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Summary. Let I be an ideal in a polynomial  ring over a perfect field. We give new 
methods  for comput ing the equidimensional parts and radical of I, for localizing 
I with respect to another ideal, and thus for finding the pr imary decomposit ion of / .  
Our  methods rest on modern  ideas from commutat ive algebra, and are direct in the 
sense that they avoid the generic projections used by Hermann  (1926) and all others 
until now. 

Some of our  methods are practical for certain classes of interesting problems, 
and have been implemented in the computer  algebra system Macaulay of Bayer 
and Stillman (1982-1992). 

Introduction 

Among  the most  basic questions one could ask about an ideal I in a polynomial  
ring S = k[Xl . . . . .  x . ]  over a field k are the following: 

A. What  are the equidimensional parts of I?  
B. Wha t  is the radical 

r a d l  = {s~S[Sm~I for m ~ O} , 

o f / ?  

* The authors are grateful to the NSF for partial support during this work 
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C. What is the localization of I at an ideal J (that is, the intersection of the primary 
components of I which are contained in J or, if J is not prime, in primes 
containing J and having the same dimension as J)? 

D. What are the associated primes of I? 
E. What is a primary decomposition of I? 

(Throughout this introduction, we will deal only with ideals, though in the body of 
the paper we will work systematically with modules.) 

From an existential point of view these questions, all of which are essentially 
subsumed in E, were made easy by a fundamentally nonconstructive insight of 
Emmy Noether: the existence of primary decompositions depends only on the 
ascending chain condition. Algorithms for solving the problems computationally 
have also been known for a long time. Grete Hermann, a student of Noether's, 
showed (1926) (see also Seidenberg 1984, the literature cited there, and the more 
computational papers cited below) that answers can be effectively computed given 
methods for solving problems 1-3, below. But in terms of practical computation, 
problems A-E remain quite hard to this day. 

The problems into which Hermann's methods translate problems A E are the 
following: 

1) Factor a polynomial in S into irreducible factors (FACTOR). 
2) Find the polynomial solutions to linear equations with polynomial coeffic- 

ients (SYZYGY). 
3) Find the intersection o f / ~  k[xl . . . . .  x , ]  with a subring k[yl  . . . . .  Ym] 

where the Yl are linear forms in the xj (PROJECTION; the name comes from the 
geometric interpretation of this operation as finding the closure of the image of an 
affine variety in k" under a linear projection of k" to a subspace). 

It is clear that FACTOR is a special case of the primary decomposition 
problem. The relevance of SYZYGY may be seen from a special case: I f f  and g are 
polynomials then the vectors of polynomials (a, b) which are solutions to the 
equation 

fa + gb=O 

are precisely the multiples of the vector 

(g / GCD (f  g), - f / G C D  ( f  g)). 

Thus solving the equation is tantamount to finding a greatest common divisor. On 
the other hand, PROJECTION is not intrinsically related to the primary de- 
composition process, but was used by Hermann, and all others who have con- 
sidered the problem till now, to reduce to the case of an ideal generated by one 
polynomial. 

Hermann proposed using Hilbert's method (1890) for SYZYGY. This method is 
so slow that it cannot be used effectively even with the aid of modern computers! 
Fortunately, algorithms involving Gr6bner bases are far more efficient, and several 
computer algebra packages have incorporated them. The methods for FACTOR, 
now mostly based on ideas of Berlekamp (see for example Knuth 1971, Sect. 4.6.2) 
have also become quite good. In Hermann's time PROJECTION was done using 
resultants, but it is now done more efficiently by using Gr6bner bases (see for 
example Cox et al. 1992 for an introduction). 
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The increasing availability of symbolic algebra systems on computers and of 
efficient methods for 1)-3) has led to a renewed interest in the question of 
computing primary decompositions, as one sees from the work of Lazard (1982 and 
1985), Gianni et al. (1988) (see also the references there), Bayer et al. (1992), and 
Krick and Logar (1991). However these authors make use of the same basic 
strategy as Hermann, using PROJECTION to reduce to the one-polynomial case 
as before. In this paper we introduce new methods, based on ideas of modern 
commutative algebra, which are "direct methods" in the sense that they do not 
require this reduction. 

Why should one want to avoid the reduction? To answer questions A-E by the 
methods using projections one needs "sufficiently generic" projections. In practice, 
this currently means that one takes the Yi in 3) above to be random linear forms in 
the x j, checking afterwards that the choice was "random enough". Unfortunately 
this randomness destroys whatever sparseness and symmetry the original problem 
may have had, and leads to computations which are often extremely slow. Al- 
though it seems one can often get away with special projections (choosing the y~ to 
be much sparser linear forms in the x~), which usually makes computation much 
faster, a systematic understanding of how to do this is lacking. Such a lack becomes 
particularly significant if the methods are to be incorporated in a larger system. 

The methods we propose here for answering the questions A, B and C, use only 
SYZYGY. We are able to avoid projection essentially because we introduce 
techniques which extend to arbitrary ideals operations which were previously 
possible to do directly only for principal ideals. 

Because we avoid projections, our methods for solving problems A-C are 
practical, using the current system Macaulay, for handling some problems of 
genuine interest, and we have implemented them; they are now distributed with 
Macaulay as scripts. Our methods lead to methods for settling question D and 
E using only SYZYGY and FACTOR. 

We do as much as possible without FACTOR, for reasons which we will now 
explain. SYZYGY and FACTOR, and the things that one can derive from them, 
differ in a fundamental way: 

Neither the results nor the methods for performing SYZYGY (or, in general, for 
finding Gr6bner bases) depend on the nature of the underlying field k. This is 
because the methods require only the solution of linear equations over k. One 
consequence is that the results are stable under the extension of the base field (to an 
algebraic closure, say). 

By contrast, any method for solving FACTOR must be highly sensitive to the 
arithmetic of k. Indeed, one might say that ALL the arithmetic of k is already 
present in the problem of factoring polynomials of 1 variable. 

For  this reason it is natural and efficient to try to find methods avoiding 
FACTOR and rely only on SYZYGY and on Gr6bner basis computations when- 
ever possible. In the algorithms explained below, we use FACTOR only in the 
simplest case, the factorization of polynomials in 1 variable. Actually, our use of 
FACTOR appears only in the sub-problem of finding a maximal ideal of an 
artinian ring (that is, a not-necessarily rational point of a finite variety). There may 
well be more efficient ways to handle even this problem, such as the ones developed 
by Lazard (1992). 

We now indicate in more detail the contents of this paper. 
Our methods for answering question A, that is, finding the equidimensional 

parts of an ideal or submodule, are given in Sect. 1. For example, if S is a regular 
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ring and ! = S is an ideal of codimension c, then we show that the equidimensional 
part of I, that is, the intersection of all the primary components of I whose 
codimension is exactly c, is equal to the annihilator of the module 

Exffs(S/ l, S) . 

This and related formulas for modules follow from the Auslander-Buchsbaum 
formula and a few exact sequences. They were known to the authors independently 
for some time, and probably to many other people, though their usefulness for 
practical computation seems to be a new observation. 

Section 2, the heart of the paper, contains methods for finding the radical of an 
ideal. We introduce two methods which involve the use of the Jacobian matrix 
(Theorems 2.1 and 2.7). These methods should be viewed as generalizing to arbit- 
rary ideals in many variables the ancient formula for polynomials F in one variable 
which says that the derivative F'  is divisible by the ( n -  1) TM power of any 
irreducible polynomial whose n 'h power divides F, so that the ideal generated by 
the square-free part of F - that is, the radical of (F) - may be computed as the "ideal 
quotient" 

rad(F) = ( (F) : (F ' ) ) :=  {GI G F ' e  (F)} . 

First of all, we prove that if the ideal I is generated by a regular sequence, that is, 
if I is a 'complete intersection', tlaen the ideal generated by the maximal minors of 
the Jacobian matrix of I can be used in place of (F') in the formula above (with 
I playing the role of (F)), generalizing the formula above directly. The proof is 
based on a special case provided by a theorem of Scheja and Storch (related to the 
theory of residues): if an ideal I generated by a regular sequence is primary to the 
maximal ideal 931 in a polynomial ring S, then the Jacobian determinant J generates 
the socle of S/ I ,  so that (I :J)  = ~lJ~, which is indeed the radical. The same method 
works for ideals which are generically complete intersections. 

The case where the ideal I is not (generically) a complete intersection can be 
reduced to the case where it is, if one knows a maximal regular sequence contained 
in I, by computing two more ideal quotients. However, finding a "simple" maximal 
regular sequence inside a given ideal can be quite hard, and if something like the 
right number of random linear combinations of the generators of the ideal is used, 
then the method becomes slow. Thus this method is most useful in practice when 
one knows a good regular sequence in advance. 

To avoid these problems, we give a second Jacobian method, which computes 
the radical directly, not passing by way of a regular sequence. To do this, we 
systematically exploit the lower order minors of the Jacobian matrix. This is 
probably the most novel idea in the paper. The effect is to reduce to the case of 
a generically complete intersection. This is often the best method in practice when 
one does not known in advance a simple regular sequence contained in the ideal. 

It is quite important from the point of view of practical computation to the able 
to work in characteristic p, over finite fields, even if one's ultimate interest is in 
characteristic 0 results. This is because of the familiar "coefficient explosion" in the 
Buchberger algorithm for Gr6bner bases. In characteristic 0, one must use infinite 
precision arithmetic, which is slow, but there is no problem over a field small 
enough that its elements can all be represented in one computer word. Since the 
ultimate answers are typically far less sensitive to characteristic than the methods, 
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one can use characteristic p computations to get results which reliably reflect the 
characteristic 0 situation in a wide range of problems. 

However, Jacobian methods are intrinsically sensitive to the characteristic. This 
is already obvious in the case of one polynomial in one variable above: if F(x) = x p, 
and characteristic k = p, then of course F'(x)=-0 ,  so ( ( F ) : ( F ' ) ) =  S, and the 
formula for rad (F) above is wrong! Of course there will be no problem if the degree 
of F is less than p. We are able to prove that our techniques are valid in a similar 
range in the general case (Lemma 2.6). The main result that we need generalizes 
a result of Grothendieck from the case of characteristic 0. It is interesting that our 
second Jacobian method is valid in a somewhat larger range of cases than the first, 
even when the ideal in question is itself a complete intersection. 

Putting these techniques together, we give in Sect. 3 a theorem which leads to 
a method for computing the "localization of an ideal I at an ideal J". For example 
when J is a prime of S, we define the localization of I at J to be the ideal 

I j c ~ S  , 

where Ij is the usual localization of I at J, which is an ideal of the local ring Sj. In 
general we define the localization of I at d to be intersection of those primary 
components of I which are contained in primes containing J and having the same 
dimension as d. We then show how to use the formula 

(I localized at d) = ( ] ,  h u l l ( / +  J" )  

(where the "hull" of an ideal is the intersection of its primary components of 
maximal dimension) to effectively compute the localization, essentially by giving 
bounds of the power n to which one must go to separate the generators of I from 
forms of the same degree. Again this extends to general ideals a method that was 
previously understood and exploited only for principal ideals. 

Using this notion of localization, we describe in Sect. 4 a new approach to 
computing primary decomposition. 

Throughout the paper, we have described explicit algorithms for computation. 
We have isolated these algorithms, rather than letting the reader dig them out of 
the theorems, because they represent our belief about which parts of the theorems 
are most nearly practical. We have not, however, included any analyses of complex- 
ity. The most expensive step is almost always the Buchberger algorithm, and in 
contrast to its well-known worst-case behavior, the complexity of this algorithm in 
the cases of real interest in Algebraic Geometry is poorly understood. 

The fundamental operations we use are the computation of a Gr6bner basis of 
a submodule of a free module (with respect to some multiplicative order), and the 
corresponding computation of its syzygies. For  convenience, however, we describe 
our algorithms in terms of some higher level procedures derived from these. These 
will be treated in detail in the forthcoming paper Eisenbud and Stillman (1992); 
most are in any case part of the folklore of this subject. They are all implemented as 
Macaulay scripts which are distributed with the current release of Macaulay. 

We now describe some of the computations we will require as components in 
our algorithms. All modules will be modules over the polynomial ring S. To "give" 
a module means to give a presentation matrix (generators and relations) for it. 

1) The codimension of a module (the dimension of S minus the dimension of 
the module) could be computed from the form of the free resolution, following 
Hilbert. Much more efficiently, it can be computed directly from a standard basis 
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for the relations on the module. Bayer and Stillman (1992) have developed a parti- 
cularly good way to do this. 

2) Given two ideals I, J one can compute I n J from the syzygies of a certain 
module. 

3) a. If A c B are modules and J is an ideal, we can compute the quotients 

( A : J ) : = { b ~ B I J b ~ A }  = B 

and 

( A : B ) : = { s 6 S I s B = A }  = S .  

In particular, we can compute the annihilator of a module A as 

annA = (0:A) ~ S .  

These computations are all easy given the ability to compute syzygies. 
b. If A c B are modules, and J is an ideal of S, then one may compute the 

saturation o f  A with respect to J 

( A : J ~ ) : =  U n ( A : J " )  ~ B 

in one standard basis operation. This operation was described by Bayer and 
Stillman (1987) in the case where J is a principal ideal generated by one of the 
variables. To reduce to this case, one may first replace J by a suitably generic linear 
combination of its generators'; for example, if J = (Jo . . . . .  jr,), we may use 

f : =  t"jo + t m- l j l  + . . .  + tjm-1 + jm ,  

where t is a new variable, and then adjoin another new variable s and the relation 
s - f  One then saturates with respect to s. Alternately (and this is often faster when 
J is large) one may simply compute 

( . . . ( ( A : J ) : J ) . . . )  

until this stabilizes. 
4) Given a module M and an integer i one can compute 

Exti(M, S) 

from a free resolution of M, by dualizing the (i + 1)st map in the resolution, 
computing its kernel, and then factoring out the image of the dual of the ith map 
map of the resolution. (Similar but slightly more complex considerations allow the 
computation of any Exti(M, N); we will not need this, however.) 

5) Given a ring R = SI t  and a prime ideal P c R we can compute the multipli- 
city of R at P, (that is, the multiplicity of the local ring Rp) by forming the associated 
graded ring (or normal cone) 

T: = R I P  G p / p 2  (~.  . . 

and computing a "Gr6bner basis for the generic fiber" of the inclusion R / P  ~ T in 
the manner described in Bayer et al. (1992). Actually a much simpler computation 
suffices for nearly all the uses made of this here: if S is the graded polynomial ring 
and P is the irrelevant ideal, then the multiplicity, which is the degree of the 
projective variety corresponding to I, is (dim 1)! times the leading coefficient of the 
Hilbert polynomial of R. 
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Open problems 

There are many interesting problems remaining in the area of effective computa- 
tion in commutative algebra and algebraic geometry. Here are a few of our current 
favorites: 

1) What  is a good method of finding a "simple" maximal regular sequence in an 
ideal 1 c S = k[xl . . . .  , x , ]?  One can start with an element of least degree and 
adjoin generators one at a time to the ideal, adding a general linear combination of 
the generators already taken to the regular sequence whenever the codimension of 
the ideal increases. Unfortunately, this leads to highly non-sparse regular se- 
quences, especially if the generators are homogeneous of different degrees, and one 
wants to maintain homogeneity. One can of course break up the generators of the 
ideal into subsets, and thus write I = 11 + . �9 + I,, where the lj  form a "regular 
sequence of ideals" in the sense that the codimension 11 + �9 �9 + Ij = j. Given such 
a decomposition one could hope to choose a regular sequence whose j th  element is 
a linear combination of the generators of I s. However, in the "regular sequence" of 
ideals 

11 (XlX 3 - -  X2)C4) ' 12 2 2 = = (xl ,x2),  13 = (x2), 14 = (x2), 

no sequence of the form 

is a regular sequence. 
A less direct approach is to solve the problem first for ideals generated by 

monomials, apply this solution to the ideal generated by the leading forms of 
a Gr6bner  basis for the ideal, and then take the corresponding linear combinations 
of the Gr6bner basis elements themselves. This reduces the question to the special 
case of monomial  ideals. A solution to the problem in this form has been obtained 
by Eisenbud and Sturmfels (1992), but more remains to be done. 

2) What  is a good method of finding a "simple" Noether normalization of 
a ring S/I (that is, a simple sequence of elements Yl . . . . .  Yd of S = k[xl . . . .  , x,] 
with d = dimS/I such that S/I is a finite module over k[yl . . . . .  Ye]. This is the 
first of a sequence of such problems that one must solve to make an efficient 
computation of primary decomposition by the method of projections, and would 
have other applications as well. 

3) Are there direct methods for finding the radical which do not use Jacobians, 
or at any rate which work for arbitrary characteristics? For example, if f l  . . . .  f .  
generate a homogeneous ideal of codimension n in S = k[xl . . . . .  x,,], and if (a/~) is 
an n x n matrix such that 

f i  = 2 j a i j X j  , 

then rad( f l  . . . . .  f , )  = (xl . . . . .  x,) = (fl . . . . .  f . ) :  det(aij) (see Scheja and Storch 
1975, Sect 1). One possible choice for the aij when the characteristic is not too low 
is, by Euler's formula, the Jacobian matrix with its rows divided by the degrees of 
the f~. This fact leads to the computation for the radical given in Theorem 2.1. Can 
one exploit the existence of such matrices (aij) in general to get a computation for 
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the radical without restrictions on the characteristic? A good test case, suggested by 
David Jaffe, is the ideal 

(z v _ x y u  5, y 4  __ X3U) 

in characteristic 7, whose radical is the ideal 

(z 3 -- y u  2, y z  - -  x u ,  y 3  _ x Z z ,  x z  2 _ y 2 u )  

defining the rational quartic space curve parametrized by 

(S, t) b"'~(X, fl, Z, U) : (S 4, S3t, St 3, t4). 

4) Regularity bounds: We say that a graded module over a polynomial ring 
S has regularity r if for each n its nth syzygy is generated in degrees < r + n. It  has 
been conjectured by the first author that the regularity of a factor ring S/1 for any 
homogeneous prime ideal of degree d and codimension c is < d - c + 1. (This is 
easy for 1 - dimensional primes. It was proved for 2-dimensional primes represent- 
ing smooth curves by Castelnuovo, and for arbitrary 2-dimensional primes by 
Gruson et al. (1983). Various weaker results are known for higher dimensional 
primes; see for example Lazarsfeld (1987).) 

Here is another problem of this type. A good answer might aid considerably in 
the computation of localizations given below: 

Given a reduced equidimensional ideal I ~ S = k [ x x  . . . . .  x , ]  generated by 
forms of degree < d, and an ideal J D I which is the intersection of a subset of the 
components of I, what is a bound on the degrees of elements necessary to generate 
J (perhaps just up to radical)? If J represents a single component  of I which 
happens to be smooth, and if the characteristic of k is 0, then a recent theorem of 
Bertram, Ein, and Lazarsfeld implies that in fact the regularity of J is < cd - c. 
Does this hold for arbitrary J as in the problem? 

5) Given homogeneous radical ideals I, J ~ S = k [ x l  . . . . .  x,] ,  determine the 
least number r such that 

hull (I + J"~) c (x1 . . . . .  x,) m �9 

See Theorem 3.3 and the remarks following it for more information. 
This paper owes much to Dave Bayer and Mike Stillman, who have generously 

shared with us their evolving ideas about the computation of primary decomposi- 
tion. Their computer algebra system Macaulay (1982-1992) has helped us to many 
ideas in commutative algebra and algebraic geometry, as well as inspiring our 
interest in the results below. 

1 The equidimensionai hull of a submodule 

In the following, we will assume that all modules are f in i t e ly  generated.  We define the 
equidimensional  hull of 0 in a module M to be the submodule N consisting of all 
elements whose annihilators have dimension < the dimension of M; equivalently, 
N is the intersection of all the primary components of 0 in M having maximal 
dimension. If M '  c M is a submodule, we define the equidimensional hull of M '  to 
be the preimage in M of the equidimensional hull of 0 in M / M ' .  If I is an ideal in 
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ring S, then the equidimensional hull of I will mean the equidimensional hull of I in 
S. We write 

hull(N, M) 

or, when there is no danger of confusion, simply 

hull N, 

for the equidimensional hull. 
The following result connects the equidimensional hull and some other aspects 

of primary decomposition to the behaviour of Ext: 

Theorem l.1 Let M be a module over a regular domain S, and set 
Ir = ann Ext ,(M, S): 

l) I~ has codimension >= e and M/(O :M I~) has no associated primes of codimen- 
sion e. In particular, a prime ideal P c S of codimension e is associated to M iff 
P contains the annihilator of Ext,(M, S). 

2) The equidimensional hull of 0 in M is the kernel of the natural 
map rc : M - ~  Ext~;(Ext~(M, S), S) where c is the codimension of M. 

3) I f  I = annsM, then hul l I  = Ic. In particular, for any ideal I, 
hull I = arms Exffs(S/I, S). 

Remark�9 It would be nice to find some homologicai way of producing ideals that 
are simpler than I and intersect in I. If  M = S/I then I c_ Ir for every e so one might 
at first hope that one could take the annihilators of suitable Ext's as a sort of 
"equidimensional decomposition" of an ideal. This is not the case: one may have 

e ann Ext~s(S/I, S) ~ I. 

as for example in the case S = k[x, y], I = (x 2, xy). It may be interesting to note 
that Eisenbud and Evans have shown that Me ann Ext~(S/I,  S) is contained in I. 

Proof. 1) It is enough to prove the assertions after localizing at a prime of 
codimension e, so we may assume that S, P is regular local of dimension e. Let 
M'  c M be the largest submodule of finite length�9 From the short exact sequence 
0 -~ M '  --* M --* M" ~ 0 we get a long exact sequence ending with 

� 9  -* Ext~(M", S) ~ Ext,(M, S) -~ Ext~(M', S) --* 0 

By the Auslander-Buchsbaum formula (see for example Matsumura 1986, The- 
orem 19.1), 

Ext , (M",  S) = 0, 

SO 

Ext}(M, S) ~ Ext}(M', S ) .  

Because Exts( - ,  S) is a functor, Ie, which is also the annihilator of Ext~(M', S), 
contains the annihilator of M'. In particular, codim le = e. But since M '  has finite 
length and S is regular, we have M' = Ext~(Ext~(M', S), S). This follows immedi- 
ately from the fact that the dual of an S-free resolution of M '  is an S-free resolution 
of Ext~ (M', S). Applying the functoriality argument again, we see that Ie is actually 
equal to the annihilator of M'. Thus (0 :M Ir -- M',  proving the first statement. The 
second statement is a weaker form of the first�9 
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2) and 3) Let c be the codimension of M (and thus of I = ann M). For the proof 
of these parts, consider first the situation after we localize at a prime P of 
codimension c containing the annihilator of M. Since Mp has finite length and ~ is 
natural, the localized map 

zce: Mp -* Ext~,(Ext~,(Mp, Sp), Sp) 

is an isomorphism and I~ is equal to the annihilator of M locally at P. 
Next let N c M be the equidimensional hull of 0, so that cod imN 

( = grade N) > c. Applying the long exact sequence in Exts( - ,  S), we see that the 
natural map 

Exffs(M/N,  S) ~ Ext}(M, S) 

is an isomorphism (see for example Matsumura t986, Theorem 16.6 for the neces- 
sary vanishing theorem). Thus the right hand vertical map in the natural com- 
mutative diagram 

rc : M ~ Exffs(Exffs(M, S), S) 

1 1  
7~' : M / N  ~ Exffs(Exffs(M/N, S), S) 

is an isomorphism. 
To prove 2) it now suffices to prove that the map labelled zc' is a monomor-  

phism. Since the associated primes of M / N  are all of codimension c, it suffices to 
prove this after localizing at a prime P of codimension c. Since we know that 
~ ,  = n p  is an isomorphism, we are done. 

We have already shown that lc and ann M are equal locally at any c- 
codimensional prime. To complete the proof of 3) we must show that Ic has no 
associated primes of lower dimension. Since every associated prime of I~ is con- 
tained in an associated prime of Ext ,(M, S) = Exf fs(M/N,  S), it suffices to show 
that this latter module has no lower dimensional associated primes. 

Let x ~ S be an element outside any of the c-codimensional associated primes of 
M. We must show that x is a nonzerodivisor on Exf fs(M/N,  S). It follows from the 
definition of N that x is a nonzerodivisor on M / N .  From the short exact sequence 

0 ~ M / N  L , M / N  ~ M / ( N  + x M )  --* 0 

we derive the exact sequence 

� 9  ~ Exf fs (M/(N + xM) ,  S) ~ Exf fs (M/n,  S) L~Exffs(M/N, S) ~ . . . .  

But the codimension of M / ( N  + x M )  is c + 1, so the left hand term vanishes and 
we are done�9 [] 

Remark�9 1) By the Auslander-Buchsbaum formula, codim Ext , (M, S) >-j for any 
module M.Thus a prime P as in the first part  of the Theorem must be minimal over 
the annihilator of Ext , (M,  S). 

2) Rather than use the annihilator of Ext , (M,  S) in part  1) of the Theorem, we 
could have used the ideal I 3 which is generated by the rj x rj minors of the j th  
matrix, ~0j say, in a free resolution of M, where rj is the rank of r The fact that this 
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works follows easily from the main result of Buchsbaum and Eisenbud (1973). This 
idea itself is probably not so practical, because the numbers rj are often rather large. 
However, by the "first structure theorem" of Buchsbaum and Eisenbud (1974) one 
could also express this ideal as the ideal of minors of a submatrix of ~oj involving 
just rj rows, divided by its greatest common divisor. This ideal can be computed as 
an annihilator without taking any determinants. 

We may use Theorem 1.1 to find the equidimensional hull of an ideal, or to 
remove the components of dimension less than any given number. We express the 
result in the general case of modules: 

Algorithm 1.2 (Removing components of dimension < e) Given a module M over 
S = k[xl . . . . .  x,] ,  and an integer e (normally taken > d imM)  find a submodule 
Ne consisting of the intersection of the primary components of M of dimension > e. 

Set f :  = dim S, and set N := 0 c M. 

While f > e 
{ 
Compute Ext s (M, S); 
If codim ExtS(M, S) = f ,  then set 

I s := annihilator (ExtS(M, S)); 
N : =  (N:MIs);  

Decrement f ;  
(Optional: set M : =  M/N); 
) 

Return N. 

The values of f in the While clause could in fact be done in any order, and the 
optional step could be performed some times but not others; this will strongly affect 
the efficiency in given cases. In practice (using Macaulay), it seems a good general 
rule to follow the order given, performing the optional step each time: Although 
not making the replacement allows one to use the originally computed resolution 
of M each time, the simplification in the resulting modules seems to repay the cost 
of computing more syzygies. 

Algorithm 1.3 (Equidimensional hull of an ideal) Given I c S = k[xl . . . . .  x.] ,  find 
the ideal hull I consisting of the intersection of the primary components of I of 
maximal dimension. 

c := codim I; 
Return 

ann Ext~s(S/l, S) .  

Of course we may compute the equidimensional hull of the support of any 
module M by replacing S/I by M in the second line above. 

Algorithm 1.4 (Equidimensional hull of 0 in a module) Given a finitely generated 
module M over S -- kExl . . . . .  x,],  find the equidimensional kernel N c M. 

c := codim M; 
Return: N = kernel M ~ Ext , (Ext , (M, S), S), the kernel of the canonical map. 
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In practice the canonical map is computed by forming the comparison map 
between the dual of a free resolution of M and a free resolution of Exffs(S/I, S). An 
alternative would be to construct a polynomial subring T of S such that 
dim T = dim N and over which N is finitely generated (a Noether normalization for 
S/ann N will do) and then take the kernel of the natural map of N into its double 
dual over T. These two are actually extreme cases of a family of methods, one for 
each codimension . . . .  

The following will be useful for purposes of localization: 

Algorithm 1.5 (Associated primes of given codimension) Given a finitely generated 
module M over S = k[xl . . . . .  x,] ,  find an ideal whose associated primes are 
exactly the associated primes of S having codimension e. 

Ie:= ann Ext,(M, S); 
if codim le > e 

Return S; 
else 

Return the equidimensional hull of I~. 

2 The radical of an ideal 

In this section we present two methods for finding the radical of an ideal I in 
a polynomial ring S (the case of an ideal in a factor ring of S reduces immediately to 
this.) Actually we compute a little more: our formulas give the equidimensional 
radical which is the intersection of all the primes of maximal dimension containing 
I. Of course if I is equidimensional to begin with, then this is the same as the radical 
of I. In terms of the equidimensional radical and the ideas of Sect. 1 one can then 
compute for any module M the intersection of various sets of associated ideals of 
M, as outlined at the end of this section. 

Our ideas revolve around the use of Jacobian ideals to replace the derivative in 
the usual formula for the square-free part  of a univariate polynomial. As in the 
univariate case, extra care must be taken in characteristic p. We treat this case not 
for the sake of generality, but because the use of characteristic p is often necessary 
for efficient computation. 

We begin by reviewing the definition of the Jacobian ideals: 
Given any finitely generated k-algebra R (that is, an affine ring over k) there is 

a natural increasing sequence of ideals 

0 ~ J o ( R )  c J l ( R )  ~ . . .  c R 

which may be defined as follows: Choose a presentation 

R = k i n  I . . . . .  X n ] / ( f l  . . . .  , f r )  

or R as a k-algebra, and let vc ( f )  be the Jacobian matrix of the sequence of 
relations f = f l , . . . ,  f~; that is, J ( f )  is the n x r matrix having the partial 
derivative Ofj/Oxi in the ith row and j t h  column. Write J , ( f )  for the ideal of 
(n - a) x (n - a) minors (determinants of (n - a) x (n - a) submatrices) of J ( f ) .  
Let I be the ideal generated by the f ,  and set R = S/I. Reducing J ( f )  modulo I, we 
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get a presentation matrix for the module of k-linear K/ihler differentials ~'~R/k of 
R (Matsumura 1986, p. 192). Thus f a ( . f )  modulo I is the ath Fitting ideal ofg2R/k as 
an R-module, an ideal of R which depends only on the isomorphism class of R, and 
not on the generators f chosen for I or the map from S (see for example the book of 
Kaplansky (1970) for a discussion of Fitting ideals.) We define 

f ~(R) = f ~(f) modulo I ,  

and we set f a ( l )  = f a ( f )  + I, its preimage in S. Here f . ( R ) ,  the ideal of 0 x 0 
minors, is the unit ideal, and we take f . ( R )  to be the unit ideal for a > n. 

The formation of f .(R) commutes with localization and change of base: that is, 
if R' is a localization of R then f2R'/k = R'| SO 

f . ( R ' )  = f . ( R ) R ' ,  

while if k' is any k-algebra and R' = k' | R then f2R,/k, = R' | f2R/k SO again 

f . ( R ' )  = ~ . (R )R '  

(see for example Matsumura t986, exc. 25.4). 
First, by way of notation, for any ideal K of a ring R, we write dim K for 

dim R/K, and if K = R is the unit ideal, we take dim K = - 1. 
Our first method of finding the radical rests on the following result of Scheja 

and Storch (1975, Corollary 4.7) (see also the further references sketched in Eisen- 
bud and Levine 1977, p. 34, and Kunz 1986, Example 3, p. 382): if S is a power 
series ring in c variables over a field k with maximal ideal P, and I is an ideal 
generated by a maximal regular sequence in P, then f o ( l ) ,  which is a principal 
ideal mod I, is dimk S/I times the socle of S/I; that is, 

(dimk S/I)(I" P) = J o ( I )  . 

Suppose now that (dimk S/I)  is a unit in k, so that we may drop it from the formula 
above. By the definition of the socle, 

( I : f o ( I ) )  = P ,  

that is, 

( I : f 0 ( I ) )  = Radical( I ) .  

The following Theorem generalizes this result to any ideal which is generically 
a complete intersection in an affine ring: 

Theorem 2.1 Let R be an equidimensional affine ring of dimension d over a field 
k with no embedded primes. 

I f  the characteristic of k is p ~ O, suppose that R is (perhaps after a transcendental 
extension of the base field) a finitely generated module of rank < p over a polynomial 
ring generated by sufficiently general linear forms. 

I f  R is generically a complete intersection, then 

rad(O) = (O: fe (R) ) .  
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Remarks. 1) If  R is homogeneous ,  the main  situation of interest, then the hypo-  
thesis given in characteristic p > 0 means that  the degree of the corresponding 
projective variety is < p. 

2) If R = k [ x l , . . . ,  Xd+c']/(fl . . . . .  fc) is a complete  intersection, and zl . . . . .  
Zd are linear forms in the xl which are sufficiently general so that  R is a finite module  
over  k[z l  . . . . .  Zd] (of rank < cha rk  if the characteristic is positive), then the 
a rgument  below proves the following more  precise result: 

If  
D :=  det ~(zl . . . . .  Zd, f l  . . . .  fc)/O(X~ . . . . .  Xd§ 

then 

r a d ( f l  . . . . .  f~) = ((f l  . . . . .  f c ) :D) .  

One  might  call the element D thus constructed a generic socle generator for 
( f l  . . . . .  f~). There is at least one other  expression for a generic socle generator: In 
the case of a complete intersection J = ( f l  . . . . .  fn) of height n in k [ [Xl . . . .  , xn] ], 
if we write 

f i = ~ 2 a l j x 2  f o r i =  l . . . . .  n ,  

then det(aij) is a socle generator  (and thus a generic socle generator.)  This is 
independent  of characteristic, and in fact a suitable version works  in any regular 
local ring (see for example  Nor thco t t  1963). But we do not  know how to extend this 
formula  beyond  the ar t inian case. It would be interesting to know other formulas 
for generic socle generators.  

Proof. By hypothesis, every associated prime of R is minimal. Fo r  any ideal J we 
have tad(0) = (0 : J )  iff for every minimal  pr ime P of R, 

J p # O ,  

and 

JpPp = 0 . 

Thus to prove  the theorem it suffices to show that  

rad(0) -- (0: J )  

for any ideal J which is contained in Jd (R)  and which contains a "sufficiently 
general" linear combina t ion  of the generators  of Jd(R) .  Making  a t ranscendental  
base field extension if necessary, we can even assume that  k is infinite, and then it is 
enough for J to contain a general scalar linear combinat ion  of the generators  of 
Jd(n) .  

Write R = k [ x l  . . . . .  xn]/I .  By Noether  normalizat ion,  R is a finite module  
over  the polynomial  ring A:=  k[z t  . . . . .  Zd] for any sufficiently general linear 
forms zi in the xj.  F r o m  the exact sequence of modules  

R | ~'~A/k "~ OR/k -~  ~'~R/A ~ 0 

we see that  J := FO(OR/A), the Oth Fitting ideal of •R/A, is contained in j d ( R )  and 
contains a general linear combina t ion  of the generators  of Jd(R). Thus it suffices to 
show that  

( , )  rad(O) = (0: Fo (~g/a)) �9 
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Since R is integral over A, the primes of R contracting to 0 in A are precisely the 
minimal primes. Thus every nonzero element of A is a nonzerodivisor  on R and on 
R/rad(0), and, by Lemma 2.4 below, o n  R/(O:Fo(~-2R/A) ). Since the definition of 
FO(OR/A) commutes with localization, it suffices to prove ( , )  after inverting all 
nonzero elements of  A, that is, after tensoring with the quotient field K of A. 
Writing R '  = K |  R we have K |  OR/a = f2R,/K and thus 

K |  Fo(f2R/a) = F o ( K  |  ff2R/a) 

= Fo(QR,/K) �9 

It now suffices to show thal in R', 

rad(0) = (0: F0(OR,/K)) . 

As this is a local statement, we may  (after inverting one element) assume R'  is 
local, with maximal ideal P, say. Of course the old FO(QR'/K) localizes to the 0th 
Fitting ideal of the new QR'm" 

It follows from our  hypothesis that  dimK R'  < char K if char K is positive, so 
K ~ R' IP is a separable field extension. By the Cohen Structure Theorem (see for 
example Matsumura  1986, Theorem 28.3) we may find a field of representatives 
K '  ~ R'  which contains K and maps onto R'/P.  From the exact sequence 

R' | Y2r'/K ~ OR'/K ~ ~r~R'/K' "-~ 0 

and the fact that OK,/K = 0 it follows that 

Fo(OR'lr) = FO(f2R,/~,) , 

SO it will be enough to prove that in R', 

rad(0) = (0 :Fo(f2R,/K,)) . 

We may now write R ' =  K ' [ [ y a  . . . .  , y , , ] ] /d '  for suitable generators yr of 
P and some ideal d' .  It follows by Avramov (1977, Proposi t ion 3.8) that J '  is 
a complete intersection, and thus Fo(Y2R,/K,) is a principal ideal, generated by the 
Jacobian determinant  D of the m generators of d with respect to the y~. 

By Scheja and Storch (1975, 1,2 and 4.7) 

(D) = ( d i m r ,  R ' ) (O:(y~ , .  . . ,  y, ,))  in R ' .  

Under  our  assumption direr, R'  is a unit, so 

whence 

(D) -- (O:(y~ . . . . .  y~)) in R ' ,  

(O:D) = (Yl . . . . .  Ym) = rad(O) 

as required. [] 

Algori thm 2.2 (Radical  o f  a generically complete intersection) Given an unmixed 
ideal J = (J] . . . . .  fro) ~ k [ x l , . . . ,  x , ]  of pure codimension c which is known to 
be generically a complete intersection: 

Set 
J , _ c : =  the ideal of  c x c minors of the Jacobian matrix 
O(zl . . . . .  zd, f l  . . . .  , fm)/O(x~ . . . . .  x ,) ,  where z l , . . . ,  za are general linear 

forms. 
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Return 
rad J : =  ( J : J , - c )  �9 

Theorem 2.1 can be applied to find the radical of an ideal which is not 
generically a complete intersection because of the following result. 

Proposition 2.3 l f  J ~ 1 ~ S = k[xl  . . . . .  x ,]  are ideals of the same dimension, and 
J is equidimensional with radical J', then the equidimensional hull of the radical of I is 
given by the formula 

equidimensional radical I = ( J' : ( J'  : I ) ) . 

The proposition is proved by twice applying the last statement of the following 
easy but extremely useful lemma: 

Lemma 2.4. I f  J is an ideal in a noetherian ring R and M is a finitely generated 
R-module, then 

a) (0:MJ ~) is the intersection of the primary components of 0 in M whose 
associated primes do not contain J. 

b) Min M c~ Supp J M  c Ass(0:MJ) c A s s M ~  S u p p J M ,  
where Min M is the set of minimal associated primes of M. Further, given a primary 
decomposition of O in M, there is a primary decomposition of (O:M J) for which each 
primary component contains the corresponding primary component of O. 

c) In particular, if I is a radical ideal, then ( I : J )  is radical and 

( I : J )  = ~ P j ,  

where Pj ranges over all primes containing I but not containing J. 

Proof of  2.4. Let 0 = OQJ be a primary decomposition of 0 in M, with Qj 
a P j-primary submodule of M. It is easy to see that 

(0:~J)  = f)(0~:MJ),  

and 

(0:Mj ~) = N(0~:MJ~).  

It follows at once from the definitions that (Qi:MJ) and (Qj:MJ ~) are each 
Pi-primary submodules if they are proper. Thus in each case, we get a primary 
decomposition by throwing out unnecessary components. 

To prove part a), note that 

while 

( Q j : J ) = ( Q j : J ~ ) = Q j  i f J $ P j  

(Qj:jo~) = R i f J  c P~. 

To prove part b), suppose first that P~ ~ Min M c~ Supp JM. We must have 
P ~ e S u p p J M / Q j ,  since JMej =(JM/Qj)pj .  Thus (Qj :MJ)+  M so it is a P f  
primary submodule. By the minimality of P j, (Qj:~tJ) cannot be left out of the 
primary decomposition of (0 :M J). Thus P~ is associated to (0 :M J), proving the first 
inequality. 
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To prove the second inequality, note first that Ass(0 :M J) c Ass M is obvious, 
and it suffices to show Ass(0 :M J) C Supp JM. Suppose that P~ is not in the support 
of JM. It follows that Pj is not in the support of JM/Qj,  so that (Q~ :M JM) is not 
proper. In this case (Qj:M JM) may certainly be deleted from the decomposition, 
and Pj is not associated to (0 :MJM). This completes the proof of b). Part c) follows 
at once from part b). [] 

Algorithm 2.5 (Reduction of equidimensional radical to complete intersection 
case) Given ideals J c I ~ k[xl . . . . .  x ,] ,  where J is known to be a complete 
intersection and I and J both have the same codimension, compute the equidimen- 
sional hull of the radical of I: 

Compute 
J '  := rad J 

by Algorithm 2.2. 
Return 

equidimensional radical I := ( J ' : ( J ' :  I)). 

To go further, we use the relation of Fitting ideals to smoothness. This is 
relevant to radicals because of the observation that a variety is generically reduced 
iff it is generically nonsingular; more precisely, Serre observed that an affine ring is 
reduced iff an ideal defining the singular locus (under favorable circumstances this 
may be taken to be a certain Jacobian ideal) contains a nonzerodivisor. 

Suppose again that R is an affine ring over k, and let P be a prime of R. By the 
general properties of Fitting ideals (see for example Eisenbud 1989). 

J a - l ( R ) v  = 0 while Ja(R) 4: P 

iff 

(f2R/k)p is a free Re-module of rank d .  

On the other hand, the local freeness of t2R/k characterizes the smoothness of R over 
k in most of the cases in which we are interested. If k is perfect, then the well-known 
Jacobian criterion (see for example Hartshorne 1977, Theorem II.8.8) says that R is 
smooth generically along P iff  (f2R/k) v is free of rank equal to the dimension of R along 
P (here the dimension of R along P means the maximal dimension of a minimal 
prime contained in P). We need a version which operates without the condition. In 
characteristic 0 the appropriate result was proved by Grothendieck, but in positive 
characteristic it appears to be new: 

Lemma 2.6 I f  R is an affine ring over k, P c R is a prime and (~2R/k)p is a free 
Re -- module of rank d, then R is smooth over k generically along P, necessarily of 
dimension d, if one of the following conditions holds: 

a) (Grothendieck 1967: EGA, Chap. 4, 17.15.7) char k = 0. 
b) k is perpect of characteristic p > 0, and the nilpotent radical rad(O) of R is 

generated by elements whose index of nilpotency is < p. 

Proof of b). Replacing R by R [g -1 ]  for a suitable element g # P we may assume 
that ~R/k is free of rank d. We will show under this hypothesis that R is smooth. 
By the Jacobian criterion, we will be done as soon as we have shown that R is of 
dimension d. 
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Let Q be a minimal prime of R. Inverting another element if necessary, we may 
assume that Q is the only associated prime of R; this does not change the dimension 
of R/Q because R is affine. Set S:= R/Q. We have 

as/k = aR/~/(d(Q) + Qf2R/k). 

L e t f e  Q be an element whose index of nilpotence is n < p. Differentiating f "  = 0 
we get n f " -  a df = 0; since n < p, we get f " -  1 df = 0 in f2g/k. Since Og/k is a free 
R-module, and Q is the only associated prime, we must have dfe  Qf2R/~. Under our 
hypotheses, Q will be generated by elements whose index of nilpotence is < p, so 
we have d(Q) c Qg2R/k. It follows that 

~ S / k  = ~-~R/k/Q~'~R/k , 

and is thus free of rank d over S. As S is a domain, its dimension is the transcen- 
dence degree of its quotient field K over k. Since k is perfect, this transcendence 
degree is equal to dimK ~2K/k. AS t?R/k = QR/k | K, the dimension is d as claim- 
ed. [] 

Our second method for computation of the radical is based on: 

Theorem 2.7. Let S be a polynomial ring over a perfect field k, and let I c S be an 
ideal of dimension d. I f  the characteristic ofk  is not zero, suppose that the nil radical of 
S/I is generated by elements whose index of nitpotency is < the characteristic ofk. I f  
for some integer a > d we have 

then 

dim J a + l ( I )  < d 

I1 := (I: Jo(I)) 

has the same equidimensional radical as I. Further, if a = d then 11 is radical in 
dimension d; that is, the primary components of Ia having dimension d are prime. 

Remark. The condition on index of nilpotency is really required in characteristic p; 
for example, R = k[x]/ (x  p) has f~R/k = R, and thus ~r p) = 0 while or = R, 
though the dimension of R is 0. 

The theorem DOES N O T  imply that under its hypothesis 

(t: J~(1)~):= ( . . .  ((I: J~162176  .) 

has the same equidimensional radical as I, and indeed this need not hold. For 
example, consider the case S = k[x, y] ~ I = (x, y)2, so that d = O. Taking a = 1, 
we have f 2 ( I )  = R, but J l ( I )  = (x, y), so that 

( l : j a ( i )oo )  = R .  

Instead, the theorem DOES imply that, with a as in the hypothesis of the 
Theorem, if we inductively define 

KI  = I ,  

K.+~ = ( K n : J a ( K , ) ) ,  
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then all of the K, have the same equidimensional radical. In the example above for 
instance, K 2 = (x, y), J I ( K 2 )  = R, so that 

(X, y) ---- K 2 = Ks . . . .  , 

and this is indeed the radical of I ;  that is, 

( . . .  ((I : J . ( I ) ) :  ~r : J . ( I ) ) ) ) :  . . . ) 

has the same equidimensional radical as I. 
The following is a formal consequence of Theorem 2.7 (or one can check that 

the same proof works): 

Corollary 2.8 Theorem 2.7 continues to hold if the ideals J a ( l )  are replaced by any 
other ideals ~'a(I) such that 

Ja ( I )  ~ J ' a ( I )  c radical j ~ ( I ) .  [] 

An interesting candidate for j '~(I)  may be provided as follows: If f =  (fl . . . . .  
f0) is a set of generators for I, and J ( f ) : S  g -~ S" the corresponding matrix, then it 
is not hard to show (see for example Eisenbud and Buchsbaum 1977) that 

j a ( f )  ~ annihilator A "+ 1 coker ~ ( f )  c radical J a ( f )  . 

Thus the ideals J ' a ( l )  = I + annihilator( A a+l coker J ( f ) )  may be used in Corol- 
lary 2.3. The potential advantage of this is that the annihilator of a module can be 
computed from a presentation matrix using standard basis techniques without 
taking any determinants; the presentation matrix for A ~+ 1 coker J ( f )  has entries 
that are linear forms in the entries of the matrix J ( f ) ,  and is rather easy to write 
down. 

Proof  o f  Theorem2.7.  Suppose that d i m ~ a + l ( I ) <  d. To check that I1 has the 
same equidimensional radical as I, it is enough to check that for each prime P = I 
of dimension d we have 

( I :ga ( I ) )  c P ,  

or equivalently that a.~a(I)p ~ Ie. In the contrary case, taking R = S/I, Lemma 2.6 
yields dim R/P  = a + 1 > d, contradicting our hypothesis. This completes the 
proof of the first statement of the Theorem. 

We must now show that if a = d and I~ = I, then I is radical in dimension d. 
Equivalently, if U is the open set of Spec S / I  obtained by removing components of 
dimension < d, we must show that U is reduced. 

The ideal Jd(I) defines the singular locus of U. Since 

11 = ( l : J a ( I ) )  = I ,  

J a ( I )  contains a nonzerodivisor modulo I. Thus for any prime 

Q e Sing U,  

we have 

depth(S/I)Q > 1. 

It follows that U satisfies Serre's conditions Ro and $1. By Serre's Criterion 
(Matsumura 1970, p. 125) U is reduced as required. [] 
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Here is the algorithm for finding the radical of an equidimensional ideal 
corresponding to Theorem 2.7: 

Algorithm 2.9 (Equidimensional Radical) Given an equidimensional ideal 
I c S = k[Xl . . . . .  x,],  find the equidimensional radical U of I, equal to the 
intersection of all primes containing I whose dimension is the same as the dimen- 
sion of I. 

a : = n - -  1. 

d:= d im/  

While a > d 
{ 

While dim j C a ( l )  = d 
1: = 

decrement a; 

I :=  (I : ya(I)); 

Return I. 

Here the order of the steps is crucial! 

In terms of the algorithms above we can now compute the following funda- 
mental invariants of any module: 

Algorithm 2.10 (Find the intersection of the primes associated to M havin9 dimension 
e) 

I~ := ann Ext ,(m, S). 
If codim Ir = e, 

Return the radical of the equidimensional hull of le; 
Else 

Return S. 

Alternately, with J~ as in Algorithm 1.2, the radical of the ideal (Je :J~+ 1) is by 
Lemma 2.4 the intersection of the primes of dimension d which are associated to I. 

Algorithm 2.11 (Find the intersection of the minimal primes of M havin9 dimen- 
sion e) 

Compute the ideals J~ and J~+ 1 using Algorithm 1.2. 
Return (rad Je: J~+ 1). 

This gives the correct answer by Lemma 2.4. 

Algorithm 2.12 (Find the intersection of the embedded primes of M having dimen- 
sion e) 

Let K~ be the ideal output by Algorithm 2.10; 
Let K2 be the ideal output by Algorithm 2.11; 
Return (K1 : Kz) 

Of course the support of M, that is the radical of I := ann M, which is the 
intersection of all the primes containing I, may then be obtained by intersecting the 
ideals found in A) (or for that matter B) for various dimensions. 
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3 Localization 

In this section we show how, given an affine ring S, an ideal J = S, and a finitely 
generated S-module and submodule A c B, to compute the localization AEj j de- 
fined by 

A~s] = {b ~ B [ d im(J  + (A :b)) < dim J} , 

where we have written (A : b) for the annihilator of b in B/A. If J is a prime ideal, we 
can even write this as A~sj = {b ~ B I(A:b)egJ}. Note that this definition depends 
on B, although B does not appear in the notation. 

In the case where J is a prime, A[s] is the preimage of the usual localization 
As ~ Bs under the canonical map B ~ Bs. The same goes for arbitrary J if we 
define Bj to be the semilocalization of B at the equidimensional radical of J. 

Of course the localization at J is the same as the localization at the equidimen- 
sional radical of J. We have stated the definition in the case where J need not be 
prime, or even radical, for practical reasons: one often has an ideal J of which one 
knows only that it defines a locus at which one would like to localize. Our  
construction will work directly with a given ideal J, without the need to compute 
its equidimensional radical. 

The leading special case of the localization problem is the case of an ideal I in S. 
We will handle this case separately, and reduce the case of arbitrary modules to it 
by using Algorithms 2.10-2.12. 

It is of course easy to test whether a given element is in Also: 

Algorithm 3.1 (Test for membership in A[jl) Given I, J ideals in S = k[xl  . . . . .  x,],  
and an element b test whether b ~I[s]. 

c := codim J; 
c' := codim J + (I : b); 
if c < c' then f e  I[sl; else not. 

Finding such elements is much harder. Our technique is based on the following, 
which expresses the localization in terms of equidimensional hulls: 

Proposition 3.2 With notation as above, 

A[s] = (~ hull(A + JmB).  
m = l  

Proof. Factoring out A if necessary, we may assume that A = 0; this will simplify 
the notation. Since the rad J acts nilpotently on B/JmB, the primes of dimension 
equal to the dimension of J in the primary decomposition of JmB are all among the 
primes of that dimension containing J; thus (J"B)[s] --- hull J "B,  so 

O[s] c (~ h u l l J ' B .  
m = l  

To prove the other inequality we must show that any element in ( ~ =  1 hull JmB is 
mapped to 0 in the (semi-) localization Bj of B at the set of primes containing J and 
having the same dimension as J. As J is contained in the Jacobson radical of Sj, 
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and Bs is a finitely generated S j-module, the Krull Intersection Theorem (see for 
example Matsumura 1986, Theorem 8.10) gives 

0 = ( ' ] m J m B j  , 

as required. [] 

The ungraded case of localization is easily reduced to the graded one by 
homogenizing, and the case where S is a factor ring of k [ x l  . . . . .  x , ]  is easily 
reduced to the case S = k [ x l  . . . . .  Xn] SO we will henceforward assume that J is 
a homogeneous ideal o f  S = k [ x l  . . . .  , x ,] ,  and that all modules and elements 
discussed are homogeneous. 

We will now take up the case where B is the ring S and A is an ideal, which we 
will rename I. By way of notation, we write deg I for the degree of the projective 
variety in F"-1 corresponding to I. In general, for any local ring R, we will write 
e(R) for the multiplicity of R, so that deg l  = e(S/I){ . . . . . . . . .  ). 

To make computational  use of Proposition 3.2 we need first to be able to say 
that if an element b s S is in the equidimensional part of some I + dm, then under 
some extra hypothesis b is actually in Its ]. It turns out in our homogeneous setting 
that it is enough to assume that the degree of b is not too big compared to m: 

Theorem 3.3. Suppose I is an equidimensional radical ideal. I f  

b ~ h u l l ( / +  din) 

and b has degree < m/(degI) ,  then 

b ~ I [ j ]  . 

I f  d is prime, then it is enough to take the degree of  b 

< m e((S/I)s) / (deg I ) .  

Remarks. 1) It follows from the theorem that we could use any ideal Jm c jm 
whose radical is J in place of J ' .  The ideal generated by the mth powers of a given 
set of generators of J is often a very convenient choice for computation. 

2) Nagata  (1962 p. 143) and Zariski (see Hironaka 1964, Theorem 1) provided 
Theorem 3.3 in the case where S / I  is replaced by a regular local ring. The case of 
general domains is studied by Hochster (1971). 

3) For  an example where the given bound on the degree of b is sharp, consider 
1 = ( x a - l y  - z a) ~ k[x ,  y, z], an ideal of degree d, and let J = ( y, z). It is easy to 
see that 1 c J and that e ( (S / I ) s )=  1 (so the two given bounds are the same). 
Further, 

y e  hu l l ( / +  j a )  

since x d- 1 annihilates y modulo I + jd. Thus 

y" e h u l l ( / +  Je") 

for every n. 
4) Despite examples as in 3), the primes for which the given bound is sharp 

must be rather rare. It would be quite interesting to have a method for computing, 
given I and J, a better ratio than e((S/I )s) / (degI) .  We do not know of any finite 
computation of the minimal number r such that if 

b e hu l l ( / +  jm)  
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and b has degree < re~r, then 

b ~ I~sl �9 

Proof  Replacing J by a prime containing it and having the same dimension, we 
may assume that J is prime. Replacing S by the homogeneous affine ring 
R := S / I  m,  we may assume I m = 0. We will regard J as a prime of R. The ideal 

(hu l l ( /+  J"))/I[s]  c R 

is then nothing but the mth symbolic power j~m} of J (that is, the J-primary 
component of J") .  Let 991 = (xl . . . . .  x,) be the maximal ideal of R. The statement 
of the theorem will follow if we show that the nonzero homogeneous elements of 
j~m) have degree > me(R j ) / e (R~) .  

If dim J = dim R, then under our hypotheses J would be 0 and the result 
obvious, so writing P1 . . . . .  P, for the minimal primes, we may assume that J is not 
in any P~. To prove that J{"}c~lJU, it then suffices to show that 
J~") c 9)l S w P1 u . . .  w Pd equivalently, it is enough to show that each homo- 
geneous nonzerodivisor b ~ J~") has degree > me(Rs) /e (R~) .  

We will do this by computing multiplicities. If b has degree d, then since R is 
graded and b is a nonzerodivisor we have 

de(R~)  = e(R~,/(b)) > e(Rj/(b)) ,  

the first equality by Bezout's Theorem (see for example Hartshorne 1977, The- 
orem 1.7.7). Note that we really need homogeneity here; the inequality that holds in 
the inhomogeneous case goes the wrong way!) and the second by the semicontinu- 
ity of multiplicity (Nagata 1962, 40.1). 

On the other hand, by Lech's formula (see for example Matsumura 1986, 
Theorem 14.12), if dimRs = u and (Yl . . . . .  Y,-x) is a minimal reduction of the 
maximal ideal Js  ~ Rs/(b), then 

e(Rj / (b))  lim {length Rj/ (b ,  y~, i . . . . .  y , , - x ) } / i " - '  
i ~ o o  

which by (Matsumura 1986, Theorem 14.9) is 

=> e (Rs )mi" - l  / i  "-1 = e(Rs)m , 

so d > m e(Rs)/e(R~o~) as claimed. [] 

Next, we would like a bound on the degrees of generators of l[s] in terms of 
computable information about I. In general the degrees involved will be too large 
for practical use. However, if I is radical and equidimensional of degree d then we 
will show that Its I is generated "set theoretically" in degrees < d, and, and using 
our ability to compute radicals and equidimensional parts by the techniques of the 
last sections, we can make do with this information. 

First we show how to reduce to the case of equidimensional radical ideals. Note 
that the ideals l'e which are used can be computed in our case by Algorithm 2.10: 

Proposition 3.4 Let J c S be an ideal in a Noetherian ring, let A ~ B be S-modules, 
and let I'e be the intersection of  all the associated primes of  B / A having codimension 
exactly e. I f  we set 

K : =  (-](I'e:(I'e).l) 
e 
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then 

A Ej I = ( A  :K 0o). 

Proof. By Lemma 2.4 part b) the ideal Ke := (I~: (I'e)j) is the intersection of those 
associated primes of B/A having codimension e and not contained in a prime 
containing J and having the same dimension as J. Thus K -- ~ K e  is an ideal 
contained in all such associated primes of B/A, but not contained in any associated 
prime which is contained in a prime containing J and having the same dimension 
as J. By part c) of Lemma 2.4, 

( A : K ~ I  

is the result of removing all the corresponding primary components from A, and is 
thus equal to Atj j. [] 

Next we give the degree bound necessary to handle the case of an equidimen- 
sional radical homogeneous ideal. 

Proposition 3.5 I f  k is a perfect field and I c k[xl  . . . .  , x,] is a homogeneous 
equidimensional radical ideal then I is generated up to radical by forms of degree 
<= deg I. 

Remarks. This is in general best possible: if I is the ideal of the union X of d skew 
lines in IP", all meeting a common line L C X ,  then L is in every ( d -  1)-ic 
hypersurface containing X. HOwever, if there are fewer than d = deg I components 
then a better result should hold. For example, it is a plausible conjecture, known for 
dim I = 2, that if I is a prime, then I is generated (as an ideal) by forms of 
degree < deg I - codim I + 1. This is sharp, even up to radical, as one sees from 
the example of a rational curve of degree d lying on a rational normal scroll of 
type 1, n - 2 in IP" and intersecting the directrix of the scroll d - 1 times. This curve 
has degree n + d - 2 and cannot be cut out set theoretically by (d - 1)-ics for the 
same reason as above. 

The result has been known for a long time; it is used (and proved) for example in 
Mumford (1969, Theorem 1); because that publication is somewhat hard to obtain, 
we give the proof: 

Proof. Extending k if necessary, we may assume k algebraically closed; 1 remains 
equidimensional in such an extension and, since k is perfect, I remains radical. Let 
X c IP"- 1 be the corresponding variety. We must show that if y ~ IP"- 1 _ X, then 
there is a hypersurface of degree d := deg X containing X but not y. 

I f X  is a hypersurface of degree d, then the result is obvious. In the contrary case 
where X has codimension > 1, write m for the dimension of X. Let join (X, y) be the 
union of all the lines connecting y to points of X. Since dim join(X, y) = m + 1, it is 
a proper subvariety of IP"- 1. Let z be a point of IP"- 1 _ join(X, y), and let 

~ z : ~  n - 1  - -  {Z} ....~ ~ n - 2  

be the projection map. By our choice of z, 

~ z ( y ) ~ z ( X )  �9 

Further, degnz(X)< degX, so by induction on n there is a hypersurface H of 
degreee d in IP "-2 containing ~z(X) but not nz(y). The cone over H with vertex z is 
a hypersurface in ~ " -  1 with the desired property. [] 
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We can now give our algorithms for localization; their correctness follows from 
the results of this section: 

Algorithm 3.6 (localization of  a homogeneous equidimensional radical ideal) Given 
homogeneous ideals I, J ~ k [x l  . . . .  x,] ,  with 1 assumed radical and equidimen- 
sional, compute Itj 1. 

d:= d e g l  
11 := h u l l ( / +  dd(d+l)) 
12 := the ideal generated by the generators of I~ with degree __< d 
I3 := hull I2 
Return rad I3. 

Remarks. 1) In practice, a much lower power of d than dd(d+~) will usually be 
sufficient. Thus one could begin with a lower power, say e, of order about d say, and 
choose some element b of degree d in 

11 := h u l l ( / +  j e ) .  

Using Algorithm 3.1 one would check to see whether b ~ Itj]. If so, adjoin it to I, 
replace (I, b) by its equidimensional radical, and start the whole process again. If 
not, one would proceed to the next power, Je+ 1, and so forth. The advantage of this 
is that the degree of the new ideal (I, b) will be < deg I. Unfortunately, we do not 
have an efficient way to tell when I = 1[sl without going to high degree, so this 
method does nothing useful, for example, in the case where I happens to be equal to 
l t j  I at the start. 

2) To compute hull (I + jd(d+ i)) one could also compute K := hull(I + J~+~), 
and then 

h u l l ( / +  j d ( d + l ) )  = h u l l / +  K d . 

One could further divide the work into more smaller steps. One might also use 
powers of the given generators of J instead of the powers of J. If J is known to be 
prime, then by the last statement of Theorem 3.3 we can use a smaller power than 
d(d + 1), as well. It would be useful to make an experimental comparison of these 
options. 

3) At least when J is prime one can replace d(d + 1) in the algorithm above by 
d(d - 1 ) / e ( k [ x l , . . . ,  x , ] s / I j ) .  The reason for the change from d(d + 1) to d(d - 1) 
is that if I 4= Its ] then deglts ] < d - 1. See Theorem 3.3 for the division by the 
multiplicity e(k[xl  . . . . .  x , ] s / I  s). 

Algorithm 3.7 (localization of  a submodule, graded case) Given a homogeneous 
ideal J c S:= k[Xl . . . .  , x , ] ,  and finitely generated graded S-modules A c B, 
compute Atj ]. 

Using Algorithm 2.10 to compute for each e = c o d i m B / A  . . . . .  n the ideal 
I'e which is the intersection of the associated primes of B/A having codimension e; 
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Using Algorithm 3.6, compute the ideals 
I~ := (l'e)isl 

and the ideals 
I~" := (I'e : I~); 

Set 
K : =  (~eI; ' ;  

Return 
Ats ] := (A :M K ~). 

Remark. In some cases it might be preferable to remove the unwanted components 
dimension by dimension. Letting I;" be as above, we would then do: 

c := codim A; 
A,+ 1 := A; 
For e from n down to c 

Ae:= (Ae+l:I~'~176 
Return Ac. 

Algorithm 3.8 (localization of an arbitrary submodule) Given an ideal 
J c S:= k[xl . . . . .  x .] ,  and finitely generated S-modules A c B, compute Am. 

Homogenize 
J, A, and B 

with respect to a new variable Xo to get 
J, A, B; 

Remove all extraneous components by the replacements 
Y:= (~:x; ~ 
A:= (d "x;~); 
/T:= (B: xb~); 

Compute 
At j]; 

Set Xo to 1 in the generators of AtY] to get Atj]. 

4 Primary decomposition 

It is of interest to know that the techniques introduced above, together with 
a technique for finding a maximal ideal containing a given ideal, suffice for finding 
primary decompositions. Since our method is not as yet very practical, we only 
sketch how this can be done. This discussion owes some ideas to conversations 
with Bayer and Stillman. 

We may divide the process of finding a primary decomposition for an ideal I in 
a ring S into two parts: First, find the individual associated primes; second, given an 
associated prime, find a primary component for that associated prime. 

The second part of this problem is rather easy, given the techniques developed 
above: A primary component for I with associated prime P may be taken as any 
ideal of the form 

Q,, := equidimensional part (I + P")  

for sufficiently large m (of course this is uniquely defined only when P is a minimal 
prime of / .  Note that Qm is in any case a P-primary ideal. Bounds for the m required 
can probably be given directly, but for practical computation it is almost certainly 



Direct methods for primary decomposition 233 

better to guess and then check that m is in fact large enough, by the following 
criterion: 

Let Q be a P-primary ideal containing I. Q is a primary component for I iff the 
natural map 

( l tel:P~ ~ S / Q  

is a monomorphism. 
Thus it only remains to find the associated primes of I (and this is often the most 

interesting part of the information of primary decomposition anyway.) We may of 
course assume that S is a polynomial ring. Because we can already find the 
intersection of all the associated primes of a given dimension (computation A, at 
the beginning of Sect. 2) it is enough to find the individual components of an 
equidimensional radical ideal 1. Using a reduction as in Algorithm 3.8, we may 
assume that I is a homogeneous ideal, as well. Of course finding the prime 
components of I is equivalent to finding the minimal primes of the ring R := S/I .  

We begin by computing the integral closure R' of R := S / I , u s i n g  for example 
the method of Vasconcelos (1991) (see also Brennan and Vasconcelos 1992). As 
presented, this is not a "direct" method in our sense; it uses a Noether normal- 
ization T:= k [ z l , . . . ,  Zd] ~ R to compute the "S2-ification" 

R" := HomT(HOmT(R, T), T). 

However, it follows from duality theory that there is also a direct method for 
finding this: it is given by 

R" = Ext,(Ext,(R, S)S) ,  

where c is the codimension of I. 
The minimal primes of R are the intersections of R with the minimal primes of 

R', so it suffices to find the minimal primes of a reduced integrally closed graded 
ring. 

Any integrally closed ring is a product of integral domains (see Matsumura 
(1986, p. 64). Thus the minimal primes of R' are in one to one correspondence with 
the idempotents of R'. From the equation e 2 = e we see that any idempotent must 
have degree 0; thus the idempotents lie in the finite dimensional algebra A := Rb. 
The indecomposable idempotents generate the minimal ideals of A. These can be 
found directly, without computing the idempotents, as the intersections of all but 
one of the finitely may maximal ideals of A. Given a minimal ideal JV of A, we may 
recover the corresponding prime of R' by choosing any nonzero element 9 ~ ./d and 
computing 

P :=  (0:g ~ in R'. 

To complete the methods needed for primary decomposition, it remains to give 
a method for finding the maximal ideals of a finite dimensional k-algebra 
A = k [ x l  . . . . .  x r ] / I  - which is of course a special case of the original primary 
decomposition problem. A sophisticated recent approach to this is given by Lazard 
(1992). Here we mention a probabilistic method: 

Since we can compute radicals, we may assume that A is reduced (so it is 
a product of fields). 

Choose a random element x e A, x~.k,  and test whether it is a zero-divisor (for 
example by computing a Gr6bner basis for (I, x)). ]f x is a zerodivisor, we factor it 
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out  and  we are done  by induct ion  on the d imension  of A. Assuming tha t  x is 
a nonzerodivisor ,  compute  d im,  A by finding a G r 6 b n e r  basis for the ideal defining 
A. Let  m = m(x) be the smallest  integer such that  the powers  

1 ,  X ,  . . . , X m 

are l inear ly dependent .  If re(x) = dimk A, the dependence  re la t ion may  be wri t ten 
p(x) = 0, where p(t) is a po lynomia l  in one var iable  t, so that  A = k[t]/(p). If 
p factors as a po lynomia l  over  k, say p = qxq2, then ql(x)qE(x) = 0. Thus qx(x) is 
a zerodivisor ,  and  we are done  as before. If  on the other  hand  p is i rreducible,  then 
A is a field and 0 is a maximal  ideal. 

Thus  we have succeeded, inductively,  as long as x is a zerodivisor  or  
m(x) = dim k A. In the con t r a ry  case, we rechoose x and try again. To es t imate  the 
chance of success on a given try in one case of pract ical  interest,  suppose  that  k is 
a finite field of character is t ic  p, and  that  A has s max imal  ideals, with residue class 
fields of orders  pe,. The p robab i l i t y  that  x is a zerodiv isor  is then 

1 -- ~ (pe, 1)/pe, 
i = 1  

while the p robab i l i t y  that  re(x) = dimk A is 

f i  (pC, _:_ pe,-,)/pe, = (p _ 1)S/pS. 
i = 1  

If  s is small  c o m p a r e d  to p, the second of these near  1; if s is large c o m p a r e d  to p, 
and  the e~ are not  too  big, then the first near  1. 
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