of C along J is
the “quotient”
()= (Ic: 15) = {y € Slvls C Ic},

where Is is the ideal in S of the subscheme ¢ .
In particular, when 6 is a single point, we have

CliffC’ < CliffC

iff either Cliff = (g — 1)/2 or & is a zero of the (unique) lowest degree form in
Ic.
Using the dual socle, we can make explicit the stratification of the set of

ribbons P(H(@pi (g — 3))) by Clifford index. The following necessary results
are well-known in the theory of vector bundles. Let

X CP(H(Op (g -3))

be the rational normal curve of one-quotients H°(@pi(g — 3)) — k correspond-
ing to evaluations at points of P! .

Proposition 2.6. Let f be an element of H°(Gpi (g — 3))*, regarded as a point
in P(HY(@pi(g — 3))). If I is the ideal whose dual socle is f, then I contains
a form of degree < a iff f lies in an a-secant (a — 1)-plane to X .

Thus the set of ribbons of Clifford index < a corresponds to the union of
the (a — 1)-planes a-secant to X . (Here we count limits of such planes as also
being a-secant — for example tangent lines are considered 2-secant lines.)

Writing f in terms of a basis (s't8=3=/)* of H%(@pi(g — 3))* dual to the
monomial basis of H%(@: (g —3)) determined by the choice of coordinates
s, t,say as

g-3
f=3 fils'E30y,
i=0
we can express the secant loci, and thus the sets of ribbons of Clifford index <
a given number, as special determinantal varieties:

Proposition 2.7. With notation as above, f lies in an a-secant (a — 1)-plane to
X iff the rank of the “catalecticant” matrix satisfies

foo i o fam
h £ ... fa

a > rank

A S A
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In fact the ideal of a x a minors of the catalecticant matrix is the whole
homogeneous ideal of the corresponding secant locus, and this remains true for
the a x a minors of any a’ x b’ catalecticant matrix

oo i o o
h Lo Sar

Joo1 Sor oo Sasw—2
as long as a < a’, b’ ; see Gruson-Peskine [1982] for a proof.

3. RATIONAL RIBBONS 2: GLUING

Again in this section we shall consider ribbons C' on D = P!. We shall write
g for the genus of C.

Since ribbons on the affine line are all split, it is useful to regard ribbons on
D as being obtained by gluing together ribbons on the affine line. In this section
we use this gluing to give another view of the classification of ribbons.

In the next section we shall exploit gluing to analyze line bundles and their
sections, to locate the canonical bundle, and to form the canonical map of a
ribbon to projective space.

We begin by fixing notation: we shall regard D as glued together out of two
open sets

u; = Spec k[s], u, = Spec k[t]

via the identification s~! =¢ on u; Nu,.
If C is aribbon on D, then by Corollary 1.3, we may write

U, ¥ C |, = Spec k[s, €]/€?,
U, % ¢ l, = Spec k[t, nl/n?,

and C may be specified by giving an appropriate gluing isomorphism between
these two schemes over the set u; Nu;.

Since the ideal sheaf & =~ @pi(—g —1) of D in C is generated on u; by
€ and on u, by 7, and since the gluing isomorphism must restrict to the one
already specified on D, we see at once that it can be written in the form:

e=t¢1p
sT'=t+F(t)n

on u; Nuy, with some
F(t) € k[t, t™1 = Opi (uy Nua).

Conversely, any such gluing data defines a ribbon of genus g on P!.
If we change the coordinates on U; and U, to s’ and ¢ with

s'=s+p(s)e, t=t+q)n,
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where p(s) and ¢(¢') are polynomials, then we have

r1—1 1

sl=5"1—s72p(s)e
=t+ F(O)n+ (t+ F(t)n)’p(s)t~*"'n
=t+(F(@)+t ¢ p(t™ )
=t +qO)n+ (F(' +q@n) + ' +a@O)m)~ ' p((t' +a®)n)™"))n
=+ (F@t)+1¢*p(r™") + q(0)n,
where we have repeatedly used the facts that
sn=t"'n, m=1tn,
etc. Also, if we multiply s or ¢ by a scalar then F will be multiplied by the

same scalar. From this we see that F is determined (at best) as an element of
the projective space of lines in the quotient

ke, 1/ (k[e] + =8 k1))
On the other hand, vusing the covering of P! by u; and u,, this quotient
may be identified via Cech cohomology as H' (@i (—g — 1)) . We have seen in

the last section that the lines in this vector space classify the ribbons on P!.
The main result of this section is that these two classifications are the same:

Theorem 3.1. Let F € k[t, t™'] be a Laurent polynomial. If C is the ribbon
defined by gluing U, and U, as above, then F is proportional to the class ec
of the restricted cotangent sequence of C in

H (Gpi(—g + 1)) = k[t, t71/(k[t] + t~&8+ k[t71]).

We must exhibit a construction of the restricted cotangent sequence by gluing.

On U; we have
Qc lv,= (Ccds & Ocde)/2¢ede

so that
(Qc |p) lu,=Gpds & &pde,

and the restricted cotangent sequence, restricted further to u; , takes the form
0 — (de) — (de) & (ds) — (ds) — 0,

where we have written (x) for the free module with basis element x . Of course
we have a similar sequence, with ¢ and # on u,. On the intersection u; Nu,
we have ndt=ndn =0 so

de =t"87'dn, ds=—t"2dt—t2Fdn.
Thus the gluing takes the form
(de) —— (de) @ (ds) —— (ds)

(*) t‘g“l l«ﬁ l—t‘z

(dn) —— (dn) & (dt) —— (d1)

where we have written ¢ for the matrix

—t~8~1 —72F
(Mo )
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To show that F is proportional to the class of restricted cotangent sequence
in
H'(Gpi(—g + 1)) = k[t, 1)/ (k1] + ¢+ k[271]),
it suffices to show that F is proportional to the image of 1 € H° @p1 under the
connecting homomorphism

6 :HGpi » H' Gpi(—g + 1)

induced by the restricted cotangent sequence twisted by @p:i(2).
The effect of the twist is to replace the gluing diagram (*) by the diagram

(de) —— (de)o(ds) —— (ds)

t‘g”l l¢1 l—l
(t2dn) —— (t3dn) ® (t2dt) —— (12dt)
where now ¢; is the matrix
—t—&+tl _F
(" )

We may compute the connecting homomorphism & from this gluing de-
scription: the Cech 1-cocyle representing (1) = (ds) € H! (Gpi(-g + 1)) is
obtained by taking

t2dt — ¢,(ds)

as an element of
ﬁPl(_g"' 1) lulﬁuz .

Since this is —F , we are done. O

Using the ideas developed in the last section, we may rephrase this result
in terms of the ideal I associated to the ribbon. The Laurent polynomial F
determines a linear form on the set of polynomials in ¢ by the rule

h — residue,—g Fh.

The usual duality between H!(@pi(—g + 1)) and H%(@pi (g — 3)) is given by
restricting this functional to the polynomials of degree < g—3, and identifying
these with the forms of degree g — 3 in s and ¢. In this way we may regard
F as a functional on S;_3, and as such we have:

Corollary 3.2. F is a dual socle generator for the ideal 1- of the ribbon defined
by F. O

4. LINE BUNDLES ON RIBBONS

Again in this section we shall consider ribbons C on D = P!, and we shall
write g for the genus of C.

In this section we shall explain how to classify the line bundles on a rational
ribbon, and we shall compute the sections of a given line bundle. In the next
section we shall apply these ideas to find and study the canonical bundle.

Unfortunately, we do not know a method of describing a line bundle on a
ribbon C in terms of some structure on the underlying P! analogous to the
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method of the restricted cotangent sequence for describing &¢ itself. Thus
we shall use a gluing description analogous to the ideas developed in the last
section. In particular, we shall make use of the notation developed in the last
section for the gluing of C by means of the Laurent polynomial F . However,
we can take a few steps before using coordinates:

First we compute the Picard group of C:

Proposition 4.1.
PicC =H'(@pi(-g - 1)) x Z=kE x Z,
where the projection to the Z factor is given by associating to a line bundle L

the degree of the restriction L |p.
Proof. From the exact sequence

0% >0 —0p—0
we derive an “exponential sequence”
0-Z -0 -0 —1
by sending a local section ¢ € .% to 1+ 0 € &2 . Taking cohomology, we get
0 - H'(%) - PicCPicD — 1,

where the last map represents restriction to D. Since PicD = Z via the degree

and
H (Z)=H'(Gp(-g - 1)) =k8,

this gives the desired conclusion.

As in the smooth case, the fundamental invariant of a line bundle L is its
degree, here defined as

£
deg L= (L) - x(@c).
From the RESTRICTION SEQUENCE
0-XL—-L—-Llp—-0
for L we see that the degree of L may be computed from the knowledge of
Z L provided by the following result:

Proposition 4.2. If L is a line bundle on C and L|p = ﬁpl( n) then XL =
Op(n—g—1),and deg L =2n.
Proof. Since .#? =0 we have

FLRIL=LQLlp=Cp(n—g—1).

On the other hand, we see by restriction to an affine open set that ZL is a
line bundle, so the epimorphism . ® L — %L must be an 1somorphlsm The
degree computation now follows trivially.

To replace line bundles of odd degree, it seems that one must turn to torsion-
free sheaves, which are line bundles on blowups of C, as we shall see later.

Next we turn to the question of sections of a line bundle. What we need is a
formula for the connecting homomorphism

é. - HY(L|p) - HI(ZL)
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associated to the restriction sequence. We shall get it in terms of gluing data
for the line bundle.
To construct line bundles by gluing, note first that all line bundles on one of
the sets U; are trivial (one can see this, for example, from the analogue of the
exact sequence for the Picard group above, or by standard commutative algebra)
so that to give a line bundle L on C whose restriction to D is &pi(n) it is
enough to specify that
L=k][s, €le on U,
L=k[ta ’7]92 on UZ:
er=(t+Fn)"(1+Gne; on U N1,

for some G € k[t, t7!]. Conversely, any G € k[¢, t~!] may be used in this

way to construct a line bundle L on C.
If we change coordinates on U; and U,, say by

er=(1+m(s)e)'e], er=(1+n(t)n)e;,
then we get
el = (t+ Fn)"(1+Gn)(1 +m(s)t™"'n)(1 + n(t)n)e;
(t+Fn)"(1 + (G+m@E~ )t 8" + n(t))n)e}
so that to specify L it is enough to give G as an element of
kit, t'1/(k[f] + ¢ k[t™"]) = H (Gpi (—g — 1)).
We can now state the main result of this section:

Theorem 4.3. Let L is a line bundle on C of degree 2n given by gluing data
as above. If p = p(t) is a polynomial of degree < n, so that pe,|p defines an
element

g € H(L|p) = H'(@p(n)),
then
or(0) = —(p'F + pG)
€ k[t, t71/(k[t] + "8 k[t71])
=H'@n(n-g-1)
where p' = 9p(t)/ot.

Further, the space of sections of L restricted to U, = Spec k[t, t™!] is the
direct sum of the space of elements q(t)n, for q a polynomial of degree <
n— g — 1, and the space of expressions of the form p(t) + p,(t)n where p(t)
is a polynomial of degree < n satisfying dr(c) = 0 and p,(t) € k[t] is the
“polynomial part” of p'F + pG, that is,

pi(t) =p'()F(t) +p(t)G(t) mod t~1k[t7"].

Proof. The connecting homomorphism H°L|, — H'(ZL) is obtained by com-
paring liftings of ¢ on U; and on U,. We have

p(t)ezlulnuz =p(s-l)sne1|u|ﬁuz
so that Jz (o) is given as a Cech cocycle by the element
p(t)ez — p(s™")s"ey € LUy N Ua) = Gpr (1= & = Dluyruy-
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Using the gluing formulas we get
p(t)ez —p(s™')s"er = p(t)ey — p(t + Fn)(t + Fn)~"(¢t + Fn)"(1 + Gn)e
=p(t)ez —p(t + Fn)(1+Gn)e;
=p(t)e — (p(t) +p'()Fn)(1 + Gn)ez
= —[p(1)G + p'(t)Flne,,
which gives the desired formula for J; .

The elements g(t)ne,, with g a polynomial of degree < n — g — 1, clearly
represent the sections of ZL. The rest of the sections of L are obtained
by lifting sections ¢ of L|p that go to 0 under .. Given such a section,
represented say by p(t)e; on u, as above, we must find an expression

p(?) +p1(t)n
that is equal in k[t, ¢!, n] = k[s,s™!, €] to some element coming from
k[s, €]le; . But we have just shown that

p(t)ex — p(s™')s"e; = —[p(t)G + P’ (1) Fne,.
Take p; as in the theorem. Setting
r(t)nez = (p(2) + pr(t)n)ez — p(s™)s"er
we see that r(z) will have no polynomial part. That is, () € k[t™!]. In
addition, if d.6 = 0 then r(¢) € t"~¢~1k[t~!]. Thus
r(tmey = r(s~')(s7¢ 'e)s"es
=s""8"1r(s7) € k[s]ee, ,

so that (p(t) + pi(¢)n)e, represents a section as claimed.

5. THE CANONICAL EMBEDDING

Again in this section we shall consider ribbons C on D = P!, and we shall
write g for the genus of C. We shall continue to use the notation introduced
in the previous section.

As an application of the work done in the previous section, we can determine
the canonical line bundle and its sections. Note that a ribbon is locally Goren-
stein, so that the canonical sheaf really is a line bundle, and has degree 2g — 2
by the Riemann-Roch formula.

If G(t) =3",at" € k(t) is a rational function, then we write

def
polynomlal - Za,t'

for the “polynomial part” of G.

Theorem 5.1. The restriction sequence of the canonical line bundle K has the
form
0 —»ﬁpl(-—Z) bd KC - ﬁpn(g-— 1) — 0.
The associated connecting homomorphism 8¢ is 0, so that the induced linear
series on D is the complete series of degree g—1. The gluing data of the canonical
bundle of C is given by
G =0F/dt,
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so that the sections of K¢ are represented by the expressions

p+ (a(PF)/at)polynomial n

where p ranges over the polynomials of degree < g — 1 in t. Thus if we take
F of the form

g2 )
F()=Y Fr
i=1

then the elements of a basis of global sections of K¢ restrict on U, to the elements
£ +3 (j+1)Fi_jatin  (i=0,...,g-1).
j=0
Proof. The form of the restriction sequence comes simply from the degree of
K., and thus from Riemann-Roch. From Riemann-Roch we also know that
hO(KC) = g. Since h%(@pi(g—1)) = g while h°(Fpi(-2)) = 0, this implies
that
ke : H'(@p (g — 1)) —» H' (Opi (-2))

is 0. Further, since no other line bundle of degree 2g —2 has as many sections
as the canonical bundle, this vanishing actually characterizes K¢ .

By the formula for Jx. given in Theorem 4.3, dx. = 0 means that if G =
G(t) is the gluing data for K., then ‘

residue,g p'F +pG =0

for all polynomials p = p(¢) of degree < g — 1. Since the residue of the
derivative of a rational function is automatically O, this can be achieved by
taking

G=090F/oat,

so that
Pp'F +pG=098(pF)/ot.
By the remark above characterizing K¢, this establishes the formula for G

given in the Theorem. The rest of the Theorem follows by direct computation
from Theorem 4.3.

We next wish to show that the canonical linear series defines an embedding
of C as an arithmetically Cohen-Macaulay (even Gorenstein) subscheme of
P&-1 . As a first step we have:

Corollary 5.2. The canonical series on C is base point free.
Proof. Tt induces the complete series on D.
The following is the main result of this section. It continues the strict analogy

with the theory of smooth curves, and is the first stage of what might be called
“Green’s conjecture for ribbons”, which will be discussed below.

Theorem 5.3 (Noether’s Theorem for Ribbons). Let the genus. of C be g>2.
If C is hyperelliptic, then the canonical map is the degree 2 projection onto
P! composed with the embedding of P! into P8~ as the rational normal curve.
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If C is not hyperelliptic, then the canonical series embeds C as an arithmeti-
cally Gorenstein subscheme of P8~! .

Proof. If C is hyperelliptic, then the form of the canonical sections given in
Theorem 5.1 makes it clear that the canonical image of C is the rational normal
curve of degree g — 1. In particular, the map of C onto this image is 2 to 1,
and since g > 2 there is only one such map (see the remark at the beginning of
section 2). Conversely, we see that if the canonical image of C is the rational
normal curve of degree d — 1, then C is hyperelliptic.

Now suppose that C is not hyperelliptic. It is enough to show that the canon-
ical series defines an embedding of C as an arithmetically Cohen-Macaulay
curve; the fact that the embedding line bundle is the canonical bundle then
implies that the image is arithmetically Gorenstein.

Since the restriction of the canonical series to D C C is the complete series, it
defines an embedding of D as an arithmetically Cohen-Macaulay curve. Writing
# for the ideal sheaf of D c P81, it is enough to show that the induced maps

H'(Sp /A (n)) » HY(Z (n))

are onto for all n.
The following well-known lemma identifies the sheaf involved:

Lemma 5.4. The conormal bundle to the rational normal curve D C P’ , of degree
g—1is
/I3 2 H(Op(g-3))®8Fp (-8~ 1)
equivariantly for the action of SL(2).
Proof of Lemma 5.4. This is just the dual of a special case of Proposition 5A.2.

Returning to the proof of Theorem 5.3, we see that the natural map % | F#
— & has the form

I I 2 O (—(g - 1)82 L G (—(g - 1) = F

and is thus either identically O or a split epimorphism. The image of this map
is in either case % /%, where % is the ideal sheaf of C. In the latter case
we are done by Theorem 1.8. In the former case we see that % = 7, so that
the canonical image of C is the rational normal curve, and C is hyperelliptic
by the remarks above, contradicting our assumption.

As was pointed out to us by Joe Harris, one can also give a proof of “Noether’s
theorem for ribbons” along the lines of Noether’s original proof: First one may
use Riemann-Roch to estimate the number of conditions imposed by a sub-
scheme of length 2 and thus show that the canonical map is a closed immersion.

Next one checks the number of quadratic (and then cubic ...) equations
satisfied by the curve by checking the number of conditions imposed on quadrics
by the general hyperplane section. For a reduced nonhyperelliptic curve of genus
g the general hyperplane section of the canonical embedding consists of 2g +2
points in linearly general position in Pé~2 , and it is easy to see that such a set
of points imposes at least 2g+1 conditions on quadrics. In the case of a ribbon,
the hyperplane section consists of g+ 1 double points. But these are again in
general position in a suitable sense, as one may show by a monodromy argument;
see for example Eisenbud-Harris [1992] and, for a more general study, Chandler
[1995]. :
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We isolate for future use a piece of information from the proof of Theorem
5.3:

Corollary 5.5. If C c P&~! s a nonhyperelliptic ribbon in its canonical embed-
ding, and S C #p are its ideal sheaf and that of the underlying rational normal
curve D = P!, then
/I =Op(-g-1)
is a direct summand of the conormal bundle
I3 = (-8 - 1572,

We remark that the proof of the Theorem indicates a third view of the clas-
sification of ribbons: To specify a nonhyperelliptic ribbon of genus g in its
canonical embedding one must simply give a corank 1 direct summand of the
conormal bundle of the rational normal curve of degree g — 1— this subbundle,
together with the square of the ideal of the rational normal curve, generates the
ideal of the ribbon. By Lemma 5.4, such a summand is specified by an element
of the dual of H%(@pi(g — 3)), up to scalars. This is the same element that
specifies the gluing data or the dual socle generator, as the reader may check.

6. CANONICAL RIBBONS ARE SMOOTH POINTS OF HILB

Again in this section we shall consider ribbons C on D = P!, and we shall
write g for the genus of C.

In this section we shall show that ribbons all lie in the smooth locus of the
Hilbert scheme of canonical curves. The result is from joint work with Joe
Harris.

Theorem 6.1. If C C P&~ is a nonhyperelliptic ribbon in its canonical embed-
ding, then C represents a smooth point of the Hilbert scheme of curves of genus
g and degree 2g — 2, lying on a component of dimension (3g —3)+ (g*—1).

The given dimension is of course also the dimension of the component con-
taining the smooth curves, and in fact Fong [1993] shows that they are the
same.

Proof. Let D = Cpeq = P! as usual, and write I and .% for the ideal sheaves
of C and D in the canonical embedding of C in Pé-!. Let
N¢ = Homc (S /52, Oc)

be the normal sheaf.

Because C is locally a complete intersection, N¢ is a vector bundle of rank
g-2 on C and it suffices to show that h®(N¢c) = g2+3g—4 and h'(Ng) =0
(see for example Sernesi [1986, Corollaries 8.5 and 8.6].) To do this, we shall
use the restriction sequence

(*) 0—>Nclp®§pl(—g—-1)—-—>Nc——>Nc|D—-—>0,
and we must determine the bundle N¢|p. Since S/ #? is a vector bundle,
the operations of taking its dual and restricting it to D commute, and we get
N¢lp = Home (S /72, Oc)lp
= Homp(S|p/lp > @b)
= Homp(Sc/Fc D, Op).
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By Corollary 5.6, %/ %} = Gpi(—g — 1)873, so Homp( S/ S5, @p) has a
subbundle isomorphic to @pi(g + 1)$~3. To compute the quotient, note that
it is a line bundle; thus to make the computation, it suffices to know the first
chern class of N¢|p.

Again because C is locally a complete intersection, we may calculate the
chern class of N just as we would in the case where C is smooth: that is, we
have

Oc(1) = we = N8 2N ® Wpe-1
= N8N ® Gpe-1(—8) = NET2Nc ® Bc(-¢) ,
)
c1(Nc) = c1(AN82N¢) = Bc(g + 1).

Of course the restriction of the first chern class is the first chern class of the
restriction, so

c1(Nclp) =p(g + 1) = ((g + 1)(g — 1))

Subtracting the first chern class of the subbundle we already know, we see that
Nc¢|p fits into an exact sequence

(%) 0— Gpi(g+1)83 — Nelp — Gpi(2g +2) — 0.
Putting the exact sequences (x) and (*x) together, we see at once that
h°(Nc) =g*+3g-4, h'(Nc)=0,

as required.

7. SURFACES CONTAINING RIBBONS

Again in this section we shall consider ribbons C on D =P! =P}, and we
shall write g for the genus of C. Moreover, we assume that k is algebraically
closed.

In a certain sense the singularities of a ribbon are quite mild: they are “locally
planar”, so that for example a ribbon is locally a complete interesection (in any
embedding).

However, the fact that every point is singular leads to some significant dif-
ferences from the theory of reduced curves with locally planar singularities. In
this section we prove a theorem that highlights such a difference. While any
reduced projective curve with locally planar singularities is contained in many
smooth surfaces, this is not the case for ribbons:

Theorem 7.1. Up to isomorphism of affine neighborhoods, the only pair C C S
where C is a nonhyperelliptic ribbon and S is a surface that is smooth along
C, is the double conic in the projective plane.

Proof. If D = Ceq C S, with S a smooth surface, then the ideal sheaf £ of
D c C is the conormal bundle of D in S. If the arithmetic genus of C is g
then deg & = g+1,s0 D? = g+1. If g <2 then C is automatically hyperel-
liptic, so it suffices to treat the case g > 3. Hartshorne’s Theorem on curves of
high self-intersection [1969, Theorem 4.1] says that if D? > 4genus(D)+5= 15,
then either D C S is a nonsingular cubic in the projective plane, or else S is
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ruled and D is a section. In the former case, D would not be rational. In the
latter case there is a projection from S back to D that induces a morphism
C — D, showing that C is hyperelliptic. This proves Theorem 7.1 in the case
D’=g+4+1>5.

It remains to treat the case D? =4, g = 3. We claim that a smooth rational
curve D of self-intersection 4 on a smooth surface S is (up to equivalence
of affine neighborhoods) either a smooth conic in the plane or a section on one
of the rational ruled surfaces Fy, F>, F4. This suffices to prove Theorem 7.1,
since in the latter case the projection from S to D defines a a two-to-one map
from C to D, so that C is hyperelliptic.

The clalmed result is certainly known to experts on surfaces, but for want of a
reference we sketch a proof. Let K5 be the canonical divisor class of . Since
D is rational, we see from the adjunction formula that Kg-D = —6. Thus no
multiple of Ks can be effective. By the Enriques classification, S is rational or
ruled. If § is ruled with base B, then since D has positive self-intersection it
cannot be contained in a fiber; thus B is rational, so S is rational in any case.
In particular, y(@s)=1.

Now HY(#s(Ks)) =0, and thus

H*s(D)) = H'(@(Ks - D)) =0
By the Riemann-Roch formula on S,
HY@5(D)) 2D (D-K)/2+ x(F5) =6

The restriction of @s(D) to D has degree 4, and thus the associated line bundle
@p(D) -has 5 independent global sections. The exact sequence

0 — HY — H%(&5(D)) — H%(&p(D))

shows that #9(@s(D)) = 6, and the restriction map H%(@s(D)) — H®(&p(D))
is surjective.

It follows that the complete linear series |D| associated to D on S has no
base points on D, and thus no base points anywhere; it defines a morphism ¢
from S to P’ of degree 4. Since ¢(S) is nondegenerate it cannot have degree
< 4, so we see that ¢ is birational, that its image is a surface of degree 4 in
P*. Since the self-intersection of D is the same as the self-intersection of the
the hyperplane section of ¢(S) that is the image of D, we see that ¢ does not
blow down any curves meeting D. That is, ¢ is biregular in a neighborhood
of D, so we may assume that S = ¢(S) c P3 from the outset.

According to the Del Pezzo-Bertini classification of surfaces of minimal de-
gree, S is either a ruled surface Fy or F,, or a cone over the rational normal
quartic, which away from the vertex is F; or S is the Veronese embedding of
P2 in P5; see for example Eisenbud-Harris [1987]. In the former cases D is a
section of S (not containing the vertex, in the case where S is a cone) so C
is hyperelliptic by the argument above. In the latter case C C S is isomorphic
to the conic in the plane, as required.

Of course any ribbon can, by Bertini’s theorem, be embedded in a surface
with only isolated singularities, and these can be kept away from any finite set
of points on the ribbon. It would be interesting to know more about the number
and type of singularities that a ribbon imposes on a surface containing it. (Our
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attention was drawn to this question by M. Boratynsky.) The easiest way to
produce a surface containing a given ribbon in projective space is to project
the ribbon from a point, and take the cone over the image. This image is the
canonical image of another ribbon:

Theorem 7.2. If C c P&~ is a ribbon in its canonical embedding, and p € C
is a reduced point on C, then the image of C under projection from p is the
image of the canonical map from the ribbon C' obtained by blowing up C at
D.

Proof. Projection defines a morphism from the blow-up of P¢~! and thus
also from the blow-up C’ of C. The restriction of this morphism to Cpq =
Cls = P! is given by the complete series of degree g — 2. It follows that the
corresponding series on C’ has degree 2(g — 1) — 2 and (linear) dimension
g — 1; since the genus of C’ is g — 1, this must by Riemann-Roch be the
canonical series.

As a consequence we see inductively that the Clifford index is related to the
length of the 2-linear part of the free resolution of a canonical ribbon, at least by
an inequality. The result is the “easy half of the canonical ribbon conjecture”:

Corollary 7.3. The 2-linear part of the free resolution of a canonical ribbon of
genus g and Clifford index c¢ has length at least g —2 —c.

Proof. The 2-linear part of the resolution of a subscheme of projective space is
always at least as long as the 2-linear part of the resolution of any subscheme
containing it. Since the resolution of the cone in P8~! over a subscheme C’
of P2—2 has the same graded Betti numbers as the resolution of C’ in P8-2,
and since the blow-up of a nonhyperelliptic ribbon C at a suitable point will
have Clifford index one less than that of C by Corollary 2.5, we are inductively
reduced to the case of the resolution of the canonical image of a hyperelliptic
ribbon, which is of course the rational normal curve. But in this case — the
case ¢ = 0—the resolution is well known (it is given by the Eagon-Northcott
complex) and the result is true.

More concretely, the method shows that a ribbon of genus g and Clifford
index a is contained in the cone over a rational normal curve of degree g—1—a,
and thus that the free resolution of the ribbon contains that of the rational
normal curve. v

A simple example will illustrate the results of this section:

Example. The canonical ribbon of genus 4. Let C c P3 be a canonically
embedded ribbon of genus 4. The Clifford index of C is necessarily 1, and C
is the complete intersection of a cubic and quadric. The ideal I~ associated to
C as in section 2 is generated by a linear form and quadratic form on P!. By
choosing coordinates s, ¢ appropriately we may assume that Ic = (s, t3). It
follows that the blow-up of C at the reduced point p given by s =0 in Cieq
is a hyperelliptic ribbon. By Theorem 7.2, the image of C under projection
from p is the reduced conic in P2. The ribbon thus lies on the cone over this
conic, and this is the unique quadric containing C .

Choosing coordinates on P3 appropriately we may assume that Cq is the
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rational normal curve D defined by the 2 x 2 minors of the matrix

X0 X1 X2

X1 X2 X3
and the quadric cone containing C is given by the equation xox, — x? = 0,
while C itself is closure in the cone of the “double” of the divisor that is
2D away from the vertex of the cone (D is not Cartier at the vertex). The

cubic form necessary to generate the homogeneous ideal of C (which is unique
modulo the ideal of D) may be written as the determinant of the matrix

X0 X1 X2
X1 X2 Xx3|.
X, x3 O

The corresponding cubic surface has a double line, and a total of 4 singular
points on the rational normal curve, none of them at the vertex of the quadric
cone; the general cubic in the ideal of C has 4 singular points, all on the rational -
normal curve, bearing out Theorem 7.1.

8. FREE RESOLUTIONS

We assume for simplicity that the ground field k has characteristic 0.

The material in this section was partially developed in conversation with
Frank Schreyer and Joe Harris.

It turns out that all canonically embedded rational ribbons of given genus and
Clifford index are hyperplane sections of a single surface, which is itself a ribbon
on a rational normal scroll. This surface has the same numerical invariants as
a smooth K3 surface; Following terminology suggested by Frank Schreyer, we
shall call it a K3 carpet. In this section we explain the construction of K3
carpets, and we prove that the natural embedding of a K3 carpet of sectional
genus g into P¢ is arithmetically Cohen-Macaulay. It follows that all ribbons
of given genus and Clifford index have minimal free resolutions with the same
graded betti numbers; in particular, the canonical ribbon conjecture is true for
all of them if it is true for one. To check the conjecture, it would suffice to
compute a minimal free resolution of each K3 carpet.

In this secction we shall compute a nonminimal resolution of a K3 carpet,
and we shall explain how to measure its nonminimality in terms of certain
maps of vector spaces defined by elementary multilinear algebra. In particular,
we explain some conjectures that would imply the canonical ribbon conjecture.

The description of the nonminimal resolution is facilitated by the observation
that any K3 carpets is an anticanonical divisor on a certain (reduced) 3-fold
(depending only on the genus and degree of the plane section of the K3 carpet)
that thus appears as a degenerate Fano 3-fold J in P#+!. The Fano 3-fold
J is extremely easy to describe: is simply the join variety of a pair of rational
normal curves. It is equally easy to describe its minimal free resolutions F,
which is the tensor product of two Eagon-Northcott complexes. The minimal
free resolution of the canonical line bundle w; on this Fano 3-fold is F*, the
dual of F, up to a shift in degrees. It follows easily that a (nonminimal) free
resolution of a K3 carpet may be constructed as a mapping cone of a map of
complexes F* — F . This map is only unique up to homotopy, but it has a
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canonical representative that is equivariant with respect to the SL(2) actions
on the two rational normal curves. Most of the work in this section is devoted
to an explicit construction of this canonical representative.

Let S(a, g — 1 — a) be a rational normal scroll, the union of lines joining
corresponding points on a rational normal curve of degree a and a rational
normal curve of degree g — 1 — a in P¢ According to Hulek-Van de Ven
[1985] there is a unique double structure X on S(a, g — 1 —a), a ribbon on
S(a, g — 1 —a) in the sense of section 1 of this paper, with trivial canonical
bundle. We shall call this double structure a K3 carpet. We give a construction
of this carpet below.

Fix integers 1 <a<b andlet g=a+ b+ 1. In P we consider a pair of
disjoint linear spaces P¢ and P?, and the rational normal curves D, C P and
D, c P Let J be the join of these two rational normal curves; that is, J is
the union of the lines joining points of D, to points of D, . The K3 carpet X
in which we are interested lies as an anticanonical divisor on J .

If we write R, and R, for the homogeneous coordinate rings of D, and
D, in P2 and P? respectively, then the homogeneous coordinate ring of J
in P8 is R; = R, ® R, graded by total degree. We regard R, and R,
as homomorphic images of polynomial rings 7, and 7; in a+1 and b+1
variables, respectively.

Writing w, and w, for the canonical modules of R, and R, , the canonical
module of R; is given by w; = w, ®; w; . Further, we have

Homg, (w7, Ry) = Homg, (@, , Ra) @ Homg, (@p , Rp).

Identifying D, with P! = P(V), where V is a 2-dimensional vector space, we
have w, = &pi1(—2), and a moment’s argument gives

Homg, (@, Ra)o = H*(Gp1(2)) = S2(V),

the second symmetric power of ¥ . Making the corresponding identifications
for D, with P! = P(W) for another 2-dimensional vectorspace W, we get

HomR,(wJ s R_])o = Sz(V) Rk Sz(W)

Since w; is a torsion free R;-module of rank 1, every nonzero map is a
monomorphism. We set
Xy =ProjR;/x(ws).

Since Ry/x(wy) is a 3-dimensional Gorenstein ring with trivial canonical di-
visor, X, may be regarded as a K3 surface, and its hyperplane sections will be
canonically embedded curves.

- As we have already remarked, the reduced structure on a K3 carpet is a
rational normal scroll. In the terms above, such a scroll is determined by making
an identification of D, with Dy, that is, by identifying V' with W . We may
regard such an identification as an element of Homy(V, W), or, using the
identification of ¥ and V* that we may make because V is 2-dimensional,
with an element of V ®, W . Squaring this, we get an element of S3(V) ®
S»(W) corresponding to the carpet X . (Note that if we were not working in
characteristic 0, some further care would be necessary!) Thus we see that the
K3 carpets are quite special elements of the family X, . It is not too hard to
show that the general element may be described as follows: we may associate
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to x adivisor E, of type (2,2) on P! x P! = C, x Cp, or equivalently as a
correspondence of type (2, 2) from C, to Cj; generally, E, will be an elliptic
curve, but it may degenerate to twice a conic, or become reducible. The union
of the lines in P# joining corresponding points is X, . A hyperplane H in P%
cuts C, in a points and C, in b points. Thus it determines on E, a set of a
pairs of points and a set of b pairs of points. The hyperplane section H N X,
is an embedding of E, with these a + b pairs of points identified.

It is easy to write down a minimal free resolution of R; over the polyno-
mial ring T = T, ® T, the homogeneous coordinate ring of P$: it is obtained
by tensoring together (over k) a minimal free resolution of R, over 7, and
a minimal free resolution of R, over T,. These resolutions may be writ-
ten, equivariantly for the action of GL(V) and GL(W), as Eagon-Northcott
complexes. Further, the minimal resolution of w; is the dual of the minimal
resolution of R;. A chosen element y of S>(V) ® S>(W), regarded as a map
wy — Ry, lifts (uniquely up to homotopy) to a map J, of these resolutions.
The mapping cylinder of J, is a resolution of the homogeneous coordinate ring
Ry, of the K3 surface.

To obtain from this construction the graded betti numbers in a minimal
resolution of Ry, , it suffices to find the rank of the degree O (in the sense of
the grading from T) part of the map J, of complexes. Because the Eagon-
Northcott complexes and their tensor product are minimal, the degree 0 part of
d, is actually unique, and will thus be GL(V) x GL(W)-equivariantly defined
from yx . We now make this explicit.

Anticanonical divisors on the rational normal curve. We first recall the resolution
of R, over T,. To simplify the notation, write S; for the free T,-module
Si(V) ®; T, . The resolution %, has the form:

¢ bm .
Ty e— N2Sp_1(=2) — .o — A"*18, 1 @ St (-m — 1)

¢m+ ¢d—
I T A28, ® S_a(—a) — 0.

The resolution of w, is the dual complex & *(—a — 1), which may conve-
niently be rewritten, using the isomorphisms (A™S,_;)* = A~™S,_, given by
a choice of a free generator for (A%S,_;)*, as

'3 Ym
Sa2(—1) — A'Sa1 ® Sg-3(=2) ... — A™Sam1 ® Sa—z—m(~m — 1)
Jmt B pem2g @S (—a+ 1) ot Tu(-a—1) —O.
The map w, — R, corresponding to an element x € S>(V) is given on
generators by

P
Saca(V) 2L (T)y = Su(V), e xe,
and lifts to a map d(x): ¥ *(—a—1) » F given by the formulas

A"Sact ® Saczm(—m — 1) 22 Amtls, | @8, \(-m —1),

e®f~—>2e/\(xu,-f)®u§
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for 1 < m < a— 2, where for some basis v;, v; € V' the elements u; and ]
are defined by the condition that

S ui @ u € Sp-1(V) ® Sm-1(V)

is the “trace” element
(v ® Vs — V2 ® 1) L.
The key point of the proof that the J;(x) commute with the ¢; and y; is

the formula

> ejei®ei(e) =0,

1,]
where 3 €;®@€’; €V V™ is the usual trace element, and the action €’}(e;)
of V* on S,_1(V) is by derivations. We omit the details.

We can get a better idea of the nature of the maps J(x) as follows. The
mapping cylinder of d(x) is a (nonminimal) resolution of an anticanonical
divisor 4 = A(x) on the rational normal curve C,. Now an anticanonical
divisor 4 on C, is simply a divisor of degree 3 — that is, a scheme of three
points. Of course 4 spans a 2-plane. The minimal free resolution of &4 in
P“ is the tensor product of the resolution of A in the plane and the resolution
of the plane itself, which is a Koszul complex. Note that for 1 <m <a-— 3 the
maps O, (x) are matrices of scalars. Their kernels and cokernels must add up
to the minimal free resolution of &,. Comparing these sequences we deduce a
self-dual family of natural exact sequences

0— /\m+lSa—2 - /\mSa—l ®Sa—2—m M

AMHLS | ®Spmo1 — A™TIS,, — 0.
associated with x € S,V . (To prove this, first compute the kernel of & (x)
by comparing the minimal resolution and the mapping cylinder, as above; then
use the fact that J,,(x) is isomorphic to the dual of the map 6;—1-m(X) )
As suggested by the notation, we may regard Jn,(x) as a family of maps of
free modules defined over the polynomial ring in 3 variables Q := k[S2(V)],
and in these terms the exact sequences above become complexes

0— Am+1Sa—2(_m) — A" S;_1 ®Sa-2-m ‘ﬁﬁ'

AMHLS 1 ®Sp_1(1) — A™T1S,_s(a — m).

over Q. For example, if we take m = 1, we get the resolution of the
(a — 1 — m)th power of the maximal ideal of Q, written in a peculiar way.
It would be interesting to understand these complexes in general.

Anticanonical divisors on J. The minimal free resolution of R; over T is
F =F® F,
and the minimal free resolution of w; is
= FH(-g-1).
Given an element yx := . x; ® yi € $2(V) ® S2(W), we get a (nonminimal)

resolution of the homogeneous coordinate ring of the corresponding anticanon-
ical divisor X, by taking the mapping cylinder of the map of complexes

8= 0x)®(y):&~F.

iJ
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The canonical ribbon conjecture, which says that the minimal free resolution of
X, hasno (a—1)st syzygies of degree a+ 1 when yx is a square of an element
of rank 2 is thus equivalent to the statement that for generic ¥ the map

X a-1 - (-?a 1)a+l _’(*7 1)a+1

is surjective. Of course proving the surjectivity for general would prove the
analogue of Green’s conjecture for some other degenerate K3 surface of Clifford
index a, which would be just as interesting.

Writing out the terms in question, one must show that for all m, n with
m>1,n>1, m+n=a-1<b the map

Eam(xi) ® 571 (yj) : AmSa—l ® Sa-Z—m ® /\nSb—l ® Sb—-2—n -
i
A1 1 ® St ® A" 1Sy ® Spey

is surjective for suitable x; and y;.

The star construction. We can abstract the construction above as follows: Since
we are interested in these things for generic values of the x; and y; we might
as well take these as variables. The maps J,, and J, used above are then
defined over the polynomial rings Q = k[x;, X2, x3] and Q' = k[y1, y2, V3]
respectively.

Suppose, in general, that we are given a map d : F — G of free modules
over Q = k[x;, ..., x;] and another map d’ : F' — G’ of free modules over
Q' = k[, ..., y:]. Suppose further that, as in the case above, each of these
maps is represented by a matrix of linear forms. We define a map

dxd . Fe F' -GG,

the “star product” of d and d’, over the ring Q := k[z; jli<ics,1<j<s> BY
taking d ®; d’ over the ring Q ®; Q’, and then replacing the product x;y; by
the variable z; ;. This is legitimate because the natural map Q — Q ®; Q'
maps the linear forms of Q isomorphically to the bilinear forms of Q ®; Q' .
To show that the maps above are surjective for generic choice of x; and y; is
“to show that are the *-products of the “easy” maps J,, and J, have maximal
rank over Q.

It may clarify matters to give a simple example. If we are to have a nontrivial
computation then we musthave m>1,n>1,m+n=a—-1and a<b, g=
a+ b+ 1. The first case in which this is possible isa=b=3,g=7. Here
we must take m = n = 1. In this case d, is just the middle map of the koszul
complex in 3 variables

0 V3 -2
(v + xvv+x303) = —v3 0
(%) -V 0

Of course these maps have rank only 2; they are not themselves of maximal
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rank since they are skew symmetric and of odd size. However, the star product
82 (x10% + X201v2 + X303) * S2(¥1vF + 201Uy + Y3v3) =

( 0 0 0 0 23,3 —Z3,2 0 —2Z2.3 22,2 \
0 0 0 —2Z3.3 0 Z3,1 Z3.3 0 —2Z2.1
0 0 0 Z3.2 —Z3.1 0 —2Z2,2 Z1,1 0
0 -z33 23, 0 0 0 0 Z1,3 —Z1,2
Z3,3 0 —2Z3,1 0 0 0 —Z1,3 0 Z1,1
—Z3 2 Z3,1 0 0 0 0 Z1,2 —2Z1,1 0
0 Z2.3 —2Z2.2 0 —2Z1,3 21,2 0 0 0
—22.3 0 Z2.1 21,3 0 —21,1 0 0 0
22,2 —22.1 0 —Z1,2 Z1,1 0 0 0 0

is of maximal rank as long as the characteristic of k is not 2; it is a symmetric
9 x 9 matrix with zeros on the diagonal, so in characteristic 2 it can have rank
only 8. The exception for characteristic 2 corresponds precisely to Schreyer’s
observation that the general canonical curve of genus 7 does not in fact satisfy
Green’s conjecture.
Numerical evidence. We finish by exhibiting the betti numbers for canonical
ribbons of Clifford index > 2 and genus < 12, as computed by the program
Macaulay [1990], in characteristic 31,991. We give only the “2-linear” part.
The rest may be reproduced by using the symmetry of the resolution. Thus a
listing ’

genus index

7 2 10 16 9

is to be read as the assertion that a rational ribbon of genus 7 and Clifford index
2 has a minimal free resolution of the form

O — O(-2) — O (-3)¢a0(-4)° — F(-4)° 0O (-5)'
— O(-6)'° — @(-8) — 0,
where @ denotes @p;-1(a) = Gps(a). In the notation used by the “betti” oper-
ation of the program Macaulay this would be written

1 - - - - -
- 10 16 9 - -
- - 9 16 10 -
- - - - - 1
The following betti numbers were computed by Macaulay:
genus index
5 2 3
6 2 6 5
7 2 10 16 9
8 2 15 35 35 14
9 2 21, 64 90 64 20
10 2 28 105 189 189 105 27
11 2 36 160 350 448 350 160 35
12 2 45 231 594 924 924 594 231 44
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genus index

7 3 10 16
8 3 15 35 21
9 3 21 64 70 24
10 3 28 105 162 119 35
11 3 36 160 315 336 210 48
12 3 45 231 550 756 672 342 63
genus index
9 4 21 64 70
10 4 28 105 162 84
11 4 36 160 315 288 100
12 4 45 231 550 693 455 125
genus index
11 5 36 160 315 288
12 5 45 231 550 693 330

These numbers support the Canonical Ribbon Conjecture stated at the be-
ginning of this paper.

It is interesting to compare these betti numbers with those computed by
Schreyer [1986] for smooth curves of Clifford index > 2, genus < 8, over a
field of characteristic 0. For curves of Clifford index 2 and genus 7 or 8, the
betti numbers of the smooth curves agree with the corresponding betti numbers
of the ribbons if the curve has a g2 . In the case of a smooth curve of Clifford
index 2 with no g2, the betti numbers computed by Schreyer are instead:

genus index
7 2 10 16 3
8 2 15 35 25 4

APPENDIX: OSCULATING BUNDLES OF THE RATIONAL NORMAL CURVE

We assume for simplicity that the ground field k has characteristic O, al-
though our results could be reformulated for the case of arbitrary k.

The following results identify the quotients of any two osculating bundles
of the rational normal curve in terms of the representation theory of SL(2).
Though special cases, at least, are well known, we do not know a convenient
reference. For simplicity, we work over a field k£ of characteristic 0, although
the second of the two proofs we give for the main result may be adapted to
work in any characteristic.

For each r,let P! = D c P” be the rational normal curve, and let 7, = Tpr|p:
be the restricted tangent bundle. There is an obvious embedding 7p: =7, C T,
and in fact the 7,, form a flag of bundles

0cTycT,c---CT,....

In terms of the embedding in a given P7, this flag is realized geometrically as
the flag of osculating bundles of D:

Proposition 5A.1. The subbundle of T, whose fiber at a point p € D is the set
of tangent vectors lying in the osculating m-plane to D at p is isomorphic to
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T, . Further, the inclusions T,, C T, obtained in this way are independent of
r.

Proof. For the proof we shall need a more formal description of the subbundle
of T, whose fibers are the osculating m-planes: we shall temporarily call it
Oscyy, -

If we write L for the line bundle @p:(r) on D, and let ™ (L) be the bundle
of principle parts of L of order m, then there is a natural map HO(L) ®Cp —
P™(L) that, locally at each point, takes a section to its Taylor series. Let &,
be the image of the dual map, twisted by L. The bundle that we have called
Oscy, is the image of &,, under the natural map HO(L)* ® L — Tpr|p; that is,
there is a commutative diagram

0 Op Em — Os¢cyy —— 0
| | |
0 » Op HYL)*® L —— Tp:|lp —— 0;

see Piene [1977] for details.
: We shall show that the osculating bundles and inclusions are the same in P’
and P! by projecting from a point p of the rational normal curve D. In
particular, 7,_; = Osc,_; . By induction this proves the theorem.
Write L = &pi(r) for the embedding line bundle. The natural inclusion
L(—p) c L induces diagrams

0 —— Osct®L —— P(L) —s L ——0

] g dl
0 —— Osc, ® L(-p) —— P"(L(-p)) —— L(-p) —— 0

where we have written Osc, for the osculating bundle of the rational normal
curve in P"~!. To show that Osc, = Osc, it suffices to show that the map
labelled a in the diagram is isomorphic to the inclusion of Osc, ® L(—p) in
Osc, ®L, or equivalently that the cokernel of « is the the sheaf k(p)”. Since
the inclusions of one osculating bundle in another are compatible with these -
commutative diagrams, this will suffice to show that the inclusions are also
independent of r.

Since B and y are isomorphisms away from p, they are inclusions of
sheaves, and it follows that the same is true for a. Since the cokernel of y
is obviously k(p), it suffices to show that the cokernel of 8 is k(p)"*!. Since
locally &#"(L) looks like 3¢ L ® d¢ this is clear.

To describe the quotients T,,/7, equivariantly we need a notation for the
representations of SL(2). If V' is a 2-dimensional vectorspace, S := Sym(V) is
the symmetric algebra, and we identify the rational normal curve as D = Proj S,
then SL(2) = SL(V) acts naturally on D and on

Sy = Sym, (V) = H'(@p (1)),

and these are the irreducible representations of SL(V).
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Proposition 5A.2. With notation as above,
Tn/Th = Smn-1®9C0p(m+n+1)
equivariantly for the action of SL(2).

We give two proofs — the first, which was suggested by Joe Harris, is appeal-
ingly geometric. The second, by free resolutions, gives slightly more informa-
tion, and is essentially characteristic free.

Geometric Proof. First we compute chern classes: from the exact sequences
0-Q)®L—P"L)—- P (L)—>0
and the “initial case”
PUL)=L
we easily derive
a(P"(L) = (n+1)(r—n),
from which we get
c(Tn/Ty)=(m—n)(m+n+1).

Next we shall show that T,,/T, is a direct sum of equal line bundles so that,
for some SL(2) representation U, we have

Th/T,2UQGp(m+n+1).

From the construction, it will appear that these line bundles can be chosen from
a single family parametrized by a 1-dimensional projective SL(2) orbit. Since
the only representations of SL(2) whose projectivization contains such a curve
are the irreducible representations .S;, this will conclude the proof. (Here we
are using the characteristic 0 hypothesis.)

It remains to produce the family of subbundles. The curve P! = D c P will
itself form the parameter space: for each point p € D we define a line bundle
M][p] C T,, whose fiber at a point x € D other than p is the line spanned
by x and p, regarded as a line in the tangent space to P™ at x modulo the
osculating n-plane to D at x. This defines M[p] as a bundle on D—p. There
is of course a unique extension of M[p] to a bundle on all of D: its fiber at p
is the osculating (n + 1)-plane at p modulo the osculating m-plane.

We claim that for any set of m — n distinct points p;, ..., pp—m on D, we
have

T/ Tn = €D MIpi).
1

This follows from the fact that any collection of osculating spaces to the rational
normal curve is “as linearly independent as possible”: in our case, if the line
bundles in question failed to span at some point x , then the osculating n-space
at x together with the points p; (or the osculating (n + 1)-space at x together
with all the p; if x is one of the p;) would be contained in a hyperplane,
which would then meet D at least m + 1 times, contradicting the fact that the
degree of D is m. ‘

Algebraic Proof. We shall actually make explicit the maps in the sequences
defining the bundles 7, and in the exact sequences

0—=T, > Tpn—Sun-190p(m+n+1).
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All the maps of bundles with which we are concerned are of two types, which
we shall first describe abstractly. Let
ba,b:Sa— Satp ®Sp

be the map of SL(2)-representations obtained by multiplying with the canonical
“trace” element in S, ® S;. As an element of S, ® S, thisis (s®t—t®s)?
where s,¢ is a basis of V' = S,. If we write §, 7 € V* for the basis dual to
s,t € V then the usual trace element is s®§+t®7 € V ® V*. Under the
equivariant identification V* = A2~V = V', which sends

S§—t, [ —s.
This trace element goes to the element s ® t — ¢t ® s, which is why we call it the

trace as well.
This map induces an equivariant map of sheaves, for which we shall use the

same name:
¢a,b A ®@9’1 - Sa+b ®ﬁpl (b)

Explicitly, if i+ j = a and we write [s”¢9] for the corresponding basis element
of Spiq ® @p1 then

o _( b o
PN 2 I S § (m ~ i)s" Jpm=ifsmen].
m+n=a+b
The second type of map that we shall need is closely related. Let
'//t:,b :Dp(V*) — a+b(V*) ®Sa,

where D,(V*) denotes the bth graded component of the divided power algebra
on V*, be the map of SL(2)-representations obtained by multiplying with the
canonical “trace” element in D,(V*)® S, . In terms of the basis and dual basis
for ¥V and V* introduced above, this element is the divided power

B@s+i®t)@ =5@ 4 56Dy 5@=-272) 4

This map induces an equivariant map of sheaves, for which we use the same

name
Yab:Do(V*) ®@Gp1 = Dypyp(V7) ® Opi(a).

Dualizing, twisting with @p:(a), and using the canonical isomorphism D (V*)*
>~ S, that makes {s™t"} the dual basis to {§™i"} we get the map we want,

Va,b: Sars ® Opr — Sp ® Tpi (a).
Explicitly, with notation as above: if m +n =a+ b, then
. m\(n im— it
i+j=

We claim that (always in characteristic 0) these maps form, for every a, b,
an exact sequence of sheaves:

Pa-1,
E, ;: 0— S;—1 ®Fp e, 2+b—1 ® Opi (D)
Harb-ra ), .o(0) Sp_1 ®%p(a+ b) — 0.
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In fact, we claim that E, , ® @p:(a+ 1) is isomorphic to the sequence

(%) , 0T, > Th4p — T, — 0.

Further, the “Euler sequence” defining T,
0 _*@pl — Sg ®ﬁpl(b) - Tb —_ 0,

is isomorphic to the sequence E; . Of course this will prove the proposition.
First, to prove that the sequences E, , are exact, we appeal to the criterion
of exactness of Buchsbaum-Eisenbud [1973]. It is easy to check directly the the
E, » are complexes, and from inspection the ideals of maximal minors of the
two maps contain powers of both s and ¢, so the conditions of the criterion
are immediate. :
Next, that E; ;, is the Euler sequence is also clear, since the map

ﬁpl - SZ ®@p1 (b)
_ in the Euler sequence is multiplication by the bth power of the trace element.

Finally, to identify the sequence (x) with E, , ® @pi(a+ 1) it suffices to
show that the diagram

L
L

Eg1.5-1(@):0 =  Sa@) 2 Sgp@a+bd) LS (2a+b+1) — 0

gl g! II

Egp@a+1): 0 — Su_y(@a+1) 5 Sppy_i@a+b+1) L Sy j(2a+b+1) — 0

! !

0 0

commutes, where the two long vertical columns are the Euler sequences, and we
have written S,(a) for S, ® @pi(a), etc. Note that there is, up to scalar, only
one inclusion of representations

Sa C Sa+b ® Sb

so the inclusion T, C T,, induced by the diagram must be the geometrically
defined one.

Since all the maps have been given explicitly, this is presumably only an
exercise. But it is possible to say that the maps must commute. To see this,
note that we need only check the commutativity of the part involving the two
Euler sequences, since the commutativity of the lower right-hand box (at least
up to a scalar) is then forced by the irreducibility of S,,. Similarly, to check
the commutativity of the part involving the Euler sequences (up to scalar), we
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need only check the commutativity of the upper left-hand box

B O

‘| ‘|

Sn(n) —2— Sm(m)

because S, is irreducible. This is easy, since the maps labelled ¢ are all given

by

multiplication by powers of the trace element.
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