ADVANCES IN MATHEMATICS 106, 1-35 (1994)

Nets of Alternating Matrices
and the Linear Syzygy Conjectures*

Davip Eisensupt

Department of Mathematics, Brandeis University,
Waltham, Massachusetts 02254

AND

Jee Kon?

Department of Mathematics, Indiana University,
Bloomington, Indiana 47405

In this paper we classify the 3-dimensional vector spaces (nets) of 4 x4 and of
5x 5 alternating matrices over an algebraically closed field. We apply the second
classification to check our “linear syzygy conjectures” for modules over the polyno-
mial ring of dimension 5.  © 1994 Academic Press, Inc.

Contents.

Introduction.

1. Classification of nets of trilinear alternating forms in 4 variables.

2. Classification of nets of trilinear alternating forms in 5 variables.

3. The linear syzygy conjectures for 3-generator modules over 5-dimensional polyno-
mial rings.

4. Macaulay programs for the linear syzygy conjecture.

INTRODUCTION

The classification of 2-dimensional spaces of matrices over an algebrai-
cally closed field, that is, the theory of “matrix pencils” of Weierstrass [20]
and Kronecker [17], is an extremely useful chapter in linear algebra; one
modern form is the classification of coherent sheaves on the projective line,
and it is also used in the study of differential equations, both from a
theoretical point of view and in numerical studies (see, for example,
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Gantmacher [7, Chap. 12] for an exposition; and Kagstrom and Ruhe
[15] for a survey of some more recent activity.) The fact that it can be
carried over easily to a classification up to similarity of a 2-dimensional
spaces of symmetric or alternating (that is, skew-symmetric with zero
diagonal) matrices is also well known (Gantmacher [7, Thm. 12.6].) In
some cases the classification is finite; in other cases it resembles the
classification of single matrices up to similarity by Jordan Normal form.

It is rather natural to ask whether a classification is possible for any
cases of higher dimensional spaces of matrices, and indeed to ask for the
classification itself. An arithmetic comparison of the dimensions of the
varieties of spaces of matrices with the dimensions of the groups whose
orbits are being classified shows that there can only be a few such cases.
More generally, Kac [14, Table II] has listed all the connected linear
groups acting irreducibly in such a way that every level set for the
invariants contains only finitely many orbits. If we restrict ourselves to
linear spaces of matrices with the natural group actions, then the only cases
beyond the classical ones (single matrices and pencils) where there are only
finitely many orbits are:

(1) 3-dimensional spaces of alternating 4 x 4 matrices;
(2) 3-dimensional spaces of alternating 5 x 5 matrices;
(3) 4-dimensional spaces of alternating 6 x 6 matrices.

(Note that the case corresponding to 1) appears in Kac’s table as
SL;® SO instead of SL,® A>SL,.)

In the more general case, where there are finitely many orbits in each level
set of the invariants, one also has 3-dimensional families of 3 x 3 symmetric
matrices and 6 x 6 alternating matrices, and 5-dimensional families of alter-
nating 5x5 matrices (for an older account of some cases of skew-
symmetric trilinear forms see the last chapter of Gurevich [12] and the
references therein).

Sections | and 2 of this paper are devoted to carrying out the classifica-
tion in Cases (1) and (2). In Case (1) it turns out that there are just 5
classes, and the classification is rather easy.

In Case (2), we say that a space of matrices is degenerate if (with respect
to a suitable basis) all its elements have a common row and column of
zeros. The degenerate spaces of matrices in (2) are classified by (1).
Leaving aside the degenerate spaces, there are 12 classes if the charac-
teristic of the base field is not 2, and a thirteenth in characteristic 2. This
classification is the main result of this paper.

We were lead to study these classifications in order to check a special
case of the “linear syzygy conjectures” introduced in our previous paper.
These concern the question of which graded modules over a polynomial
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ring S = F[x,, .., x,], where F is a field, have long chains of linear syzygies.
More precisely, we say that a graded S-module M, generated in degree 0,
has a linear kth syzygy if one of the generators of the kth module G, in its
minimal graded free resolution

=G0 =G 2G> M0

has degree k (the smallest possible number.) The conjectures say, roughly,
that a module with a kth linear syzygy must have many elements killed by
linear forms if k is not too small compared to the number of generators of
M. See our paper for a detailed exposition. Related ideas have been studied
by many people (for example, Ballico and Geramita [1], Eisenbud and
Goto [3], Ellia and Hirshowitz [4], Green [8], Green and Lazarsfeld
[9, 10], Herzog, Vasconcelos, and Simis [13], Koh and Stillman [16],
Schreyer and Kempf [18,19]) most recently for their significance in
algebraic geometry.

The connection of linear syzygies with the classification of linear spaces
of matrices is that an m-dimensional subspace of the kth exterior power of
a v-dimensional vectors space V corresponds, in a simple way explained in
our previous paper, to a “minimal” example of an S-module with m
generators having a linear kth syzygy. If k=2 or k=v—2, so that A*V' =
A?V'*, such a subspace corresponds to an m-dimensional space of skew
symmetric matrices. We showed in our previous paper that it would be
enough to check the conjectures for these minimal examples—indeed, for
the minimal examples with m =k. We also verified all our conjectures in
various special cases, including all the cases for v <5 except the one with
m=3, k=3. Since v—k=2 in this case, the minimal examples here
correspond to the spaces of matrices targeted in the classification problem
(2) above.

Our solution of the classification problem (2) above thus allows us to
check our conjectures over any finite field, and we get:

THEOREM. The linear syzygy conjectures hold for all modules over a
polynomial ring in S or fewer variables, at least over algebraically closed
fields of some characteristics.

Proof Sketch. We may apply the classification of spaces of matrices (2).
The 12 or 13 types produced correspond 3-generator modules over
k[x,, .., x5], and it is enough to verify that each of these modules satisfies
the conjectures. This can be done by computation over any field of the
same characteristic, though the computations involved would be quite
difficult to undertake by hand. Fortunately they are well suited to the
program Macaulay of Bayer and Stillman [2], and we have made an
extensive investigation of them using that program. Some of the results are
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reported in Section 3. In particular, all the linear syzygy conjectures are
confirmed, proving the theorem. The restriction to “some characteristics,”
which is presumably unnecessary, is there because the computations were
done over particular fields, including the fields with 31991 elements and
with 2 elements. |J

Since the linear syzygy conjecture concerns a lower bound on the dimen-
sion of a certain variety defined from a given module, the result should be
the same for all but finitely many characteristics at worst; it would be very
bad luck indeed if 31991 and the other primes we have checked were all
among these bad characteristics.

In Section 3 we explain some of the “experimental” information that we
have gathered about the 13 modules produced from the 13 cases of the
classification in Section 2, and in Section4 we exhibit parts of the
Macaulay program we used.

Part of the classification of spaces as in (2) was worked out in conversa-
tions with Joe Harris; we are grateful to him (as usual) for his help. We are
also indebted to Mike Stillman. Our whole linear syzygy project grew from
discussions with him. In addition, our conjectures were based from the first
on evidence produced by his and Dave Bayer’s program Macaulay [2],
and we would not even have begun the work in this paper had we not
felt that Macaulay would bridge the gap from the classification to the
verification of the conjectures.

1. CLASSIFICATION OF NETS OF TRILINEAR ALTERNATING FORMS
IN 4 VARIABLES

Let V' be a vector space of dimension 4 over an algebraically closed field
F. In this section we will classify 3-dimensional subspaces N of 42} (these
correspond to spaces of alternating maps V* — V, or, again, to alternating
matrices whose entries are linear forms in the polynomial ring FfN*])
up to the action of GL(N}x GL(V). It turns out that there are 5 distinct
examples.

We denote by P(A2V) the projective space of lines in A?F and by
P(N) = P? the linear subspace of P(A?V) associated to N. Of course it is
an equivalent problem to classify the 2-dimensional projective subspaces
P(N) in P(4%V). The elements of N may be regarded as skew symmetric
maps from V* to V. Of course the rank of a map is the same as the rank
of a scalar multiple of the map, so we may speak of the rank of an element
of P(N). We write P(N), for the subscheme of elements of rank 2, which
may also be regarded as the intersection of P(N) and the Grassmannian of
lines in P(¥), in its natural embedding in P(A2V). The equation of P(N),
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is the pfaffian of the alternating matrix of linear forms over F[N*]
representing N. This equation is a quadratic form on P(N). We thus have
the following possibilities for P(N),:

CaseI: P(N), is a nonsingular conic.
Case II: P(N), is a union of two distinct lines.
Case III: P(N), is a double line.

Case IV: P(N),=P(N) and the transformations in N have no
common kernel.

Case V: P(N),=P(N) and the transformations in N have a common
kernel.

THEOREM 1.1. These 5 cases each correspond to unigue orbits of
3-dimensional subspaces N in A*V.

We will exploit the fact that in each of the first three cases the scheme
P(N), spans—and thus determines—the space ¥, so that the classification
really is the classification of the conics on the Grassmannian of lines in P>,
For Casel, a nonsingular conic on the Grassmannian is either the set of
lines in one ruling of a nonsingular quadric surface in P* or the lines on
a singular quadric surface; the second of these possibilities does not occur
in Case 1 because the plane spanned by this sort of conic lies entirely in the
Grassmannian (it is the plane of lines through the vertex) and is thus
absorbed in Case IV. Any line on the Grassmannian corresponds to the
lines contained in a fixed plane in P* and passing through a fixed point in
that plane; the various configurations of these lead to Cases II and IIIL

Cases IV and V correspond, of course, to the classification of 2-planes in
the Grassmannian of lines in P(V). Quite generally, the classification of
(maximal} linear subspaces of a Grassmannian is well-known, and is
described in the following Lemma. We do not know a reference, so we
sketch the proof (see Griffiths and Harris [ 11, p. 787] for the special case
of the Grassmannian of lines). We will apply the Lemma again in the next
section.

LEMMA 1.2. Let V be a finite dimensional vector space, and let
G=Gr(k, P(M) < P(A* ' 1)=P".

(i) Let A denote the line of P(A**'V) through distinct points «a,,
o, € G and write U, U' € P(V) for the intersection and span of the k-spaces
corresponding to o, and a,. We have

AeG  iff dmU=k—1iffdimU =k +]1,
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in which case A= {a| Ucac U'}. With respect to a suitable basis e, of V,
the space A thus consists of the linear combinations of the elements

e\ A - Aer_ Aeg and e A it AE_ | A€y,
(1) Each maximal linear subspaces of P’ contained in G is of the form

{o| W< a for some (k—1)-space W}
or
{o| = W for some (k+ 1)-space W}.

Proof. To deduce (ii) from (i) we use induction on the dimension of L.
Since (i) is the case dim L = 1, we may assume that dim L>1. Let 4 be a
line in L and N a codimension 1 subspace such that L = 4 + V. By induction
hypothesis N satisfies condition (a) or (b). Since two conditions correspond
to each other in the isomorphism P(A**!'V)=P(A*~*~'V*), we may
assume that M satisfies the condition (a). Let W be a (kK — 1)-plane such that
Nc{a| Wca} and let U be a (k—1)-plane such that Ac {f| Ucg}.
Since LAN#Q, dmUnWzk—-2 fdimUnW=k—1, then U=W
and L satisfies condition (a). Now assume that dim Un W=k —-2. If xe N
and Be A are distinct, then dimanf=k—1 by i). Since this is only
possible when A and N are contained in {y | y = ¥’} for some (k + 1)-plane
V', L satisfies the condition (b) and we are done.

We now prove (i). One direction is easy: It is clear that dim U=k —1
iff dim U’ =k + 1. If these conditions hold we can take a spanning set for
a; of the form e, .., e, f;, where e, .., e, span U, and the line spanned by
the corresponding points in P(A**'V) is

{eyn - Aee Alsfi+1) ] (s, 1)eP}
which obviously lies in the Grassmannian, as the set
{aeGrk, P(V)) | Ucac U =U, fi, >}

For the converse, suppose that A4 is contained in the Grassmannian.
Choose f§,, fi.€ A such that U=f,n§, is of the largest possible dimen-
sion. If that dimension is £k — 1 we are done by the construction above, so
we may assume that it is <k-—1. Let « be a point of A distinct from §,
and B,. We will derive a contradiction by showing that there is a hyper-
plane H in P(A4**'}) containing §, and B, but not a.

Recall that a hyperplane section of the Grassmannian consists of all
those k-planes meeting some fixed plane y of codimension k + 1 in P(V).
Thus we need only find a y meeting f, and f, butnota. f an g, f, # U,
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then a general plane of codimension &£+ 1 through a point of U—an
B, n B, will obviously satisfy the condition, so we may assume that «
contains U as well. Thus it is enough to solve the problem mod U, and we
will change notation and assume for simplicity that U was empty from the
outset. Under these assumptions we must derive a contradiction if k> 0.
Let n: P(V)— P(V/a,) be the projection map. Because of our assump-
tions, x is well-defined and one-to-one on each of « and §,. If there is a point
of n(f,) which is not contained in n(x) then a general plane of codimension
k + 1 through that point in P(¥/§,) will lift back to a plane of codimension
k+1 in P(V) with the desired property, so we may assume that
n(a) =n(f,). Let ¥’ be a general plane of codimension & in P(V/8,), so that
' meets n(a) and 7(B,) in a single point. The preimage = ~!(y') is a codimen-
sion k plane of P(V) containing f,; and meeting each of « and §, in a single
(distinct) points, because m is one-to-one on each of a« and B, and
an B, = . Thus there is a codimension 1 plane y in n~*(y") which contains
a point of #, but no pointy of «. This plane y meets 8, in a plane of codimen-
sion < 1 in #,—and thus in a nonempty set, as required, as longas k>0. |

We now give an algebraic proof of the Theorem:

Cases L and I1. Let a=¢, A e, and B=e; A e, be two distinct elements
of P(N), such that the line joining « and § is not contained in P(N),.
Then {e,,e,,e;,e,} is linearly independent by Lemma 1.2(i). Let
7=21<i<j<a Cy€: A €; be a third vector such that «, §, y forms a basis
of N. Subtracting multiples of « and 8, we may assume that ¢,,=0 and
¢34 =0. We may represent N as

xA zB
—zB' xA/)’

0 1
A=
-1 0
and B is a nonzero 2 x 2 scalar matrix. Since we are free to use any row and

column operations on zB, we have two cases depending on the rank of B.

Case I, rank B=2:

where

0 X z 0
-x 0 0 z
—z 0 0 y
0 -z —y O

The pfaffian is xy — z? and we have a smooth conic.
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Case I, rank B=1:

ol
O = © O

The pfaffian is xy and we have a union of two distinct lines.

Case III. Let « and f# be two distinct points of the double lines P(N),.
By Lemma 1.2(i), we may assume that a=e, A e, and f=e, A e;. Let
7=21<i<j<4 Cy€: A € be third vector such that «, 8, y forms a basis of N.
Subtracting multiples of « and §, we may assume that ¢,, =0 and c,,=0.
We may represent N as

0 x y a
—x 0 b ¢
-y —=b 0 4V
—a —c¢ —-d 0

where a, b, ¢, and d are scalar multiples of z. Since the pfaffian xd — yc + ab
is supposed to be a square of a linear form, we must have c=d =0, a#0,
and b #0.

Case III:
0 X y z
-x 0 =z 0
-y —z 0 0
-z 0 0 0

The pfaffian is z2.

Cases 1V and V. In this case we know from Lemma 1.2(ii) that N is
either e, A V' or A’V’ for some 3-dimensional subspace of V. In the first
of these cases we may assume that N is spanned by e, A e,, e, A e;, and
€ A ey

Case 1V:

<

o OO =
OO O =
oSO O W



NETS AND LINEAR SYZYGY CONJECTURES 9

In the second of these cases, N=A2V’, we may clearly write N as
Case V:

0 x y 0
-x 0 =z 0
-y —z 0 0
0 0 0 0

2. CLASSIFICATION OF NETS OF ALTERNATING FORMS IN 5 VARIABLES

Let V be a vector space of dimension 5 over an algebraically closed field.
In this section we will classify 3-dimensional subspaces N of 4?V. Here we
consider only nondegenerate subspaces (since the degenerate ones essen-
tially fall into the classification of Section 1) and classify these up to linear
automorphisms of V. It turns out that there are 12 distinct examples if the
characteristic is #2, 13 if it is= 2.

We use the same notation as Section 1. The equations of P(N), are the
pfaffians of the 4 x4 principal submatrices of the matrix of linear forms
representing N. These equations are 5 quadratic forms on P(N). Thus regar-
ding P(N) as a projective plane, P(N), is either empty, O-dimensional, a
(possibly double) line, or a conic spanning the plane (2 distinct lines or a
smooth conic).

We will break the classification up by the geometry of P(N), as follows:

Case I: [P(N),= (& (generic case) (1 example).

Case 1I: (P(N);).q is O-dimensional, and does not span the plane.
Ila: One point (4 examples in characteristic #2, 5 in characteristic 2).
IIb: Two points (2 examples).

Case III: (P(N);),eq is a line (3 examples).

Case IV: (P(N),),.q spans the plane (2 examples).

Case 1. Let A be a 5x5 alternating matrix of linear forms in 3
variables representing N. In this case the ideal of pfaffians of 4 has
codimension 3, so A maybe obtained from the ideal of pfaffians by
resolving. But the ideal of pfaffians is a 0-dimensional Gorenstein ideal, so
it is the annihilator of a form of degree 2 in the divided power algebra dual
to the polynomial ring in 3 variables (in char 0 we can think of this as a
degree 2 differential operator.) Writing 0, for the dual basis element to x,
etc., we may by the classification of conics write this form as 8,(2)+4,0.,
¢,0., or 6,(2). But in the last 2 cases, the annihilator contains the linear
form x, whereas the ideal of pfaffians is generated by quadratic forms, so
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it is after a change of variables the annihilator of the first form. Thus there
is a unique example of this type, and the matrix A4 is the matrix of syzygies
of the ideal (x*— yz, xy, xz, y% z?). Note that we are using the classifica-
tion of the orbits of the action of GL(3) on the quadratic forms to deduce
a classification of the orbits in the space of divided powers of degree 2—
this is ok because the latter space is the dual space to the former.)

We get

Case I:
0 0 0 x vy
0 0 x y z
0 —x 0 =z O
—-x —y —z 0 0
-y —z 0 0 0

Case 1. Here (P(N),),.q consists of at most 2 points (else, since it does
not span the plane it contains 3 collinear points, and since it is cut out by
quadrics it then contains the line through them, so we are in Case I11).

Case 1la. (P(N),).q consists of 1 point (four examples if chark#2,
five examples in characteristic 2). The examples are distinguished by the
relative position of the kernel of the unique rank 2 transformation y € P(N)
and the conic formed by the points in P(V*) corresponding to kernels of
elements of a general line in P(N). Except for the characteristic 2 example,
they are also distinguished by the scheme structure of P(N),. This is the
most complicated case.

For each xe P(N)—y, the kernel of x as a map from V* to V is
I-dimensional. Define ¢: P(N)—7y — P(¥V*) by

o(a)=P(Ker a).

If we represent N as a Sx 5 alternating matrix of linear forms, then ¢ is
given by its 4 x 4 pfaffians. Let /" be a line in P(/N) not containing y. Since
I is a family of maps of constant rank 4, ¢ is one-to-one on I” because
otherwise I' could be represented as a 4 x4 alternating matrix of linear
forms and then I” would drop rank on the zero set of the determinant.

We now regard ¢ as a rational map on all of P(N). The following gives
a classification for all rational maps sharing its properties:

PROPOSITION 2.1. Let ¢:P(N)=P? = P’ be a rational map such that
(i) @ is defined by quadrics, (ii) ¢ has ye P(N) as a fundamental point but
well-defined elsewhere, and (1) ¢ is one-to-one on every line of P(N) not
containing y. Then ¢ is one of the following 4 maps:
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(1) The projection p, of the Veronese surface from y onto the rational
normal scroll S=S(1,2) in P*.

(2) The composition p, of p, and the projection from a point of the
line E, of self-intersection — 1 on S; the image is then a quadric cone X in
P2, with a distinguished line E, on it, E, being the image of the tangent plane
to S at the projection center.

(3) The composition of p, and the projection from a point of E, other
than the vertex; the image is P>

(4) The composition of p, and the projection of X from the vertex.
There is up to isomorphism a unique projection of each of these types.

Proof. Since ¢ is defined by quadrics that have a base point, ¢ is a
projection of the Veronese surface from a point on it, which is p,, or ¢ is
p, composed with further projections. The image in § of the projection
center on the Veronese is the line £, = S which is the “directrix.” To project
further we note that the center of the projection has to be a point off § or
a point on E, because y is the only fundamental point of ¢. Suppose first
that ¢ were the composition of p, and the projection from a point off S.
The image of S under projection from any point off S is a cubic surface in
P* with a double line; in particular, the projection is not one to one.
However, the projection map is one-to-one on each ruling of S, and these
rulings correspond to the lines through y in N; since by hypothesis ¢ is
one-to-one on each line of N not through 7y, we get a contradiction. Thus
if @ is not equal to p,, it must involve a further projection from a point on
E,. The image of such a projection is a quadric cone in P* and the com-
position of p, and such a projection is a map of the form p,. If yet a third
projection is necessary, it must be from a point on the line E, which is the
image of the tangent plane to the center of the second projection since else
the composition would have more fundamental points. We get Case (3)
if the third projection is from a point other than the vertex and Case (4)
if the projection is from the vertex. |

We will show that we get one example of a subspace N corresponding to
each of the types of maps ¢ above, except in characteristic 2, where we get
2 examples corresponding to ¢ = p;.

The representation of N as a matrix of linear forms depends on the
choice of bases of ¥ and N. In most cases the choice of basis of N is quite
clear and in our discussion of the Case ITa, we will just describe a basis £
of V. We denote by [N] (resp. [a], for a e [") the matrix representation
of N (resp. «) with respect to the bases E* of V* and E of V.
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Let I" be a line in P(N) not containing 7. Since I' is a pencil of skew
2-forms of constant rank 4, we can find a basis £ (see Gantmacher [7] or
Eisenbud and Koh, Lemma 7.3) so that

0 0 « = O
0 0 0 x =
[x]g=| * O O O O (%)
* = 0 0 O
0O = 0 0 0

for all eI

Definitions and Notation. (1) A basis E of V' is said to be normalizing

I if (+) holds.
()
u v

(2) Let
be a 2 x 2 invertible matrix. We denote by 5,(4) the 3 x 3 matrix

s 28t 1
su sv+tu v

wr 2w v?

(If we interpret .S, as the degree 2 part of the symmetric algebra functor in
the usual way, then this matrix should really be written as S,(4*)*, the
“second divided power of 4.” We will write it as S,(A4) to keep the notation
simple.)

(3) We will write {v¥, .., v¥) for the subspace spanned by a set of
vector vf, .., v¥ of V*.

LemMa 2.2. Let 4 and B be invertible matrices of size 2x?2 and 3x 3,

respectively. Then
40 (x y O B L, L, O
0 x y 0 L, L,

Jfor some linear forms L, if and only if B= S,(A).

Proof. Easy computation. Conceptually, the matrix

635
0 x y
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is the natural map over F[x, y] corresponding to the diagonal map from
S,(<x, D)= <{x, y>® {x, y>. The lemma follows from the fact that this
does not depend on a choice of bases.... ||

COROLLARY 2.3. Let E=e; be a basis of V normalizing I'. Let D=d,; be
a basis of V and let P=(p;) be the transition matrix from E to D, ie.,
e;=2 p;d, Then D is normalizing I if and only if

A1 C
P=< 0 sz(A)'>’

where A is a 2 x 2 invertible matrix and B is a 2 x 3 matrix such that
A -1 (X y 0) Cl
0 x y

Proof. 1f E normalizes I', then <e,,e,>={NImy|yel} and this
gives the block of zeros. The rest follows from the Lemma 2.2 and by
computation. |

is symmeltric.

Remark. The Corollary 2.3 tells us the types of base change of V which
preserve the normalized form of I'. Since we will be working with subspaces
of P(V*), we will use P', which is the transition matrix from D* to E*, to
change basis of V'*. We would use the following two types of P':

(1)
L (A—l)l 0
P‘( 0 SZ(A)>

to change bases of {e¥, ef, e¥>, and

(2)
1 0 0 0 0
0 1 0 0O
PP=|g g 1 00
g g 0 10
g 8 0 0 1

to change ef and e

We note that if E={e;| 1<i<5} is a basis of ¥ normalizing I, then
oI = P({et, ef, e3>) = P(V*).
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LemMa 24. If Q, and Q, be two distince points of o(I') < P(V*), then
there is a basis E={e,| 1 i< 5} of V normalizing I such that Q, = e} and

O,=e?.

Proof. Let E={e;|1<i<5} be a basis of ¥V normalizing /" and let
Q.=s’e¥+s;t;e¥ +1t2e¥, i=1,2. Then

y z(sx 52>
L b

. (A—l)t O
P~ sin)

make the desired change of bases. |

is invertible and

Convention. Let E be a basis of V normalizing I. Let « and f§ be
elements of /" such that

0 0 100
0 0O 010
[aJg=] -1 O O 0 O
0O -1 000
0 0 0 0 0
and
0 0O 010
0 0 0 0 1
[Bls=| O 0 0 0 O
-1 0 0 00
0O -1 000

We will denote by [N], the matrix representation of the family N with
respect to the bases F of V and a, B, y of N.

LemMmA 2.5. If P(Kery) contains two distinct points of o(I'), then
P(Kery)> ().

Proof. By Lemma 24, we may assume that there is a basis £ of V
normalizing I” such that {e¥, e¥)> =Ker .
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Let Kery= (e}, e¥, gie¥+g.e¥+g,e¥>. Then

0 —g, 0 g, 0

84 0 0 g O

[yle=1 O 0O 0 0 o

g2 & 0 0 0

0 g 0 0 ¢

and

0 —g4z x y+g,z O
842 0 0 x—g
[Nlg= —X 0 0 0 0
—y—g2 —x+g,z 0 0 0
0 —y 0 0 0

We note that g, =0 [resp. g,=0] because otherwise x—g,z=y=0
[resp. x=y—g,z=0] would give a rank 2 map different from y. Hence
P(Kery)=P({e,ef,e¥>)2 0. 1

We now analyze the cases according to the position of P(Kery)=
P({e¥. ef, e¥ ), the plane containing ¢(I).

Case Ia(i). P(Kery)=P(<ef, ef, e¥>). In this case

0 1 0 00
-1 0 0 0 O
[¥Yl1:=} 0 0 0 0 O
0 00 00
0 00 0O
and we get
Case Ila(i):
0 z x y O
-z 0 0 x yp
-x 0 0 0 0
-y —x 0 0 O
0 —y 0 00

An easy computation shows that the ideal of pfaffians is (x2 xy, y?), the
ideal of the noncurvilinear triple point in the plane.

607/106/1-2
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Case Ila(ii). P(Kery)nP({e¥, e}, e¥>)=1/ a line. By Lemma 2.5, /
must be tangent to ¢(/I") at some point, say e¥ using Lemma 1.3. Then
I=P({e¥ e¥>)and Kerc= (e}, e¥ g,ef+g,eF + g;e¥>. Hence

0 g —& 00

—&3 0 g 00

[Nle=]| g —& 0 00

0 0 0 0 0

0 0 0 00

and

0 g2 Xx—g,z y 0
—83Z 0 gz x y
[Ng=]| —x+g,z —g,z 0 00
—y —X 0 00
0 -y 0 00

We note that g, =0 because otherwise x + g,z =y =0 would give a rank
2 map different from y. Since ¢({) = P(Kery) and g,=0, g, #0 and we
may assume that g, =1. Using

1 0000
01000
P=lg, 01 0 0],
0 0010
0 000 1

we may assume that Ker y = (e}, ef, e¥)> and we get

Case Ila(ii):

0 0 x y O
0 0 z x y
-x —z 0 0 0
-y —x 0 0 O
0O —y 0 0 O

An easy computation shows that the ideal of pfaffians is (x* — yz, xy, y?),
the ideal of the curvilinear triple point in the plane.
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Case 1la(iii). P(Kery) n P({e}, e}, e¥>) = a point on ¢(I'). By
Lemma 2.4, we may assume that Q =e? is the point of intersection. Let
Kery=<e?, ef +g;ef +gqef, e} +hief +hyel). Using

1 0 0 0 0
0 t 0 0O
P=lg, g 1 0 0}
g4 hy 0O 1 O
hy 0 0 0 1

we may assume that Kery=<{ef, el —h,e¥, ef+ge¥)={e¥ e}
e¥ +ge¥ ), for some g. Hence

0 0 O 0 0

006 0 —g O

[v]e=] 0 O O 1 0

0 g -1 0 O

00 O 0 O

and

0 0 x y 0
0 0 0 x—gz vy
[N]lg={ —=x 0 0 z 0
-y —x+gz -—:z 0 0
0 —y 0 0 0

We note that g =0 because otherwise y =x— gz=0 would give another
rank 2 map. Hence we get

Case Ila(iii):

0 0 x y 0
0 0 0 x vy
-x 0 0 z 0
-y ~x —z 0 0
0O -y 0 00O

An easy computation shows that the ideal of pfaffians is (x?, xy, y2, yz), the
ideal of a double point on a line (with an irrelevant component).

Case Ha(iv). P{Kery)nP({e¥, e¥, e¥>)=a point outside o(I'). Let
g=gief+gief + gse¥ be the point of intersection.
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(a) char k+#2. We claim that we can make a change of basis so that
Q=er. We first assume that g, #0, say g,=1. Switching e¥ and e if
necessary, we may assume that g, #0. Let r be a root of gsx*>—2x+g,=0

and let
g5/2r r)
A= .
<g5/2 1

Then det A= (1/2r)(g;—gsr’)=(1/2r)(g;—r)#0 because g;=r would
imply that g;(g;gs—1)=0 and Q becomes a point on ¢(I") which is a
contradiction. Since

* g3 *
Sz(A): * 1 * 1,
* gS *

we may assume that Q=e} Now suppose that g,=0. Since Qe (),
g:#0 and g,#0. Let

A=( 83/2 g3/2>
~V 82 Vg2
Then
* gy ok
SyA)=|* 0 x|,
* g5 *

and we may assume that J =¥ in this case also.

(b) chark=2 and g;=g5=0. Trivially O =e} in this case.

(c) chark=2 and g;#0 or g;#0. We may assume that g;0, say
g5 = 1 Let

Since char k =2,
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and we may assume that Q = gef + ¢¥ for some g. Since Q is outside ¢([I'),

£+#0 and
_(8 0
A‘(o 1)

is invertible. Now

oy

Sy(A) =

o O
o g O
-0 O

and we may assume that Q =ef +e¥.

Remark. When char k =2 the cases (b) and (c) are different because

for all 2 x 2 invertible A and we cannot find a basis D of ¥V normalizing I”
such that df =e¥ +e¥.

The case Q=¢ef. Let Kery=<{(e}, ef+g;ef+gse¥, e¥+hef+
hse¥>. Using

1 0 0 00

6 1 000
P=|g; h 1 0 0],

hy g 0 1 0

gs hs 0 0 1

we may assume that Kery= {ef, e¥f —h;ef, e¥ —gsef)>={ef, e¥, ef>
and we get

Case Ia(iv):

0 0 x y 0
0 0 0 x y
—x 0 0 0 =z
-y —x 0 0 0
0 —-—y —z 0 0
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An easy computation shows that the ideal of pfaffians is (x, y) N (x, y, z)%,
the ideal of a single point in the plane with an irrelevant component.

The case chark=2 and Q=e}+e¥ Let Kery=<{ ef+e¥ ef+
gse¥ +gse¥, eX +hyef +hse¥). Using

1 0 000
0 1 000

Pr=| g hs 100],
hy hitgs 0 1 0
hi+gs hi+gs+hs 0 0 1

we may assume that

Kery= el +ef, ef —hylel +el), el —(hy+gs)(ed +e¥))
=(ef,ef, el +te?)
and get

Case Ila(v):

0 0 x y 0
0 0 0 x vy
-x 0 0 z :z
-y —x -z 0 0
0 —y -z 0 0

An easy computation shows that the ideal of pfaffians is (x, y) N (x, y, z)?,
the ideal of a single point in the plane with an irrelevant component, as in
the previous example.

Case 1Ib. (P(N),),.q consists of 2 distinct points (2 examples). Again
these are distinguished, for example, by the scheme structure of P(N),.

Let « and 8 denote two rank 2 maps. We may assume that a=e, A ¢,
and B=e;ne, Let y=3,_,_;csc e Ae;bea third vector such that a,
B. y forms a basis of N. Subtracting multiples of « and f§, we may assume
that ¢,,=0 and c¢;, =0. Since N has no nontrivial common kernel, ¢,; £0
for some i. We may assume, after renaming the variables if necessary, that
¢ys#0 (if ¢;5#0, then switch the first two rows and columns and if
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€15 = €5 =0, then switch rows 1 and 2 with 3 and 4), say ¢, =1. Writing
es for ¢354 €464 + cy5€5, we may assume that N is of the form

0 X * ok ok
—x 0 0 :
* 0 0 y =1,
* 0 —y 0 =
* —z * * 0

where * denotes a multiple of z.

Using row 2, we may assume that the (1, 5)-entry is 0. Since x =y =01is
to define a rank 4 map, we may assume that (1, 4)-entry is z and
(1, 3)-entry is 0. We have

0 x 0 z 0
—x 0 0 0 z
0 0 0 y sz
-z 0 -y 0
0 —z —sz —tz O

Case IIb(i): s=0. In this case r=0 or else y =tx—z=0 gives a third
rank 2 map.

Case 1Ib(i):
0 x 0 z O
-x 0 0 0 -
0 0 0 y» O
-z 0 —y 0 O
0O —z 0 00

An easy computation shows that the ideal of pfaffians is (xy, yz, z?), the
ideal of one reduced and one double point.

Case 1Ib(ii): s+# 0. We may first use the row 3 to assume that t=0. We
next multiply the row 3 by (1/s) and write y for (1/s) y to get

Case IIb(i1):

<
S OO R

O O © N
O O N N O
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An easy computation shows that the ideal of pfaffians is (xy, yz, z*%, xz), the
ideal of two reduced points (with an irrelevant component).

Case III. Here P(N), is set theoretically a line in the Grassmannian of
lines in P(¥V)=P* and we see from Lemma 1.2(i) that there exist a point
P and a 2-plane U of V such that P < P(N), < U. These correspond to a
hyperplane L of V* which contains the kernel of every map in N, and a
2-plane L’ of ¥* which is the intersection of those kernels.

Case T11(i). There is an element ye€ N — N, such that Kery ¢ L. Let a
and f be two distinct elements of NV,. We choose a basis of V'* in such a
way that the first vector is from Kery, the last two from L', the second
from Ker 8, and the third from Ker a. If we choose a, §, and y as a basis
of N, then we can represent N as

0 x y 0 0
—x 0 = *
-y * 0 x x|,
0 *  * *
0 * * x 0

where * denotes a multiple of z.
If y (in fact y restricted to L), viewed as a skew-form on L, is nonsingular
on L', then we get

Case III(i):

0 x y 0 0
-x 0 =z 0 O
-y —z 0 0 O
0 0 0 0 =z
0 0 0 -z 0

If the form is 0 on L', then any basis is dual to a basis of L/L’, which we
may lift to (any) L” complementary to L’ in L—so we get

Case III(i1):

0 x y 00
-x 0 0 z O
—y 0 0 0 :z
—z 0 00

00
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Case I11(ii). Keryc< L for all ye N. Pick any ye N~ N,. We first note
that Ker y can not be contained in L’-else an element of L' is in the kernel
of every ne N. Let a be the element of N, such that Kera=L’'+ Ker y.
Let # be an element of N, distinct from oa. If we choose a basis of V'*
in such a way that the last two vectors are from L’, the third vector is
from Ker , and the second vector is from Ker 8, then we can represent
N as

0 xX+cz y * %
—x—cz 0 0 * =

-y 0 0 0 0],

* * 0 0 =

* * 0 = 0

where * denotes a multiple of z.

The (1,4)- and (1, 5)-entries cannot be both zero because otherwise
x= —¢, y=0, and z=1 gives a map in N whose kernel is not contained
in L. We can therefore assume that N can be represented as

0 x y 0 z
—x 0 0 =* =«
—y 0 0 0 0],
0 = 0 0 =
—z * 0 * 0

where * denotes a multiple of z.

Since x = y=0 defines a rank 4 map, we may assume that the (2, 4)-
entry is z after multiplying the row 4 and the column 4 by a suitable
constant. We now use the column 4 to make the (2, 5)-entry 0. Now N is
in the form

0 x y 0 z
-x 0 0 z 0
-y 0 0 O 0
0 —z 0 0 ¢z
—z 0 0 —¢cz O

Since the pfaffians are (0, cyz, cxz+ z2, 0, yz) and their common zero set
18 z=0, c=0-else x= —1/c, y=0, and z=1 is in the zero set.
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Case III{i1i):

0 x y 0 z
-x 0 0 z 0
-y 0 0 0 O
0 —z 0 00
-z 0 0 0 0

Case 1V. Let a, f, 7 be three elements of N, which span V. By our non-
degeneracy hypothesis, the corresponding lines must together span P(V).
There are up to automorphisms of P(V) only 2 such configurations:

Case 1V(i). There is a pair of intersecting lines.
We may write a=¢; A e, and f=e, A ¢;. The third line can’t meet the
plane spanned by « and B (else they do not span P*.) Hence we can write
the third as y=e, A es.

Case TV(i):
0O x v 0 O
-x 00 0 O
-y 00 0 O
0 00 0 <z
0O 00 —z 0

An easy computation shows that the ideal of pfaffians is (x, y) N (z), the
ideal of a point and a line.

Case 1V(ii). No two of the three lines intersect. We can choose the first
twotobe a=e, A ¢; and S =e, A e,. We can write the third as y = (¢, e, +
c 65+ cye5+ e e,) A es. Since 7 does not meet « or ff, we may assume that
¢;=c;=1. Writing e, for ¢, + c,e, and e; for e;+c,e,, we may assume
that y=(e, +e3) A es.

Case IV(ii):

0 x 0 0 :
—x 0 0 0 0
0 0 0 y z
0 0 —y 0 0
2 0 —z 00

An easy computation shows that the ideal of pfaffians is (xy, xz, yz), the
ideal of three linearly independent reduced points.
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3. THE LINEAR SyzYGY CONJECTURES IN THE CASE k=3, w=15

We will assume that the reader of this section is familiar with the defini-
tions and notation of our previous paper. The classification carried out in
the previous section allows us to decide whether the linear syzygy conjec-
tures hold in the case k=3, w=5 (that is, the critical case for 3-generated
modules over a polynomial ring in 5 variables) by checking them on
modules determined by 3-dimensional subspaces of AW, where W is a
5-dimensional space. If we set V:= W*, then A°W = A>V*, so we may use
the classification from Section 2, and we must check the result for the each
of the 13 modules corresponding to the 13 cases of the classification. This
is, of course, a job for a machine, and we were able to carry out the com-
putations using the computer algebra program Macaulay of Bayer and
Stillman [2]. The results verify all our conjectures in this case. We com-
puted a number of invariants of the situation, and some of the results are
given in the two tables below, which we will now describe.

Table I lists the 13 modules themselves, with some of their properties:
the first column names them in a way corresponding to the classification of
the last section (but we have given them in a different order, grouping them
according to the betti numbers of the free resolution of the module .#).
The second column gives the generators of M* < A*W = A*V according to
the following scheme: assuming that we have chosen a basis

€1, €5, .y Es

of V'=WH*, we replace e, A ¢, by ij. Thus, for example, the first row of the
table corresponds to the situation where M* is generated by

ey Neste, Aegtesneg
e, Negte, Aes

e, neyteyAes.

The third column of the table gives a minimal presentation matrix of .4 as
a module over k[ W] =k[a, b, ¢, d, e], where a, b, ¢, d, e are a basis of W
dual to the basis e, ..., e5 of V; the columns represent the relations. The
fourth column gives the “graded betti numbers of .#— that is, the ranks
and degrees of generators of the free modules in a minimal free resolution.
Perhaps an example will best explain its meaning: the diagram

3 1605 11— —
— — 21 35 22 5§
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TABLE 1
M* in Presenting Betti numbers Annihilator dim/deg
Name wedge matrix of M of M of M
General 14423 00 -ed -e 0 -c -c -b a 3105 1 - - square of
15+24 0-e 0 -cd ¢cO0O b a 0 - - 21 35 22 5 the maximal 0/8
25+34 ed ¢c b 0 O0a 0 0 O ideal
1 point 13+24 - 0c0O -e-d0 -ab 3993 6 quadrics o
(1) 14425 d ¢c0-e0 ¢ -ab O and 2/% g
12 0 000 O 0 -e -d -c one cubic %
c
z
1 point 13+24 ~e 0 ¢ 0O -e-d0 -ab 3993 6 quadrics >
(ii) 14425 d ¢ 0 -e0 ¢ -ab 0 and 2/3 z
23 0 -e-d0 0 0 0 0 -a one cubic -
2 points 12 0 000 0O 0 -e -d-c 3993 6 quadrics =
(1) 34 ~-e 00 -b0O0 =-a0 0 0 and 2/3
14425 0 dc¢c 0O -e ¢ ~-ab O 1 cubic
3 spanning 12 g 0 0 00 0 -e -d -c 3993 6 guadrics
points 34 -e 0 -p 0O -a0 0 0 and 213
15+35 d -b0O d-a+c O b O 0 1 cubic
1 point 13+24 0 -e0c¢c O -e-d0 -ab 3101151 - (e,ac+bd)+
(iii) 14+25 0 d ¢c0 -e0 ¢ -ab O - - 3641 2/2
34 0 0-b0 0 -a0 0 O (a,b) 2




2 points 12 0 00 0 0 0 0 -e -d -c 310 11 51 ~ (e)+
(ii) 34 -e 00 -b 0 0 -a0 0 O - - 3641 (a,b){c,d)

14+25+35 d d-b+c 0 -e -ac -ab O

1 point 13+24 0-e0 ¢c0 -e-d0O0 -ab 3210 8 1 -~ - (a,b,c,d,e)

(iv) 14+25 0d ¢ 0-e0 ¢ -ab O - -10 2013 3 (a,b,d)

35 d0 -b0Q0 -a0 0 0 O

1 point 13+24 0 e 0cOe ab

char. 2 14+25 0 dc0OeOcabo Same as *‘l point (iv)''
34+35 d+e O b b 0aal00

line 12 0000000dec 310 14 11 51

(i) 13 D0000de 00 -b (d,e)
23445 abcde0000a

line 12 00000e0d -c 391051 (b,c,d,e)

(ii) 13 0000d0e0hb (d,e)
24+35 bcdeOGCaao

line 12 0 000 O -e~d -c 38 72 (bd+ae)+

(iii) 13 0 00-e-d0 0 b (e)({c,d,e)+
15+24 -e cdec O b -~-ao0 (d) (c,d)

line 12 0 0 0 0 0 -e-d-c 3872 (d,e){a,b,c)

and point 13 0 0 0 -e-d0 0 b

45 -¢c~-b -a 0 0 O O O
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denotes a resolution of the form

SPe S(—1)0« S(~2)° « S(—3)
@ ~ & ~
S(—4)' « §(—5) « S(—6)2 < S(—=7)° « 0.

The fifth column gives some information about the annihilator of .#. The
reduced supports of the modules that occur turn out to be quite simple
projective varieties, and it would be interesting to study the relation
between the examples and their geometry. The final column gives the Krull
dimension and degree (that is, multiplicity) of .# in the form x/y, where x
is the dimension and y is the degree.

Table IT gives information about the various loci mentioned in our
conjectures. Each box potentially contains two pairs of numbers,

u/v
[x/y]

the upper one representing the dimension/degree of a given locus, and the
lower one representing the dimension/degree of the part of that locus
corresponding to the “pure vectors.” We have suppressed the lower entry
where it agrees with the upper one.

In the first column, rank0O (=Ker ¢, in the notation of our previous
paper) refers to the locus in A2 W* of vectors that map to 0 in the module
of linear relations, R, and [pure0] (=7, in the notation of our previous
paper) refers to the intersection of rank0 with I, the cone of pure vectors.
The upper numbers give the dimension in each case (the locus rank 0 is of
course a linear space) and the lower pairs of numbers, in brackets, give the
dimension and degree of pure0 in case it is nonzero. Similarly, in the
second column, the upper pair of numbers refers to the dimension and
degree of the rank 1 locus in 42W* and the lower pair of numbers, in
brackets, give the dimension and degree of I, the intersection of the
rank 1 locus with the set of pure vectors.

In the third column, the two pairs of numbers give the dimension and
degree of the images of these loci in the space of linear relations R (R]1 = R,
and pureR1 = ¢(I) in the notation of our previous paper). The conclusion
of the linear syzygy conjecture (resp. strong linear syzygy conjecture) says
that the dimension of R1 (resp. pureR1) is at least 3. The conclusion of the
generic injectivity conjecture says that the dimension purel in the second
column is the same as the dimension of pureR1 in the third column.

In the fourth and fifth columns we give the numbers relevant to the
epimorphism and image conjectures: M1 refers to the set of vectors in M
which are annihilated by a nonzero linear form, while pureM1 refers to the
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TABLE 11
rank0 rankl R1 M1 Wl
Name [pureQ] [purel] [pureR1] [{pureMl] {pureWl]
General 0/1 3/9 3/9 3/1 2/4
1 point 12 5/3 4/3 2/2 3/1
(1) (4/4] [3/4) [2/6]
1 point 11 4/3 3/3 2/3 3/3
(ii) [3/9]
2 points 1/1 4/3 2/3 2/3 3/3
(1) (3/9]
3 spanning 1/1 4/3 3/3 2/3 3/3
points [3/9]
1 point 0/1 4/1 4/1 3/1 4/1
(1ii) [3/9] [3/9] [3/4]
2 points 0/1 4/ 4/1 2/1 4/1
(i1) [3/9] [3/9] [(3/4]
1 point 0/1 3/9 3/9 3/1 3/4
(iv)
1 point Same as ‘‘l point (iv)’’
char 2
line 0/1 5/1 5/1 3/1 5/1
(i} [4/4] [4/4] [4/1)
line 11 5/1 4/1 3/1 4/1
(i) [4/4]
line 2/1 5/3 3/3 2/1 3/1
(iii) [4/4) [3/2] [2/4)
line 2/1 5/3 3/3 2/1 3/1
and point [4/4]
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vectors annihilated by a linear form in a relation coming from an element
of I';. W1 refers to the set of linear forms annihilating some element of M,
and pureW1 refers to the linear forms annihilating an element of M
because of a relation coming from 7. The conclusion of the Image Conjec-
ture (resp. Epimorphism Conjecture) is that the dimension of pureM 1
(resp. pureW1) in the fourth (resp. fifth) column is at least 3.)

Remarks: (1) In each of the six examples 1 point (i), 1 point (ii),
2 points (i), 3 spanning points, line (iii), and line and point, there is an
element that is killed by 3 linearly independent linear forms. The three
conjectures, Generic Injectivity Conjecture, Image Conjecture, and
Epimorphism Conjecture, deal with “nondegenerate” cases and above
examples violate the hypotheses of these conjectures.

(2) In the examples

1 point (i)
1 point (ii)
2 points (i)

3 spanning points

the module M has the same resolution in each case. These four examples
belong together in several senses:

(a) In each case the annihilator of .# defines a scheme X in
P(W*)=P* which is purely 1-dimensional, of degree 3, and of arithmetic
genus —2: in the last case this scheme consists of 3 disjoint reduced lines,
in the second to the last case a double line and a disjoint reduced line, and
in the first two cases triple lines which seem to be degenerations of the
other two.

{b) In each case we may recover .# as a graded module from X
in the form

M= 3 HUX Ox(p))

p=—oo

It would be nice to have similarly geometric descriptions of the other
modules. Of course, it may well be that we are looking, in some cases at
least, only at the linear part of the presentation of the module, and that in
order to see what is going on one would have to adjoin relations of higher
degree.

It would seem that the underlying reason for these relations is that the
examples are probably all flat specializations of the “3 spanning points”
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(this is obvious for the second and third, but not quite obvious for the first,
and we have not tried to prove it).

(3) The two examples “1 point (iii)” and “2 points (ii)” seem
similarly related by degeneration (though again we have not studied this.)
The support of # in “2 points (ii)” is a pair of skew lines, while the
support of .# in “1 point (iii)” is a double line on a smooth quadric
surface.

(4) All the examples given in Tables I and II are distinguished from
one another by the invariants given (including the scheme-theoretic
support of M, which is described above in the cases where it is not given
explicitly in Tables I and II) excepr the pair of examples “1 point (iv)” and
“1 point char 2,” which have the same invariants, even in characteristic 2.

4, MACAULAY PROGRAMS FOR THE LINEAR SYZYGY CONJECTURE

We include one example of the output of the program we used in our
computation. The program consists of two scripts:

‘‘ls_prep_11_89’°’ =“linear syzygy preparation”
and
$¢1s_11_89’° =“linear syzygy.”

These scripts use several scripts which are part of the standard Macaulay
package (the references section below tells how to get Macaulay and the
standard scripts.)

We give a sample run, this one dealing with the case “one point i,”
corresponding to the skew symmetric matrix printed at the beginning of
the run. The file casepoint.l, which is listed as a parameter on the com-
mand line of 1s_11_89, is a data file containing the description of this
skew symmetric matrix; it is printed out at the end.

Macaulay version 3.0, created 8/14/89
;The following takes about 56 seconds on a Mac II with 50
Mhz accelerator:

4<ls_prep_11_89
% <1s_11_89 casepoint.l

; O =z y O
; —z O Oxy
; —x 0 000
i -y —x 000
; O -y 000

607/106,1-3
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sk kkckkokkkk The pfaffians: *okksorkiokksokkkokkx
the ideal of pfaffians

; X2 Xy y2
; codimension : 2
; degree : 3

the radical of the ideal of pfaffians
X XXX XXX XXX X XXX XXX XXX XXX

Pure dimensional component:

; codimension : 2

; degree H

; X2 Xy y2

and its radical:

; codimension : 2

; degree 1

y X Y

XXXX XXX XXX XXX XX XXX XXX AXXX
y X ¥

FROKFOKR KRR KKk R kK The module: %% kkkkkkokkkokk &k

Presentation matrix, codim, and degree:
; e 0cO0OedOa -b

; d c0e00a-bo0

; O 00000ed c

; codimension : 3

; degree : 3
; total: 3 9 9 3
; 0 : 3 9 9 3

Its annihilator:
; ¢2 cd ce d2 de e2 a2c+abd+ble
; codimension : 3

; degree H

; total: 1 7 11 6 1
; 0 1 - - - -
; 1: - 6 8 3 -
; 2: - 1 3 3 1

AXXXX XXX XXX XXX XXX XXX XXXXX
Pure dimensional component:

; codimension : 3

; degree H

; ¢2 cd ce d2 de e2 aZ2c+abd+bZe
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and its radical:

; codimension : 3

; degree 1

; cde

XXX AXXAXX XX XXX XXX XXX XXX XX
sokdokokkokkkk Ty 2 Wk kokokskokok ok

rank0
; codimension : 9
; degree : 1
pureQ
; codimension : 9
; degree 1
rankl
; codimension : 5
; degree 3
purel
; codimension : 6
; degree : 4

Fokokdokkkokkk T M tensor W kksokkskokokskoskkok
R in 15 space:

; codimension : 6

ranklR in 15 space

; codimension : 11

; degree : 3

purelR in 15 space

; codimension : 12

; degree : 4

kR RORRORRORN Rk 7 MK HOK R ok ok ok Kok ok ok ok ok ok ok ok ok ok ok

image of rank 1 in M

; codimension : 1

; degree : 2

image of purel in M

; codimension : 1

; degree 2

Hookokokoiokookokkokok 1y W ok ok sk ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok

image of rankl in W

; codimension : 2

; degree HE !

image of purel in W

; codimension : 3

; degree : 6

5K ok ok ok ok ok ok e ok ok ok ok sk ok sk ok ok sk ok Sk sk 3 ok ok ok o ok ok ok ok ok ok sk ok ok sk ok ok ok ok ok K
Fok o oK ok ok o K ok ok of ok o of ok ok ok ok sk ok e Sk K ok 3K K K K o ok ok ok oK o o ok ok o ok ok ok K ok ok ok
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>
;The contents of the file casepoint.l:

’

OO0 OQOOKW OO OO
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