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INTRODUCTION 

A graph curve C is a connected, projective algebraic curve which is a 
union of copies of the projective line, each meeting exactly three others, 
transversely at distinct points; for example, 

is the only graph curve that can be embedded in the projective plane. Since 
the automorphism group of P’ is 3-transitive, the points of attachment do 
not really matter, and the isomorphism class of a graph curve is specified 
in terms of the purely combinatorial data of how the lines meet. It is con- 
venient to express this in terms of the dual graph G which has a vertex for 
each component of C and an edge for each node of C, so that for example 
the dual graph of the curve above is the complete graph on four vertices: 

w. 
Of course the dual graph of a graph curve is trivalent-that is, every ver- 

tex lies on exactly three edges. We will write C= C(G) for the graph curve 
corresponding to the trivalent graph G. Every invariant of C is, of course, 
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a combinatorial invariant of the graph G-for example, the genus of C is 
one more than half the number of vertices of the graph, and the space of 
global sections of the canonical sheaf of C is the first cohomology group of 
the graph. Indeed, the set of images of nodes of the graph curve, under the 
map induced by the canonical series on the curve, has been studied by 
graph theorists as the “canonical realization of the bond matroid of the 
graph” (Tutte, [ 1, Theorem 7.47, p. 3593). 

Graph curves are interesting because they are the only stable curves with 
smooth components that admit no degenerations; they are in some sense 
ultimate degenerations of smooth curves. There has been intense develop- 
ment over the last 15 years in our knowledge of the properties of “general” 
smooth curves of genus g, and the main tools of that development have 
been ever more relined uses of degenerations of smooth curves to singular 
curves, mostly to stable singular curves; in other words uses of the 
Deligne-Mumford compactilication of the moduli space of smooth curves. 
Roughly speaking, it has seemed that the more “special” a curve could be 
chosen and studied, the more different loci in the moduli space it would 
avoid, and thus the more it would behave like a “general” curve. Nice 
properties of special curves translate into theorems about properties of the 
general curve, because such properties are usually invariant under deforma- 
tion. In particular, one can hope that by studying graph curves one could 
approach some of the more resistant problems about smooth curves. In the 
paper below we will follow this program as it related to the Clifford index 
of smooth curves. 

Recall that the Clifford index of a smooth curve of genus g (which we 
take 2 3 to avoid trivialities) may be defined as the minimum, over all line 
bundles P’ on the curve satisfying h06P, /Z’S? b 2, of the quantity 

Cliff Y=g+ 1 -h”Y-hlY 

= deg 9 - 2/1’9 + 2, 

(the last equality being Riemann-Roth). Clifford’s theorem says in this 
language that if C is a smooth curve then Cliff C > 0, with equality iff C is 

hyperelliptic; it is known from Brill-Noether theory that 

Cliff Cd [(g- 1)/2] 

for every curve, with equality holding for the general curve of each genus, 
and from a result of Ballico [3] that every value between 0 and (g - 1)/2 
is actually taken on. 

The most naive approach to defining the Clifford index for a singular 
(perhaps stable curve) would be to follow the usual definition for smooth 
curves and define it as the least value of the expression 

g+ 1 -PY-h’LZ, 
taken over all the line bundles Y on C with both h”Y and h’Y 22. 
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However, experience has shown that as soon as the curve becomes 
reducible, this straightforward extension is rarely the right one. There are 
several other possibilities: 

Perhaps most interesting from the point of view of the study of smooth 
curves nearby C would be to take the Clifford index of a stable curve C to 
be the minimum of the Clifford indices of curves in arbitrary small 
(Zariski) neighborhoods of C in the compactilied moduli of curves of 
genus-we will call this the limit Clifford index of C. One might hope that 
the limit Clifford index would be measured by the Clifford indices of some 
appropriately defined “limit linear series” on C, where the Clifford index of 
a series is its degree minus twice its (projective) dimension, as usual. In the 
case of pencils one has an adequate notion of limit series coming from the 
theory of admissible covers; these admissible covers of genus 0 curves by 
graph curves are the subject of the appendix by Park. One might call the 
Clifford index defined in this way, in terms of admissible covers, the 
admissible Clifford index of C. Since admissible covers are always limits of 
covers of P’ by nearby smooth curves, one obtains a direct link to the limit 
Clifford index. However, it seems likely that there is a notion of limit linear 
series of arbitrary dimension like that for curves of compact type (see 
Eisenbud and Harris [8] and Ran [16]) and it is not so clear that a 
Clifford index computed in terms of these would be equal to the limit 
Clifford index as defined above; the variety of curves of some low Clifford 
index might well have components contained entirely in the boundary of 
moduli. 

Another approach to defining the Clifford index of a graph curve C 
would be to invert Green’s conjecture [9] for smooth curves and define the 
resolution Clifford index of C to be the largest integer c such that 
To? g _ 2 _ .( C, R)g _ i _ c # 0, where R is the homogeneous coordinate ring of 
C, and S is the homogeneous coordinate ring of the projective space in 
which C is canonically embedded. 

It is known (Green-Lazarsfeld [lo]) that for smooth curves there is at 
least an inequality between the resolution Clifford index and the ordinary 
Clifford index, defined as above, though the proof of this inequality does 
not immediately extend to graph curves. However, in this section we will 
compute the naive Clifford index of certain line bundles on graph curves 
and prove for them an inequality of the above type. This will suggest yet 
another definition of the Clifford index-perhaps one should call it the 
“combinatorial Clifford index” of a graph curve C(G), namely f - 2, where 
f is the “homoliferous disconnection number of G,” that is, the smallest 
number of edges which disconnect G into two connected pieces, each with 
nontrivial homology. Park has shown that with the exception of a small 
number of graphs, this combinatorial Clifford index really is linked with 
the limit Clifford index defined in terms of admissible coverings. 
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As was pointed out to us by Joe Harris, a curve with given resolution 
Clifford index, defined as above, need not be the limit of smooth curves 
with such a low Clifford index. For example, if we take a graph G’ of high 
Clifford index, and replace one vertex u with a triangle to obtain G, then 
the curve C(G), which has Clifford index 1, is not the limit of similar 
smooth curves (Reason: the quadrics containing the canonical image of 
C(G) cut out the union of C(G’ - u) and the plane containing the triangle, 
whereas the quadrics containing the limit of smooth curves (assuming that 
the limit is arithmetically Cohen-Macaulay, and thus lies on the correct 
number of quadrics) will contain a nondegenerate surface. Harris, 
Miranda, and Ciliberto (unpublished) have also checked the nonexistence 
of a degree 3 admissible cover of a genus 0 curve by such a curve. 

All of these invariants, for graph curves, must of course be combinatorial 
invariants of the graph. In this paper we present some evidence for the 

Combinatorial Clzfford Index Conjecture. The combinatorial Clifford 
index Cliff G of a trivalent 3-connected graph G is equal to the resolution 
Clifford index of the corresponding graph curve C(G) as long as Cliff G < 
c(s- lIPI. 

By the theory of extremal graphs, the last inequality is satisfied for all 
large graphs-see Section 5. We prove the conjecture if either of the two 
Clifford indices are 0, and we prove it for planar graphs. We had originally 
hoped that a proof of this conjecture would lead to a proof of Green’s con- 
jecture for general curves, but this is not the case because the combinatorial 
Clifford index of a graph curve of genus g is never more than about 
2 log,(g) (see Section 5 ). 

We would like to mention three other projects using graph curves that 
have recently been undertaken: 

Park, in an appendix to this paper, shows how to approach the 
admissible covers by graph curves of curves of genus 0 and has related this 
to the combinatorial Clifford index. 

Ciliberto, Harris, and Miranda [7] have used graph curves (including 
some of the foundational material developed below) to prove a conjecture 
of Jonathan Wahl, concerning the natural map 

A2H0(w,) -+ H”(op3) 

on a smooth curve C, called the Wahl map. Wahl had proved that if this 
map is surjective, then C cannot be embedded in a smooth K3 surface, and 
he conjectured that the map is surjective if the genus of C is 10 or B 12. 
This conjecture could not be attacked directly using degenerations to 
curves of compact type because the Wahl map is never surjective for these 
curves; but Ciliberto, Harris, and Miranda proved the conjecture by 
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showing that it is surjective for certain graph curves (corresponding to 
certain generalizations of the Petersen graph) of the appropriate genera. 

In another direction, Kra [14] has observed that the smoothing 
parameters of the 3g - 3 nodes of a graph curve of genus g can be chosen 
rather naturally to give a kind of canonical system of coordinates on the 
moduli space in the neighborhood of a graph curve. 

In the body of the paper we often deal with somewhat more general 
curves than the above, corresponding to allowing the dual graphs to have 
multiple or returning edges and to be other than trivalent and connected, 
though we always take each component of the curve to be of geometric 
genus 0. Of course such curves may not be determined entirely in terms of 
the combinatorial data of the dual graph, but some interesting properties 
of them depend only on the dual graph anyway. 

We now describe the contents of the paper in more detail. The first four 
sections are foundational in nature, although they only develop the part of 
the foundations related to the canonical embedding. In Section 1 we give 
expressions for the canonical series on a graph curve and its powers in 
terms of the O-chains, l-chains, and l-cycles of the graph. 

In Section 2 we study the ampleness of the canonical series. We prove an 
ampleness result for graphs other than trivalent ones; our main result is 
that the canonical series on the graph curve of a trivalent graph is very 
ample iff the graph is 3-connected. The main idea is to show that the 
restriction of the canonical series to certain curves made from subgraphs is 
a complete series. 

In Section 3 we explain how to compute the canonical embeddings of 
graph curves explicitly, by computing the ideals of the curves. We made 
extensive computations using this method on the computer algebra system 
Macaulay of Bayer and Stillman [4], and the results of these computations 
lead to the conjecture above and to a number of theorems proved in the 
text. 

In Section 4 we show that if the graph curve of a trivalent graph is 
embedded by its canonical series, then the homogeneous coordinate ring is 
arithmetically Cohen-Macaulay, and thus Gorenstein. 

In Section 5 we begin the main work of the paper, on Clifford indices. 
Starting from a connected subgraph V of G we construct some line bundles 
on a graph curve whose Clifford indices depend only on the combinatorics 
of V in G and whose Clifford indices bound the resolution Clifford index 
of C(G). We show that the maximum of the Clifford indices of such line 
bundles is the combinatorial Clifford index defined above. 

In Section 6 we study face varieties coming from compact simplicial 
manifolds. We show in particular that the canonical class of such a variety 
is trivial iff the manifold is orientable (else its square is trivial), generalizing 
work of Hochster in the case of homology spheres. In case the manifold has 
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dimension 2, the face variety is a singular algebraic surface, and we show 
how such surfaces lit into the classification of algebraic surfaces (for example, 
the real projective plane gives rise in this way to Enriques surfaces!) The 
motivation for this is that the graph curve of the dual graph of the simplicial 
surface is embedded along with the surface, and the embedding is by a sub- 
series of the canonical series if the surface is orientable. In this way we recover 
some classical results about embeddability and unique embeddability of 
graphs due to Whitney [19] and Steinitz-Rademacher [18]. 

In Section 6 we use the material on face varieties to reduce the com- 
binatorial Clifford index conjecture for planar graphs to a question about 
the resolutions of face varieties, which can be answered using the methods 
of Reisner [17], proving the conjecture for these graphs. Unfortunately, 
planar graphs all have Clifford index ~3, so we still have no graphs of 
large Clifford index for which we know the conjecture to be true. In the last 
section we offer of problems, not all terribly deep, from this newly forming 
area. 

We began working on this material following suggestions from Joe 
Harris which go back to ideas of his and Ciro Ciliberto’s. We also thank 
Rob Lazarsfeld, Dave Morrison, and Henry Pinkham for some helpful 
discussions of the algebraic geometry, and Joe Buhler, Sung Won Park, 
and Richard Stanley for enlightening us on various aspects of the 
combinatorics. 

0. DEFINITIONS AND NOTATION 

For any projective curve C we define g(C) to be 1 - ~(0~); if C is 
reduced, for example if C is a graph curve, then this becomes 

g(C) = /zoo, - (the number of connected components of C) + 1. 

A graph is allowed to have multiple and returning edges. 
The number of edges incident to a vertex u is its ualency, val(u). G is 

trivalent if every vertex has exactly three incident edges. It is at most 
trivalent if every vertex has < 3 incident edges. 

If V is a set of vertices of G, then G - V is the graph obtained by 
removing the vertices V and all the edges incident to them. We will identify 
V with the full subfgraph on V, consisting of the vertices in V and all the 
edges incident only to vertices in I/. If E is a set of edges of G, then G-E 
is the graph obtained by removing all the edges E but leaving all the 
vertices. 

G is k-connected (more properly “k-edge-connected”) if the removal of 
<k edges does not increase the number of connected components of G (in 
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particular, G need not be connected to begin with.) If G contains a vertex 
of valency r which is not itself a connected component, then clearly G is 
not (r + l)-connected. A trivalent graph with double or returning edges is 
never 3-connected. 

G is k-vertex-connected if the removal of <k vertices does not dis- 
connect G. 

The following are defined for any graph G: 

dG = number of vertices in G. 

eG = number of edges in G. If E is a set of edges of a graph G, we will 
similarly write eE for the number of edges in E. 

nG = number of connected components of G. 

Coch G = group of I-cocycles of G (with some chosen orientation). 

gG = dim H,(G, C) - nG + 1, called the genus of G. By the Euler 
formula this may be written as gG = eG - dG + 1. 

C(G) = curve with rational components having dual graph G. 
C contains a 5” for each vertex of G, a node for each edge of G. 

Throughout the following, G will be a graph, C= C(G) will be the 
corresponding graph curve, and g, d, e, and n will denote gG, dG, eG, and 
nG, respectively. 

We fix once and for all an orientation of G. In particular, this gives us 
a canonical pair of dual bases for the spaces of l-chains and 1-cochains of 
G, in terms of which these dual spaces may be identified and thought of as 
inner-product spaces. In this way, for example, the l-cohomology of G with 
coefficients in a field, say, is identified with the space of l-cochains 
orthogonal to the 1-coboundaries, and the homology and cohomology of 
G are identified. 

1. THE SECTIONS OF POWERS OF THE! CANONICAL BUNDLE 

In this section we will identify the canonical series of a graph curve and 
its tensor powers (the identifications will depend on the choice of orienta- 
tion). We begin by identifying the space of sections of the canonical sheaf 
of C with the 1-cohomology of G. 

PROPOSITION 1.1. There is a natural isomorphism How,(,) z H’(G, a=); 
in particular, g(C) = g(G). 

Proof: The restriction of oc to a component of C is the canonical series 
twisted by the set of points that are nodes of C. A section of this restriction 
is identified by its residues at the nodes. If two components A and B of C 
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meet in a node p, then any section of oc, restricted to A and B, must have 
residues at p that sum to 0. We may thus make each section o of o( 
correspond to the 1-cochain on G whose value at the oriented edge E going 
from the vertex v corresponding to A to the vertex w  corresponding to B 
is the residue of w  at the point p of B. 

Since A z P’, there is a differential having poles at a given collection of 
points, and having specified residues there, if and only if the sum of these 
residues is 0; thus a I-cochain on G corresponds to a differential form iff 
it is orthogonal to the 1-coboundaries-that is, iff it is an element of 
H’(G, a=). I 

There is a natural bilinear map from pairs of 1-cocycles to 1-cochains of 
G taking cocycles cp, $ to their “pointwise product” cp$(e) = cp(e) $(e) for 
each edge e. Since the dimension of the space of l-cochains is 3g - 3, the 
same as the dimension of the space of sections of the square of the canoni- 
cal bundle, one may hope that the 1-cochains may be identified with the 
sections of H’(o$) in such a way that the bilinear map becomes the multi- 
plication 

HO(w,)@ HO(w,) + HO(w>). 

We show that this is so at least if the graph is trivalent: 

PROPOSITION 1.2. (i) There is a natural map cp from H’(w:) to Coch G 
given as follows: If c1 E H’(w’,) and x is an edge of G incident to v, corre- 
sponding to a node p of C, then in terms of a local parameter t on C(v) at 
p and an expression CI\~,~,) = P(t)(dt)’ we have q(a)(x) = (t’p)(O). 

(ii) cp takes the multiplication map H’(w,) 0 H’(w,) + H’(ws) to 
the pointwise product H’(G, C) @ H’(G, a=) + Coch’ G. 

(iii) If G is trivalent, then q is an isomorphism. 

Proof (i), (ii). One checks by a direct local calculation that this defini- 
tion is independent of the choice of parameter t and of the choice of com- 
ponent containing p. Part ii is also immediate from the local computation. 

(iii) Since both H’(wg) and Coch G are vectorspaces of dimension 
3g - 3, it suffices to show that the map is a monomorphism. Since C(v) 
contains val v nodes, where val v is the valency of the vertex v in G, we 
must show that a section of (w,,(val u))‘, vanishing at the nodes, vanishes 
identically; that is, a meromorphic quadratic differential on P’, regular at 
all but val v points and without double poles, is identically 0. But such a 
form is a section of (w,,)’ (val v) = O,,(val o - 4), so the assertion is clear 
for val 0 6 3. @ 

We may treat the other powers of w  similarly: On each component C(v) 
of C. Choose k distinct points, P~,,~, . . . . pV,k other than the nodes of C, 
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and local parameters t,.i at p”,i. We may then map H”(oFk) to 
Coch’ GO (Coch’ G)“: Let c1 E H”(02,fk). We will send u to a sum of 
cochains cp(cr) defined as follows: First, for each directed edge x from u to 
u, corresponding to a node p on C we may write a in terms of any local 
prameter t at p, as OL( c, = p(t)(&)* +k, and we let the l-cochain component 
of q(a) have value q(x) = t2+kj3(t). Next, for each vertex u, i, we write 
GI = /l,,j(t,,i) dt,,i near pv,i and let the ith 0-cochain component of rp(a) have 
value B,,i(t,,i) at u. 

PROPOSITION 1.3. If G is trivalent then cp is an isomorphism for all k. 

Proof We have dim Coch’ G @ (Coch’ G)k = (k + l)(g - 1) = 
dim H”(o~k) by R iemann-Roth, so it is enough to show that 40 is a 
monomorphism. But if the I-cochain component of cp(cr) is 0, then CI/,-(~) is 
a section of mFk (,, (-val v) = O&k + 2 - val u), and if the 0-cochain 
components vanish as well, then it is a section of QP,( - l), and thus identi- 
cally 0 as required. 1 

2. WHEN Is THE CANONICAL SERIES VERY AMPLE? 

We can look for base points by examining the restrictions of the canoni- 
cal series to individual components of C; and we can decide whether the 
canonical series is very ample by looking at its restriction to pairs of com- 
ponents. For this reason the following result is central to our discussion: 

PROPOSITION 2.1. (i) The curue C(V) associated to a fill subgraph V of 
G imposes 

h’ V - ho V + (the number of edges between V and G - V) 
- (n(G - V) -n(G)) 

conditions on the canonical series of C. 

(ii) If no connected component of G is contained in V then the restric- 
tion of the canonical series on C to C(V) is non-special. If in addition nG = 
n(G- V) then the restriction is a complete series. 

Remark. If G is trivalent, it is not hard to show that the number in part 
(i) takes the amusing form dV- gV+ 1 - (n(G- V) -n(G)). 

Proof: (i) A section of oo vanishing on C(V) corresponds to a cocycle 
whose value is 0 on all the edges incident to vertices in V-that is, a 
cocycle of G- V. Thus the number of conditions imposed is simply 
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h’G-h’(G- V) 

= h’ V + (the number of edges between V and G - V) 

- nV+n(G- V)-nG 

= h’ I’- ho V + (the number of edges between V and G - V) 

- (n(G- V) - n(G)), 

giving the first formula, and 

h’ I’-- ho V + (the number of edges between V and G - V) 

= e V- dV + (the number of edges between P’ and G - V) 

=eG-e(G- V)-dV, 

as required for the second. 

(ii) The restriction of the canonical line bundle to C(V) is the 
canonical line bundle on C(V) twisted by the points which are nodes on 
C corresponding to the edges between V and G - V. If V contains no 
connected component of G, then there is at least one such node on every 
connected component of C(V), so h’ of this bundle vanishes; that is, the 
bundle is non-special. Thus by Riemann-Roth and Proposition 1.1, the 
number of sections of the bundle is 

g V - 1 + (the number of edges between V and G - V) 

= h’(V) -ho(V) + (the number of edges between V and G - V). 

Since the dimension of the image series is the number of conditions 
imposed by V, we are done. 1 

We can easily deduce a sufficient condition for the canonical series to be 
very ample. Since a vertex of G of valence d 1 would correspond to a 
whole component of C in the base locus of wc, we assume that there are 
none: 

COROLLARY 2.2. (i) If G has no vertices of valence d 1 and is 2-vertex- 
connected then oc has no base points. 

(ii) If G has no vertices of valence d 2, is 3-vertex connected, and has 
no multiple or returning edges, then oC is vety ample. 

Remark. The connectivity hypotheses in 2.2 are probably not necessary 
in general (but see below for the case of trivalent graphs.) The hypothesis 
that there are no multiple edges is certainly not necessary; it would be quite 
interesting to give a sharper criterion. 



12 BAYER AND EISENBUD 

ProuS. We may reduce to the case where G is connected. 

(i) If G has only one component the result is obvious. Else we apply 
Proposition 2.l(ii) to each singleton I/= {u}, and conclude that the 
restricted series is complete. Since the valence of u is > 2, the restricted 
series has no base points. 

(ii) The hypotheses imply that G has at least four vertices. First 
apply Proposition 2.l(ii) to each singleton V= {u}; since val u 2 3, we see 
that the restricted canonical series is very ample on C(V). Next we apply 
Proposition 2.1 (ii) to each pair of vertices V = {u, w  >. If V is disconnected, 
the result is now obvious. If, on the other hand, v and w  are joined by an 
edge, then the restriction of the canonical series to C(V) is of codimension 
1 in the direct sum of the restrictions to C( {u}) and C( { w>), corresponding 
to a linear series that embeds these two lines into linear subspaces that 
meet only in the common point that the lines share as components of C(G). 
This concludes the proof. 1 

The situation for sets of edges is even simpler: 

PROPOSITION 2.3. Zf E is a set of edges of G, then the number of condi- 
tions imposed by the corresponding set of nodes on the canonical series is 

eE+nG-n(G-E). 

In particular, the conditions imposed by the nodes corresponding to edges of 
E are independent ijjf removing E does not disconnect any connected compo- 
nent of G. 

Proof: The equations defining cocycles on G which vanish on E are the 
same as those defining cocycles on G - E, and 

h’G-h’(G-E)=eE+nG-n(G-E)). 1 

Using this we can extend Proposition 2.1 to a necessary and sufftcient 
condition for the completeness of the restriction of the canonical series to 
a single component: 

PROPOSITION 2.4. The restriction of the canonical series on C to a 
component corresponding to a vertex v is complete iff either v is a connected 
component of G; or val(v)< 1; or nG =n(G -u), rhat is, iff v is not 
disconnecting. 

Proof The restriction of wc to the component corresponding to v is 
O,,(val(u) - 2). Thus if val(v) < 1 there is nothing to prove. Similarly, if u 
is a connected component of G, the result is obvious. Otherwise, the series 
is complete iff the set of values taken by sections of wc at the nodes corre- 
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sponding to edges incident to o (with respect to some local trivialization 
there) form a vectorspace of dimension val(o) - 1. By Proposition 2.3, this 
is so iff n(G - E) = nG + 1. Because v is not a connected component of G, 
G - E is the disjoint union of G - v and the isolated vertex u, this is equiv- 
alent to the desired statement. 1 

Using these tools we can give necessary and sufficient conditions for oc 
to be base point free or very ample in the case of greatest interest to us, 
namely the case where G is trivalent. 

PROPOSITION 2.5. If G is trivalent then 

(i) oC is base point free iff G is 2-connected. 

(ii) wC is very ample iff G is 3-connected. 

Remark. The proof will show that if there is a base point, then one of 
the nodes is a base point. 

Proof: (i) By Proposition 2.3, a node imposes no conditions on sections 
of WC, and so it is a base point iff the corresponding edge is disconnecting. 

Now since G is trivalent, and thus the restriction of wc to each compo- 
nent has degree 1, some point of a component corresponding to a vertex 
v E G is a base point iff the restriction of H’o, to that component is incom- 
plete. By Proposition 2.4, this happens iff u is disconnecting. 

It remains to show that G has a disconnecting vertex iff G has a discon- 
necting edge. If G has a disconnecting edge then each of the vertices on it 
is disconnecting. Conversely suppose that u is a disconnecting vertex, so 
that edges incident to v meet components V,, Vz of G - v that are in the 
same connected component of G. Since the valence of v is 3 (at least), one 
of the V, shares only one edge with v. This edge is disconnecting. 

(ii) First suppose that wc is very ample. If E is a pair of discon- 
necting edges, then by Proposition 2.1, the corresponding nodes together 
impose only one condition on the sections of oc, so mt is not very ample. 

We may complete the argument by using Corollary 2.2(ii), thanks to the 
following combinatorial lemma: 

LEMMA 2.6. If G is trivalent then G is 3-connected iff G has no multiple 
or returning edges and is 3-vertex connected. 

Proof of Lemma. We will prove that if G is trivalent and 3-connected, 
then the second condition holds. We will not need the converse (which was 
pointed out to us by S.-W. Park), and we leave its proof to the reader. 

We may assume that G is connected. It is obvious that G can have no 
multiple or returning edges. 
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Let V be a set of two vertices of G, and suppose that G - V has at least 
two connected components. Adding some edges to G - V if necessary to 
reduce the number of connected components to 2, and contracting each 
one to a single vertex, we may assume that G is a 3-connected graph with 
four vertices, two in V of valence exactly 3 and two others w, w’, and that 
G - T/ is disconnected. We will show that this is impossible. 

Clearly w  and w’ are not joined by an edge. If at most two of the six 
edges emanating from O, u’ went to w  then G could be disconnected by 
removing these < 2 edges, contradicting 3-connectivity, and similarly for 
w’. Thus exactly three of the edges from u, u’ go to each of w  and w’, and 
up to exchanging u and u’, G has the form 

W' 

This graph is visibly not 3-connected, again a contradiction. 1 

It is an easy exercise-which we leave to the interested reader-to extend 
Proposition 2.5 to the case of at most trivalent graphs. Perhaps the most 
interesting point is that if oc is very ample, Then under this hypothesis G 
must actually be trivalent. 

3. EQUATIONS OF THE CANONICAL IMAGE 

In this section we will assume that G is trivalent and 2-connected, with 
no multiple or returning edges so that, by Proposition 2.5(i), the canonical 
mapping of C is defined, and by Proposition 2.l(ii), it carries each compo- 
nent of C to a line. We will show how to compute the homogeneous ideal 
of the canonical image of C. 

We first establish some notation to be used in the rest of the paper: We 
will write S for the homogeneous coordinate ring of the canonical space; by 
Proposition 1.1, 

S= Symm(HOo,) = Symm(H’(G, C)). S is naturally a subring of the 
polynomial ring 

T= Symm(Coch G). 



GRAPHCURVES 15 

We set 

92 = 0, HO(o,O” ), the canonical ring of C, and we write 

R = the image of the natural map S -+ 9, for the homogeneous coor- 
dinate ring of the canonical image of C. We let 

I = ker S + R = ker S + 93 be the canonical ideal of C. 

We have: 

PROPOSITION 3.1. I is the intersection of S and the ideal of T generated 
by all monomials of the forms 

XY, where x, y are dual to disjoint edges of G 

and 
XJZ, where x, y, z are dual to the edges of a triangle of G. 

Proof: Since the canonical image of C is a union of lines corresponding 
to the vertices u of G, its ideal is the intersection of the ideals Z(o) of the 
lines. Now an element of H”(C, wc) that has, as a meromorphic differential 
form on the component of C corresponding to u, no poles, is identically 0 
on that component, so I(u) is generated by the set of cocycles whose sup- 
ports do not contain edges incident to u. It follows that Z(v) may be written 
as I(u) = S n J(u), where J(u) c T is the ideal generated by all duals of 
edges not incident to u, and Z= n, I(u) = S n (n, J( 0)). 

It now suffices to show that J= n, J(u) is the ideal generated by 
monomials of the form given in the proposition. Since each ideal J(u) has 
as generators a set of dual edges, J will have a basis consisting of those 
monomials m such that for each vertex u, there is a factor of m dual to an 
edge not incident to u. It is thus clear that all the monomials in the state- 
ment of the Proposition are in J, and also that every monomial of degree 
2 in J is the product of the duals of two disjoint edges. 

Let m = xyz . . . be a monomial in J, and suppose that no two factors of 
m are dual to a pair of disjoint edges. The edges dual to x and y thus must 
meet m some vertex, say u; and z an d all further factors, if any, then must 
either meet u or form a triangle with x and y: 

0 

I 

\ or z 
2. 

/ 

0-0 

0 y 

Since not all factors can be dual to edges incident to u, we see that m is 
divisible by a product of three factors dual to the edges of a triangle, as 
required. 1 

607’86!1-2 
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4. NOETHER'S THEOREM FOR GRAPH CURVES 

We continue to use the notation introduced at the beginning of 
Section 3. 

Noether’s theorem states that for any smooth curve for which the 
canonical map is an embedding, the canonical image is projectively normal. 
Here is the analogue for graph curves corresponding to trivalent graphs: 

PROPOSITION 4.1. If G is trivalent and 3-connected then the natural map 
R + W is an isomorphism; that is, the canonical image of C is arithmetically 
Cohen-Macaulay. 

Proof: R is generated in degree 1, and R, z W, by definition, so we 
must show that the multiplication map 

is an epimorphism for all i. 
For i> 3 this follows from a well-known general argument, the 

“base-point free pencil trick”: Let Vc H’(w,) be a two-dimensional 
subvectorspace of sections such that the elements of V have no common 
zeros in C (a base-point-free pencil). There is an exact sequence of sheaves, 

which shows that even V@H”(o~i)-+Ho(o~if’) is onto as soon as 

fW4?-’ ) = 0, that is, as soon as i - 1 > 2 (see, for example, Arbarello et 
al. [2, p. 151, “Castelnuovo’s lemma”]). 

It remains to prove the surjectivity for i= 1 and 2, which we do by using 
the combinatorial description of these multiplication maps given in 
Propositions 1.2 and 1.3. 

The combinatorial information that we need is given to us by a special 
case of the “edge form” of Menger’s theorem (see Bollobk [6, Chap. III, 
Theorem 5, part ii], for example): If u and v are distinct vertices of a graph 
r, and if there is no edge whose removal disconnects r, then there are two 
edge-disjoint paths connecting u to v in f. 

We first prove that p: R, OR, + g2 is onto. By Proposition 2.2 and the 
first remark following it, it suffices to show that given any edge x of G, con- 
necting vertices v and w, say, there are two cycles in G whose only common 
edge is x; the restriction of the product of the corresponding sections a, 
and a2 to the various components of C will have double poles only at the 
point of C corresponding to x, and thus cp(cr,a,) will be the cochain dual 
to the edge x. But after removing x from G we get a graph r which is not 
disconnected by the removal of any edge; thus we may apply Menger’s 
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theorem to conclude that there are two edge-disjoint paths from o to w  in 
IY Together with x these form the desired cycles. 

Next we prove that the multiplication map pX: R, OR, 0 R, -+ SY3 is 
onto. First, if we follow 

R,OR,OR, II) &TX = Ho(w;) A Coch’ G 0 Coch’ G 

by the projection onto the I-cochain component, then it is onto; for if we 
choose c(, , IY? as above, then E:CY~ restricted to the various components 
of C will have triple poles only at the point of C corresponding to the 
edge X. 

It now suffices to produce, for any vertex u E G, a product c(,c(~c(~ of sec- 
tions ai E H’(o,) whose restriction to the various components of C has 
no triple poles whatever and is identically 0 except on the component 
corresponding to u, where it is nonzero. Let x be one of the edges incident 
to U, say from u to u, and let CI i, CQ be chosen as above to correspond to 
cycles having only the edge x in common. Let s, t be the other two vertices 
of G which are neighbors of U. By the argument used in Proposition 1.5, 
G - (u, u} is connected, so we may choose a path in G - {u, u) from s to 
t and take CL~ to be the section of oc corresponding to the cycle made from 
this path together with the edges y from s to u and z from u to I: 

Since no edge appears in all three cycles, it is clear that the restriction of 
c(,Qc(~ to a component of C has no triple poles. Further, as one easily 
checks, no vertex of G except u appears in all three of the cycles, so on 
every component of C except C(U) the product is a section of w;,(4)= 
O,,( -2), and so it is identically 0. Finally, on C(U), M,CQC(~ is the product 
of three nonzero sections of wc 1 c(u) = ~~~(3)) and it is thus not identically 
0. As it is a differential without triple poles, it is actually a section of 
w;,(6) = C&I, and as such it is a nonzero constant. Thus ‘p(txic~a,) is the 
0-cocycle dual to u. 1 
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5. COHOMOLOGY AND CLIFFORD INDICES OF 
LINE BUNDLES DETERMINED BY SUBGRAPHS 

To simplify the notation, we will assume throughout this section that G is 
connected. The reader will have no difficulty if he wants to extend the 
results to the more general case. 

What interesting special line bundles does a graph curve C have? The 
most obvious ones are those obtained by taking the line bundle associated 
with a divisor having one point on each of several components of C. Since 
we are looking for examples which are as special as possible, it is natural 
to look for examples of this type for which the points are actually 
contained in a hyperplane in the span of C( VEthat is, they form a hyper- 
plane section of C(V). In this section we will analyze such examples from 
the point of view of the naive Clifford index (see the Introduction for 
definitions), and we compare the result with the resolution Clifford index 
of the graph curve. 

First a remark that holds for any reduced curve: 

LEMMA 5.1. Let Cc P’ be a reduced nondegenerate curve and let D be 
a hyperplane section which meets every component of C transversely. If n of 
the connected components of C span P’, then the codimension of the linear 
span of D in P’ is at most n. Equality holds if the embedding of C is com- 
plete, or more generally, if the connected components of C are embedded in 
linearly disjoint subspaces. 

Remark. In general, the dimension of the span of D will depend on the 
hyperplane chosen, as is the case for three skew lines in P3, for example. 
It would be nice to have a formula for the minimum possible dimension. 

Proof We may assume that C has only n components Ci. The result 
follows easily from the fact that the codimension of the linear span of D is 
the dimension of the intersection of 

and 

@“=H”Oc== H”Q.,c~ H”O~,(l)=HoO~(l) 
I I 

H’O,,( 1) c Ho@ ( 1). 1 

Now let Vc G be a set of vertices, regarded as a full subgraph. Let D be 
a proper hyperplane section of C(V) which does not contain any nodes of 
C, and set 9 = Lo,(D). We will write Y(V) for any line bundle 9 made 
from V in this way. 
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PROPOSITION 5.2. Zf G is trivalent, then 

h”W V) <h’ V+ n(G - V) 

and 

h’S(V)bh’(G- V)+nV, 

so that 

cliffT(V)bg+ 1 -h’V-h’(G- V)-nV-n(G- V). 

All three inequalities become equalities if either V or G - V is connected. In 
particular, tf V and G - V are connected, and f = 3dV - e V is the number of 
edges in G joining V to G - V, then 

CliffY(V)=f-2. 

Proof The given formula for f follows at once from the trivalency of G. 
For simplicity, let Y = S?‘(V). From Proposition 2.1 and Lemma 5.1 we see 
that 

h’Y<g-(dV-h’V-(n(G-V)-l)), 

with equality if C(V) is either connected-that is, V is connected-or C(V) 
is embedded by a complete series-that is, (by the second statement of 
Proposition 2.1) G - V is connected. Elementary manipulations using the 
Euler formula and the formula for f given above show that the right-hand 
side is equal to h’(G - V) + n V. The Riemann-Roth formula on C, applied 
to the inequality as written above, now yields ho9 <h’ V + n(G - V), and 
we get 

CliffY=g+l-h06p-hlY 

>g+ 1 -h’V-h’(G- V)-nV-n(G- V) 

as desired. Further applications of the Euler formula and the formula for 
f yield 

g+ 1 -h’V-h’(G- V)-nV-n(G- V)=f +2(1 -nV-n(G- V)), 

which becomes the desired formula in case V and G - V are connected, so 
that nV=n(G- V)= 1. 1 

Remark. The symmetry in the formulas for ho and h’ in the proposition 
is not surprising; if we take a general hyperplane section of C we see that 
the corresponding S?(V) and g(G - V) satisfy U(G - S’) = oc @S?(V)-‘. 
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Recall that a line bundle 6p contributes to the Clifford index of C if both 
ho9 and h’9 are > 2. We would like to say that V contributes to the 
Clifford index of C if 9(V) does; however, the criterion above only allows 
us to decide this from the combinatorics when V or G - V is connected, so 
we will only say that V contributes to the Clifford index tf V or G - V is 
connected and 9’(V) contributes to the Clifford index of C. 

COROLLARY 5.3. I f  G is trivalent, and V is a subgraph such that either V 
or G - V is connected, then V contributes to the Clifford index of C lf f  

h’V+n(G- V)>2 and h’(G- V)+nVa2. 1 

For V and G - V connected we have 

CliffT(V)=g-l-h’V-h’(G-V). 

The next result shows that this number is related to the resolution Clifford 
index of C: 

PROPOSITION 5.4. Zf G has a subgraph V with both h’ V and h’(G - V) 
nonzero then setting a = h’ V, b = h’(G - V), and t = a + b, we have 

dim. Tort- ,(C, R)k > 
(:)-(l)-(k)5 

so that the resolution Clifford index of C is < g - 1 - t, which is Cliff P’( V) 
tf V and G - V are connected. 

Proof Writing A = H’(V, C) and B= H’(G- V, C), we see that 
AB c I. Thus the linear part of the resolution of AB is a direct summand 
of the linear part of the resolution of I. On the other hand, this resolution 
is easily computed: since A n B= 0 c S, we have (A) n (B) = (AB), so the 
resolution of (A) n (B) may be computed as the cokernel of the natural 
map from the direct sum of the Koszul complexes resolving (A) and (B) to 
the Koszul complex resolving (A + B). This gives the last assertion. The 
other assertions follow directly from the definitions. 1 

The next result shows the Clifford index is minimized when both V and 
G - V are connected. 

PROPOSITION 5.5. Let G be a connected, 3-connected graph, and let V 
be a subgraph. Suppose that G - V is connected, but V is not. If V. is a 
connected component of V, then G - V. is connected and 

Cliff 9( Vo) <Cliff LZ( V). 
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Proof: Since G is connected, G - V must be connected by an edge of G 
to every connected component of V, whence the connectedness of G- V,. 
By Proposition 1.8 it is enough to show that 

h’V,+h’(G- V,)+2>h’V+h’(G- V)+ 1 +nV, 

or in other terms, 

h’(G- V,)>h’(G- V)+(h’V-h’V,)-1 +nV 

=h’(G- V)+h’(V- VJ+n(V- J’,,). 

Let f be the number of edges of G joining G - V and V- V,. Since 
G - V, is connected, G must contain at least one edge joining each compo- 
nent of V- V, to G- V, and thus we have 

h’(G- V,)=h’(G- V)+h’( V- Vo)+f-n(V- VO), 

so the desired inequality is equivalent to f > 2n( V - VO). However, since G 
is 3-connected we must in fact have f 3 3n( V - V,), and we are done. 1 

It thus makes sense to define 

Cliff G = mini Cliff Y( V) 1 V and G - V are connected}. 

From Propositions 5.2 and 5.5 we have immediately: 

COROLLARY 5.6. Cliff G = f - 2, where f is the smallest number of edges 
of G which disconnect G into two connected pieces, both with homology (the 
“homoliferous disconnection number”), Cliff G is > the resolution ClifSord 
index of C = C(G). 

COROLLARY 5.7. If G is trivalent, connected, and 2-connected, then the 
canonical series on C is very ample iff Cliff G > 0 iff the resolution Clifford 
index of C is > 0. 

Is the resolution Clifford index of C equal to Cliff G? Not in general. The 
graph K(3, 3) has associated graph curve of genus 4, and resolution 
Clifford index 1, although there are no triangles, and no way to disconnect 
the graph into homoliferous pieces with three edges. The “Peterson graph” 
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is an interesting example here. The resolution Clifford index of the corre- 
sponding curve of genus 6 is 2 = [(g - 1)/2]; but one sees by inspection that 
the graph contains no cycle of length < 5, and thus no connected subgraph 
contributing to the Clifford index of C and having Clifford index < 3. Thus 
a line bundle computing the Clifford index must not be of the form Y(V) 
with Y connected. However, in cases where the Cliff G is small compared 
to g there is some experimental evidence, obtained with the program 
Macaulay of Bayer and Stillman [4], that the resolution Clifford index is 
measured by Cliff G. To be definite, we make: 

Conjecture 5.8. If Cliff G < [(g - 1)/2], then Cliff G is equal to the 
resolution Clifford index of C(G). 

We will prove this conjecture in the case of planar graphs dual to 
triangulations of the sphere in Section 7. The condition on Cliff G is 
actually not very restrictive; in particular it is satisfied for all G of genus 
> 11, as the following results show: 

Recall that the girth of a graph G having nontrivial homology is the 
length of the shortest cycle in G. We need the following standard com- 
binatorial information (see, for example, Bollobas [ 6, Theorem IV. 1 ] ): 

LEMMA 5.9. Zf G is a connected trivalent graph of genus g and girth y, 
then 

g > 2y’= if y is even, 

g/2 
> 22’Y - 1w > 2YP lf y is odd. 

(This estimate is sharp, for example, for g = 4 and the complete bipartite 
graph K(3,3); for g = 6 and the Petersen graph; for g = 8 and the Heawood 
graph; and for g = 16; see Behzad et al. [ 5, pp. 63, 641 for pictures.) 

PROPOSITION 5.10. Zf g > 5, and G is trivalent of genus g > 5, then the 
homoliferous disconnection number of G is < girth G, the length of the 
shortest cycle in G. In particular, if g 2 11 then Cliff G < (g - 1)/2. 

Proof Sketch. Let y be the girth of G, and let f be the homoliferous 
disconnection number. If V is a cycle of length y, then the number of edges 
joining Y to G - Y is again y, so it suffices by Proposition 5.5 to check that 
G - V has homology. Euler’s formula gives 

h’(G- ?‘)-h’(G- V)=y-g+ 1, 

so we are done if g > y + 1. The formulas in Bollobas [6, Theorem IV.1 ] 
yield this conclusion at once when g > 6. In the cases g = 5, g = 6 we get 
from these formulas y 2 g- 1, and it is then easy to examine all possible 
cases. i 
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6. FACE VARIETIES AND THEIR HYPERPLANE SECTIONS 

In the next section we will analyze the Clifford index and the resolution 
Clifford index of a planar trivalent graph dual to a triangulation of a 
2-sphere. The essential reason that this is possible is that then the 
associated graph curve is a hyperplane section of the “face variety” 
associated to the triangulation. In this section we provide some motivating 
background for this construction, and prove what seems to be a new 
theorem about face varieties. 

In order to obtain a canonical curve as the hyperplane section of a 
surface, the canonical bundle of the surface must be trivial (or at least meet 
the hyperplane section in a trivial class). Thus we are led to ask about 
combinatorially defined varieties with trivial canonical bundle. 

Recall that if M is a simplicial complex, the corresponding face variety 
X (in the sense of Stanley, Hochster, Reisner; see, for example, Hochster 
[ 121) is the variety defined, in a projective space over a field k, with coor- 
dinate functions corresponding to the vertices of M, by monomials corre- 
sponding to the non-simplices of M. Its dimension (as a projective variety) 
is the same as the dimension of M. From work of Reisner and Hochster 
and Roberts (see, for example, Hochster and Roberts [ 13, p. 1713) it 
follows that if M is a manifold, then 

H’(X, OX) = jf’(A4, k) the reduced simplicial cohomology 
of IV, if i> 0, 

while 
H’(X, Co,(n)) = 0 if O<i<dand n#O. 

Further, if YX is the ideal sheaf of X, then 

H’(X, 9-x) = AO(M, k), H’(X, 9x(n)) = 0 for all n # 0. 

Thus in particular, X is projectively Cohen-Macaulay iff M has no reduced 
homology below dimension d, and X is projectively Gorenstein iff M is a 
homology sphere. But if A4 is a manifold, then Reisner also proves that x 
is locally Gorenstein; so it is quite interesting to ask about its canonical 
sheaf even if X is not projectively Cohen-Macaulay. We have: 

THEOREM 6.1. Zf M is a simplicial compact manifold of dimension d over 
R, and X is the corresponding face variety, then the square of the canonical 
bundle of X is trivial; the canonical bundle itself is trivial ijjf M is orientable. 

Joe Harris suggested to us that the second part of the above theorem 
might be true, and he also contributed some ideas to the proof. In the 
Cohen-Macaulay case, the result is also a consequence of an unpublished 
theorem of Hochster. 

Proof Sketch. Without loss of generality M is connected. Reduce 
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by &tale double cover to statements about the orientable case. If M is 
orientable, then via Reisner’s description of the free resolution of the 
homogeneous coordinate ring S, of X we get a non-zero element of 
Ext codimX(SX, S) in degree r + 1 = {the number of vertices of M}, which 
gives a nonzero section of wX. But since the restriction of ox to each 
component of X is trivial (each component meets the rest along d-t 1 
hyperplanes), this section is nowhere 0, and thus trivializes uX. 

Conversely, if A4 is non-orientable, Reisner’s description implies that 
Ext codimX( s,, S) = 0 in degree the number of vertices of 44. Since A4 is 
connected, S, has depth > 2, so ExtCodimX(SX, S)( -Y - 1) = r* ox, so ox 
has no global sections, and we are done. 1 

Consider the case of dimension 2: here X as in the theorem will be an 
algebraic surface with Kodaira dimension IC = 0, and it is amusing to see 
how these fit into the classification of surfaces. Recall that the irregularity 
q and the geometric genus pp of a surface X are defined by q = h’(~&), 

pg = hO(w,). We obtain: 

Topology of 
the compact surface M Invariants of X Type of X 

Sphere 

Projective plane 

Torus 

Other; x(M) < 0 

0,=Lo,; 

q=Op,=l 

ox # 4, coy = ox; 
q=pg=o 

CO,=&; 
q=2,pg=1 

K=o,~(ox)<o 

K3 

Enriques 

Abelian 

Non-smoothable 

Recall that if M 
of M is defined by 
each edge of M: 

is a compact simplicial 2-manifold, then the dual graph 
taking a vertex for each 2-simplex of M and an edge for 

l-skeleton of the dual graph 
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The connection with graph curves is given by: 

COROLLARY 6.2. Let M be a simplicial 2-manifold, and let X be the 
corresponding surface. A general hyperplane section C of X is a graph curve 
with dual graph equal to the l-skeleton of the dual subdivision of M. The 
curve C is a canonically embedded graph curve tff M is orientable, and C is 
embedded by the complete canonical series iff M is a sphere. 

Proof: Suppose first that M is non-orientable. We must show that 
Oc,(l)#w,, which is w.~( 1) 0 8, by the adjunction formula; that is, we 
must prove that wy @Cot # 0c. But from the exact sequence 

we see that wX @Co, has no global sections. 
Now suppose that M is orientable. By Reisner’s results, X is embedded 

by a complete series, so C is embedded by a complete series iff 
H’(&,,.( 1)) = 0; but 9 Cl.,, = O.Y( - 1 ), so the condition is equivalent to 
H’(U.y)=O, which is the condition that M is a sphere by the result of 
Hochster and Roberts cited above. a 

7. PROOF OF THE MAIN CONJECTURE FOR PLANAR GRAPHS 

We will make use of: 

THEOREM 7.1 (Steinitz-Rademacher [ 18 ]-see also Harary [ 11, 
p. 1061). A graph without multiple edges is the l-skeleton of a convex 
3-dimensional polyhedron iff it is planar and 3-connected. 

Since the dual of the l-skeleton of a convex polyhedron is the l-skeleton 
of the dual convex polyhedron, we immediately obtain the following 
characterization (which was pointed out to us by Richard Stanley): 

COROLLARY 7.2. A planar graph without multiple edges is the dual of a 
triangulation of the 2-sphere iff it is 3-connected. 

Actually we have already proved the necessity of 3-connectedness, even 
in a more general context: If a graph G is dual to a triangulation of any 
orientable 2-manifold then of course G is trivalent, and by Corollary 6.2 its 
canonical map is an embedding, so by Proposition 2.5, G is 3-connected. 
(Since the canonical embedding is the only embedding of a graph curve of 
a 3-connected trivalent graph in g - 1 space in which the components go 
to lines, we also see that the planar embedding of a 3-connected planar 
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trivalent graph is unique, which is a special case of a theorem of Whitney 
[19]-see Harary [ll, p. 1051.) 

In this section we will prove Conjecture 5.8 for planar graphs: 

PROPOSITION 7.3. If C = C(G) is the graph curve associated to a trivalent 
planar graph G then the resolution Clifford index of C is equal to Cliff G. 

In fact, the proof will yield an expression for the graded Betti numbers 
of c. 

In evaluating the weight of evidence for the combinatorial Clifford index 
conjecture provided by Proposition 7.3, one must bear in mind the fact that 
the Clifford index of a trivalent connected planar graph is always <3. 
(ProoJ If the graph has genus g, then it divides the sphere into g + 1 
faces. Each of the 3g - 3 edges borders two of these faces, so the average 
number of sides of a face is (6g - 6)/( g + 1) < 6; thus there must be a face 
with live or fewer edges, and the edges meeting its perimeter but not 
bordering it form a homoliferous disconnection (if g is not too small) of 
< 5 edges, whence the bound. 1) 

Proof: We know from Proposition 5.6 that Cliff G is > the resolution 
Clifford index of C, so it suffices to prove the opposite inequality. 

By the results above, G is the dual graph to a simplicial sphere M. 
Letting X be the face variety associated to M, Corollary 6.2 tells us that the 
general hyperplane section of X is C(G) in its canonical embedding. Since 
X is arithmetically Cohen-Macaulay by Reisner’s theorem (Reisner [ 17]), 
the graded Betti numbers for the resolution of the homogeneous coordinate 
ring S, of X are the same as those for the homogeneous coordinate ring 
of C. Letting S be the polynomial ring on the vertices of A4 (the 
homogeneous coordinate ring of the projective space in which X is 
embedded) and setting c = Cliff G, it thus suffices to show that 

Tori- 1 _ .(C, S,),- c = 0. 

To this end we apply Reisner’s description: Since S, is graded by the 
semigroup of monomials m in the vertices of M, we may decompose 
Tors(@, S,) by monomials. Writing Torf(C, S,), for the mth graded piece 
of Torf(C, S,), Reisner shows that if m is divisible by a square then 
Torf(@, S,), = 0, while if m is square-free then 

Tor,(@, S,), = f&,, -i- ~(SUPP m, @I, 

where A*(supp m, C) is reduced simplicial cohomology. 
In particular, when [ml = i + 1, we have 

Tori(@, S,), = ffdsupp m, @L 
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whose rank is one less than the number of components of supp m. It 
follows that To? g _, _ ,(C, S,),.. c # 0 iff we can find some disconnected full 
subcomplex m of M involving g - c distinct vertices. 

We now suppose that M has a disconnected full subcomplex m involving 
g - c distinct vertices. We will show there is a connected subgraph V such 
that each V and G - I’ has homology and such that h’V+ h’(G- I’) 3 
g - c. Using Propositions 5.2 and 5.5, gives Cliff G d c - 1, a contradiction 
which shows that m cannot exist and thus yields the desired conclusion. 

Let m’ be a connected component of m and let m” be the complement 
of m’ in m. Of course the vertices of M correspond to faces of the sub- 
division of the sphere corresponding to the graph G. We take V to be the 
subgraph consisting of all vertices and edges around the boundaries of 
faces in m’. V is obviously connected. 

Since V is inscribed on the sphere, the faces of V generate the homology 
of V and satisfy in this homology the single linear relation that the sum of 
all the faces is 0. Thus the vertices of m’ correspond to linearly independent 
l-cycles in H’V, and the vertices in m” correspond to linearly independent 
l-cycles in H’(G - V), a total of g-c cycles, as claimed. This concludes 
the proof. 1 

The proof above is based on a correspondence between disconnected 
subcomplexes of A4 and homoliferous disconnections of G which may also 
be described as follows: 

Given f edges which disconnect G, color each face of the sphere blue 
whose boundary contains one or more of these edges, and color the 
remaining faces green. If V and G - V are each connected, then on the 
sphere they bound two green “continents” surrounded by an “ocean” of 
blue, and the green faces give a basis for the homology of the full sub- 
graphs V and G - V. We compute at once by Euler’s formula that 
h’V+h’(G- V) = g+ 1 -f, so this is the number of green faces. If the f 
edges disconnect G into more than two connected subgraphs, then there 
are more than g + 1 -f green faces. If at least two of these subgraphs are 
homoliferous, then the green faces form at least two continents. 

One sees from this picture that the minimum value of f for a 
homoliferous disconnection of G is achieved by choosing a band off blue 
faces connected in a cycle on the sphere, which leave two connected sets of 
green faces: Any set of blue faces corresponding to a homoliferous discon- 
nection contains such a cycle of faces, and if there are blue faces not 
included in this cycle, we can lowerf by recoloring them green. Thefedges 
which remain bounded on both sides by blue faces give the new, smaller 
homoliferous disconnection. It follows that for the minimum value off, 
there are exactly two green continents. 

The .f edges of a minimal homoiiferous disconnection of G thus give rise 
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to a set of g + 1 -f vertices of M, whose full subcomplex in M has two 
connected components. Conversely, g + 1 -f vertices of A4 whose full 
subcomplex in M is disconnected give rise to f or fewer edges of G that 
homoliferously disconnect G. 

Remark. Any disjoint pair of faces yields a quadratic element of 
the ideal of C, and by taking all such pairs, we get the right number of 
quadratic generators. This corresponds to the fact that we have written the 
canonical ideal of C as the hyperplane section of the variety X. 

8. FURTHER REMARKS AND PROBLEMS 

1. Uniqueness of the canonical embedding. 

THEOREM 8.1. Zf G is a 3-connected trivalent graph, then there is, up to 
invertible linear transformations, only one embedding of the bond matroid of 
G in a space of dimension g. 

Prooj The proof of the fact that the canonical series on C(G) is very 
ample given above shows that any embedding of G extends to an embed- 
ding of the graph curve. Such an embedding corresponds to a linear series 
on the graph curve restricting to Lo( 1) on each line. But there is only one 
such linear series of (vectorspace) dimension g and degree 2g- 2 on a 
curve: it must be the canonical series, by Riemann and Roth. 1 

PROBLEM. Is it possible to drop the hypothesis of 3-connectedness? Is 
there such a result for other graphs? 

2. Graph Varieties. It seems quite interesting to look for a good 
higher-dimensional analogue of graph curves-graph varieties, say. 
Perhaps a graph variety should be defined as the union of planes such that 
the restriction of canonical sheaf to each component is trivial-that is, with 
d + 1 d-planes meeting a given d-plane. (Some of these, canonically embed- 
ded, appear as generic hyperplane sections of face varieties associated to 
homology spheres, as in Sections 6 and 7, above.) When is the canonical 
map an embedding? We seem to have Ho(o) = Hd A, where A is the 
simplicial complex made from the incidence complex (dual complex) of V; 
the double point locus of V, inside each d-plane, seems to be a graph 
variety; perhaps there should be some restriction placed on it, such as that 
it should be the “standard graph variety” with incidence graph as the 
complete graph on d + 1 vertices, where d is the dimension. 
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3. When does the canonical image of C (say for G connected, 
3-connected, and trivalent) lie on some kind of degenerate K3 surface? 
Guess: when G is the l-skeleton of a cell-decomposition of the 2-sphere. 
(Stable models of K3’s consisting of planes correspond to triangulations of 
the sphere; but other things can occur as limits in projective space.) 

4. From Proposition 1.2 we see directly why the product of two 
edge-disjoint cycles belongs to I. But also, we can “see” some quadrics of 
rank 4: If a pair of cycles a, b has exactly one edge x in common, and if 
two further cycles c, d also have exactly the edge x in common, then there 
will be a rank 4 quadric in I of the form ab-(constant) cd. Problem. When 
do such rank 4 quadrics generate I? 

5. Does the isomorphism of Propositions 1.2, 1.3 hold for arbitrary 
graph curves? 

6. In the proof of Corollary 2.2 we showed that if G is trivalent and 
3-connected, and if I’ has at most two vertices, then the restriction of the 
canonical series on C to C(V) is complete. Can this be extended to some 
nice class of subgraphs? 

7. The connectivity hypotheses in Corollary 2.2 are probably not 
necessary in general. The hypothesis that there are no multiple edges is 
certainly not necessary; it would be interesting to give a sharper criterion. 

8. From the theorem of Section 4 we see that each trivalent 
3-connected graph leads in a simple way to a Gorenstein ring. What are 
the properties of these rings? For example, are they in the liaison classes of 
complete intersections? 

9. When is dip( I’) (from Section 5) independent of the hyperplane 
chosen? It would seem not in general, since if, for example, V consists of 
3 nonadjacent vertices such that C(V) only spans a 3-space, then some 
hyperplane sections will have different dimensional spans than others, 
and thus !z’LZ’ will vary! But this dimension trouble does not occur if 
the canonical series is restricted to a complete series on C( I’), or if V is 
connected. 

10. Recall that .Y contributes to the Clifford index of C if both h”5? 
and h’Y are > 2. We would like to say that V contributes to the Clifford 
index of C if J.?(V) does; however, Corollary 5.3 only allows us to decide 
whether Y(V) contributes from the combinatorics when V or G - V is 
connected. so we have restricted ourselves to that case. 
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PROBLEM. Decide what the possible values of Cliff Y( V) are when 
neither V nor G- V is connected. For example, what are the possible 
Clifford indices for the line bundles of the form Y(V) for V as in the 
following example: 
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APPENDIX: HOMOLIFEROUS CONNECTIVITY OF GRAPH CURVES 

Sung Won Park’ 

1. Basic Definitions 

In the preceding paper, D. Bayer and D. Eisenbud introduce the com- 
binatorial Clifford index for trivalent graphs and prove that this is the same 
as the resolution Clifford index for plane trivalent graphs. On the other 
hand, for the Clifford index Cliff(C) and the gonality p = p(C) of a smooth 
curve C, 

Cliff(C)dp-2. 

We will show that with a few exceptions, the above is true for graph 
curves if we use the combinatorial Clifford index Cliff(C) and the gonality 
p = p(C), which is defined by the minimum of degrees of admissible covers. 
We will freely use definitions and notations of Bayer and Eisenbud. 

Recall that an admissible cover is a map between curves such that the 
image of a node is a node and the inverse image of a node is a union of 
nodes. It is more convenient to work with graphs than curves. On the other 
hand, to get results on curves, we need to define a good class of maps 
between graphs which correspond to admissible covers of curves. It turns 
out to be good enough to get a class of maps between the graphs which is 
slightly larger than the class of maps induced from admissible covers of 
curves. We will define such a class of maps below and call the maps in it 
semi-admissible. And then we will define the equivalence of graphs which 
corresponds to the successive blowings up and down of graph curves. 

DEFINITION 1.1. We will keep the following notations: 

h,(G) = dim H,(G, C) = the number of connected component of G 

h,(G) =dim H,(G, C). 

Then the genus g of a graph G is: 

g(G)=h,(G)-h,(G)+ 1. 

DEFINITION 1.2. For each vertex u of a graph G, the star of u is the set 
of edges incident to u: 

St(u) = {e E E(G): e is incident to u}. 

’ Department of Mathematics, Brandeis University, Waltham, MA02254. 

607/86/l-3 
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DEFINITION 1.3. A map cp: G -+ H between two graphs G and H consists 
of a vertex map cp: V(G) + V(H) between the sets of vertices and an edge 
map cp: E(G) + E(H) between the sets of edges preserving the incidence of 
vertices and edges; that is, if a vertex v and an edge e of G are incident, 
then q(v) and q(e) are incident in H. A map q between two graphs is 
called surjective if both the vertex and the edge maps are surjective. 

A surjective map cp: G + T from a graph G to a tree T is called a semi- 
admissible cover of T by G if its restriction for each open star cp: 
St(u) + St(q(v)) is surjective for all UE V(G). We will define the degree of 
a semi-admissible cover cp by: 

deg(cp)=max{(cp-‘(e)J:eEE(T)}. 

PROPOSITION 1.4. If f: C + D is an admissible cover of degree n of a 
graph curve then the induced map cp: G + T on the dual graphs is a semi- 
admissible cover of degree at most n. 

ProojI For each v E I’(G), define q(v) as the vertex of T which 
corresponds to f(C,), where C, is the component of C which corresponds 
to v, and similarly for edges. This defines a surjective map q between 
graphs in the sense of Definition 1.3. (Since f maps a node to a node, cp 
maps an edge to an edge.) To show that q is semi-admissible, it is enough 
to look at each open star St(u) of G. Fix a vertex u of G and the corre- 
sponding component C, of C. Let w  = q(v) and D, = f(C,). Every edge e 
of St(w) corresponds to a node q of D,,. Because f is admissible, there is 
a node p of C, with f(p) = q. If a is the edge which corresponds to the node 
p, then a E St(v) and cp(a) = e. Q.E.D. 

Figure shows some examples of semi-admissible covers. 

FIG. 1. Semi-admissible covers. 
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DEFINITION 1.5. Let T be a tree. For any edge e of T with the vertices 
u and w, T- e has exactly two components. Let T[u, e] be the unique com- 
ponent of T-e which contains u. If the edge e is obvious, then we will use 
the notation T[u] instead of T[u, e]. Let cp: G + T be a semi-admissible 
cover of a tree T by a graph G. Let us define G[u, e; cp] = cp-‘(T[u, e]). If 
cp is fixed then we drop it, and similarly for e. When both of e and cp are 
fixed, then we will simply write G[u]. 

DEFINITION 1.6. Let cp: G + T be a semi-admissible cover of a tree T by 
a graph G. A vertex u of T is critical if h,(G[u, e]) # 0 but h,(G[w, e]) = 0 
for each vertex w  incident to u and the edge e between u and w. 

DEFINITION 1.7. For each graph G, we define the underlying space JGI 
of G as for a simplicial complex (see [4]). Following [2], two graphs are 
homeomorphic if also their underlying spaces are. A graph G is a retract of 
a graph G’ if IGI is a deformation retract of IG’l. Two graphs G and H are 
equivalent if they have a common retract; that is, there is a graph F such 
that IFI is a deformation retract of 1 GI and IHI, or equivalently, G and H 
have subgraphs G+ and H+, respectively, such that G+ and H+ are 
retracts of G and H, respectively, and G+ and Hf are homeomorphic. 

DEFINITION 1.8. For any set A of vertices of a graph G of valency 1, 
define a retraction operator rA by rA(G) = G-A. If A is the set of vertices 
of valency 1, then we will write r(G) for rA(G). 

PROPOSITION 1.9. A connected subgraph G f of a connected graph G is a 
retract of G if and only if G+ 3 r*(G) for some n. 

Proof. If G+ 1 r”(G), then define A[i] c V(D), 1 d i< n, inductively, by 
A[i] = (UE V(r,Ci-l,...r,cll(G)): val(v)= l}- V(G+). Since G and G+ 
are connected G + = r ...r,C13(G). Thus G+ is a retract of G. 

Conversely,‘if G+ is’F:etract of G, then G+ can be obtained from G by 
removing vertices of valency 1 successively. If n is larger than the number 
of vertices in G - G+, then G+ 3 r”(G). Q.E.D. 

LEMMA 1.10. A retract G’ of a connected trivalent graph G is a sub- 
division of G. 

Proof: Let G+ be the subgraph of G which is an image of G’, that is, 
IG+ 1 = IG’[. By Proposition 1.9, G+ 3 r”(G) for some n. Since G is 
trivalent, r”(G) = G, hence G+ = G. Because G’ is homeomorphic to a 
trivalent graph G, it is a subdivision of G. Q.E.D. 

PROPOSITION 1.11. A graph H is equivalent to a trivalent graph G if and 
only if r”(H) is a subdivision of G .for some n. 
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Proof. If r”(H) is a subdivision of G, then G is equivalent to H. Conver- 
sely, if H is equivalent to G, then it has a subgraph H’ which is a retract 
of G and H. By Lemma 1.10 and Proposition 1.9, H’ is a subdivision of G 
and H’I r”(H). Since H’ is homeomorphic to G, it has no vertex of 
valency 1 and H’ = r”(H’) c r”(H). Thus, r”(H) = H’ is a subdivision of G. 

Q.E.D. 

DEFINITION 1.12. As in [2], a u - v walk of a graph G is an alternating 
sequence vO, e, , vi, . . . . ek, vk of vertices and edges of G such that u = vO, 
v = vk and for each i, vi- r and vi are the vertices incident to e,. Also, we 
will follow the definitions of a trail and a path in G. A trail (resp. a path) 
is a walk with all edges (resp. vertices) in it distinct. The number k of 
occurrences of edges is the length of the above walk. If k # 0 and v0 = vk, 
then the trail is a circuit. If in addition, all vi, i# 0, are distinct, then the 
circuit is called a cycle. A k-cycle is a cycle of length k. The distance 
dist(v, w) of two vertices v and w  of a graph G is the length of the shortest 
path between v and W. The distance dist(il, B) between two disjoint subsets 
A and B of V(G) is defined by: dist(A, B)= min{dist(v, w): VEA, WEB}. 
For a subgraph H of G, the diameter of H is defined by: 

diam(H)=max(dist(v, w): v, WE V(H)}. 

DEFINITION 1.13. If h,(G) # 0, then the girth y(G) of a graph G is 
defined by the length of the shortest cycle in G. 

LEMMA 1.14. A trivalent graph has a minimal girth among equivalent 
graphs; that is, ij” a trivalent graph G is equivalent to a graph G’, then 
Y(G) 2 r(W. 

Proof By Proposition 1.11, there is an integer n such that r”(G’) is a 
subdivision of G. Thus we have y(G) < y(r”( G’)) < y(G’). Q.E.D. 

See Fig. 2. 

G W 

FIG. 2. Retractions. 
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2. The Main Theorem 

In this section, we will show that Cliff(C) < p(C) - 2 for all graph curves 
C with four exceptions. First, we will fix some notations. Through this 
section, we will fix a graph curve C and its dual graph G which we will 
assume to be connected. Note that G is trivalent from the definition of a 
graph curve. Because of the duality, we will deal with graphs. We will use 
the following notations and definitions: 

DEFINITION (Notation) 2.1. We will fix the genus g of the graph G. The 
gonality p = p(G) is the gonality of the curve C = C(G). Following [ 11, the 
homoliferous connectivity 9 = q(G) of the graph G is the smallest number of 
edges in G disconnecting it into two parts with non-trivial first homology 
groups. We will also use Corollary 5.6 of [l] for the definition of the 
combinatorial cl&ford index Cliff(G) of the graph G, that is Cliff(G) = q - 2. 
We will define a number v = v(G) by the minimum of degrees of all 
semi-admissible covers of trees by graphs equivalent to G: 

v(G) = min{deg(cp): cp is a semi-admissible cover of a tree 
by a graph equivalent to G}. 

We will show that q d v unless G is one of the following graphs: B(2), 
K(4), K(3, 3), Peterson graph, and Heawood graph (see Fig. 3). Because 
v d p from Proposition 1.5, this proves Cliff(C) < p(C) - 2. 

We need to know when the homoliferous connectivity of a trivalent 
graph G is defined, that is, when there is a set of edges disconnecting the 
graph into two parts with nontrivial homology. In the following lemmas, 
we will find all trivalent graphs of genus g d 4 for which the homoliferous 
connectivity is not defined. For genus g > 5, see [l, Proposition 5.101. 

LEMMA 2.2. A trivalent 3-edge connected graph G of genus g,<4 is one 
of B(2), K(4), K(3, 3) or the prism. 

B(2) Ellxim Peterson H.awood raa.rb 

FIGURE 3 
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Proof Because G is 3-connected, g> 2. If g= 2, then d(G) = 2 and 
e(G) = 3, since G is trivalent. Thus G is B(2) which is the graph with 
two vertices connected by three edges. In fact, this is the only trivalent, 
connected, and 3-connected graph with multiple edges. (If there is a triple 
edge, then G=B(2). Any other graph with a double edge cannot be 
3-connected.) If g = 3 then d(G) = 4 and e(G) = 6. Since G is 3-connected, 
there is no double or returning edge. So each vertex of G is incident to 
three other vertices; that is, any two vertices are connected by a unique 
edge. By definition, G is the complete graph K(4) on four vertices. 

Assume g = 4. Then d(G) = 6 and e(G) = 9. There are two cases: G 
contains a triangle or not. If G contains a triangle A, then there are only 
three edges in G between A and G-A. Thus G-A is a graph on three 
vertices with three simple edges, which is a triangle. So G is a prism if it 
has a triangle. If G has no triangle, then split I’(G) into two parts as 
follows. Choose a vertex ui of G. There are three vertices, say, wi, w2, and 
wj incident to ui. Because G has no triangle, no two of wls are incident. 
Let u2, u3 be the other two vertices. Using wj, 1 <j< 3, instead of vi, we 
can see each wj is incident to vi, 1~ i< 3, and no two of vi’s are incident. 
That is, G is the complete bipartite graph K(3, 3) generated by F’= 
{uil 1 <i<3) and W= {wjl 1 <j<3}. Q.E.D. 

LEMMA 2.3. If a trivalent graph G of genus g d 4 is not 3-edge connected, 
then the girth y of G is less than or equal to 2. 

Proof Take a disconnecting set E of edges of G with e(E) = k < 2. If A 
and B are the connected components of G-E, then we have 3d(A) = 
2e(A) + k and g(A) > 1 since G is trivalent. Combining with Euler’s 
formula, we get d(A) = 2g(A) - 2 + k. By the same way, we have d(B) = 
2g( B) - 2 + k and g(B) > 1. We may assume 1 d g(A) < g(B). Because 
g(A)+g(B)+k-l=g<4, either g(A)=1 or g(A)=2 and k=l. If 
g(A)=l,theny~y(A)~d(A)=k~2.Ifg(A)=2,k=l,thend(A)=3and 
e(A) = 4. Since k = 1, A has a unique vertex u of valency 2. Since 
d(A-o) =e(A- u) =2 and g(A -u)= g(A)- 1 = 1, A-u is a cycle of 
length 2 in G; that is, y < 2. Q.E.D. 

To proceed, we need the following estimation from [3]. 

LEMMA 2.4 [3, Theorem IV.1 1. If G is a connected, trivalent graph of 
genus g and girth y, then 

g 2 2y12 if y is even 

g2(3/2)2’y-“/*>2Y’* if y is odd. 

Using the above lemma, we make the following estimations. 
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LEMMA 2.5. The homoliferous connectivity n of a 3-valent graph G is well 
defined unless G is one of B(2), K(4), or K(3, 3). In addition, n(G) < 
y(G) Q g(G) - 1 whenever n(G) is defined. (See also [l, Proposition 5.101.) 

Proof Choose a cycle r of length y in G. Since the set E of edges 
between r and G-T has e(E)<y, h,(G-Z)>g(G-Z)=g-e(E)> 
g--y. 

If y < g - 1, then q(G) d e(E) < y and q(G) is well defined. Otherwise, 
Lemma 2.4 gives g = y E (2, 3, 4). By Lemma 2.2 and Lemma 2.3 G is one 
of B(2), K(4), or K(3,3). Q.E.D. 

LEMMA 2.6. Let G be a connected trivalent graph of genus g and girth y, 
then y d [(g + 3)/2] unless G = K(3, 3) Peterson graph, or Heawood graph, 
for which y = (g/2) + 2. 

Proof If y>[(g+3)/2], then by Lemma2.4, (g,y)=(4,4), (6,5), 
(8,6). If (g, y ) = (4,4), then G = K(3,3) by Lemmas 2.2 and 2.3 above. If 
(g, y) = (6, 5) or (8,6), then G is the S-cage or the 6-cage, which are 
Peterson graph and Heawood graph, respectively. (See [2, pp. 63, 641.) 

LEMMA 2.7. Let G’ be an at most trivalent graph of genus g, 
homoliferous connectivity n. Let cp: G’ + T be a semi-admissible cover of 
degree m of a tree T by G’. Zf m -C n, then there is a unique critical vertex 
v of T which is trivalent. 

Proof If e is an edge of T and v, w  are vertices incident to e, then either 
h,(G’[v,e])=O or h,(G’[w,e])=O, since Iv-‘(e)] <m<n. Because 
deg(cp) = m d q - 1 < g - 2, by Euler’s formula, 

hl(G’Cv, el)+hl(G’[w, el)--MG’Cv, el)--hJG’[w, e])+ 1 

= g- IV’(e)1 h,(G’[Iv, el)+h,(G’Cw, el) 
>g-m+1>3. 

Hence, exactly one of h,(G’[v, e]) and h,(G’[w, e]) is nontrivial. We will 
define a partial order by v > w  if h,(G’[v, e]) # 0. 

Since T is a tree, we can extend this as a partial order on V(T). Since we 
can compare any two incident vertices and T is connected, the above 
partial order is directed. Since V(T) is a finite set, we have the maximum 
v of V(T) under the above order. By definition, the maximum v is the 
critical vertex. 

We want to show val(v)=3. If val(v)= 1, then G’[v, e] =cp-‘(v). Thus, 
H,( G’[v, e] ) = 0, a contradiction. Assume that val(v) = 2. Let a, b be the 
edges incident to v and let U, w  be the vertices incident to a and b, respec- 
tively. Let A = q-‘(a), B= q-‘(b), and V= q-‘(v). From Euler’s formula, 
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d(G’) - e(G’) = 1 - g 

d(G’[u])-e(G’[u])=h,(G’[u]) 

d(G’[w])-e(G’[w])=h,(G’[w]). 

On the other hand, we have the following relations: 

d(G')=d(G'[u])+d(G'[w])+d(V) 

e(G’) = e(G’[ul) + e(G’[w]) + IAl + IBI 

Combining the above relations, we obtain 

Note that g = g(G’) and q = q(G’) are invariant under equivalences but 
the girth of G’ is not. To get an invariant under equivalence, we need the 
minimum of the girths of graphs equivalent to G’, which is, by Lemma 1.9, 
the girth of the trivalent graph G which is equivalent to G’. 

If y = y(G) is the gonality of the trivalent graph G equivalent to G’, then 
we can use all the above inequalities between q, y, and g for trivalent 
graphs. From Lemmas 2.5 and 2.6, q d y < (g/2) + 2. Thus, m < r] - 1~ 
(g/2) + 1. Combining two inequalities, we have 3 - 3g > 6 - 4m 2 2 - 2g, 
which is a contradiction. Q.E.D. 

THEOREM 2.8. If G is a connected and trivalent graph, then q(G) d v(G), 
unless G is one of B(2), K(4), K(3, 3), Petersen graph, or Heawood graph. 

Proof. By Lemma 2.3, we may assume G is 3-edge connected. By 
Lemmas 2.2 and 2.5 we may assume g 2 5 and r] = v(G) is well defined. We 
want to show that if v = v(G) <q = q(G), then G is either Peterson graph 
or Heawood graph. 

Take a semi-admissible cover cp: G’ + T of degree v of a tree T by a 
graph G’ equivalent to G. By Lemma 2.7 T has a unique trivalent critical 
vertex v. If wi, ei are the vertices and edges incident to v and Ti = T[wi], 
Gi = G’[wi], and Ei = cppl(ei), 1 < i< 3, then 

h,(G;) = 0 forall i=l,2,3. 

Since G and G’ are equivalent and G is trivalent, by Lemma 1.9, G is a sub- 
division of a retract G+ of G’ which is a subgraph of G’. Let G+ = G,! n G+ 
for 1 Q i< 3. Define Gi = G+ n G by the subgraph of G whose underlying 
topological space is (G+ 1. By the same way, if we define v’ = cp -l(u), 
V+=V’nG’, V= V+ n G, and k = d( I”) - d( I’), then k is the number 
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of edges in G between G,, G2, and G,. The number of edges of G between 
T/and UlCiC3Giis . . 

3d(V)=e(G)-xe(G,)-k. 

By Euler’s formula, we obtain 

e(G)=d(G)+ g- 1 

e(Gi)=d(Gi)--h,(G,)+h,(Gj) for all i= 1, 2, 3. 

Since Gi is equivalent to G; for any i= 1, 2, and 3, 

b,(Gi) = h,(G;) = 0 for all i = 1, 2, 3. 

Hence, 

e(G) - 1 e(G;) = d(G) - 1 d(Gj) + 1 h,(G,) + g - 1 

=d(I’)+Ch,(Gi)+g-1. 

By using d( V+ ) = d(V) + k, we obtain 

Since d(VB+)<d(V’)<v<q-l<(g/2)+1, we have k+Ch,(G,)<3. 
Thus, k = 0 and h,(Gi) = 1 for all i, which imply d( I’) = v, g = 2v - 2. Since 
G is trivalent and dist(G,, G,) = 2 for i # j, 

d(G,)=v-2 for all i 

v+1<q<y<diam(Gi)+3=v+1 for all i. 

Thus each G, is a (v - 2)-pointed line segment. 
Let V={ui:l~idv},G,={uj: l<j<v-2},G,={bj},andG,={cj}. 

We may assume that the indices are ordered along the line segments. We 
may assume that a1 and u2 (u,,~, and u,, respectively) are incident to a, 
(a,-2, respectively). If bi and b, are incident to u, and u2, respectively, for 
i< j, then we have 

v + 1 < dist(bi, b,) + 4 d diam(G,) + 4 d v + 1 

j - i = dist(bi, b,) = v - 3 

i= 1 and j=v-2. 

This implies b,, b,-, are incident to u1 and u2, respectively. Similarly, b,, 
b y ~ z are incident to v, ~, and u,, respectively (after interchanging u,,+ , and 
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al 

FIGURE 4 

O, if necessary). For the same reason, {cl, c,_~} is the set of vertices of G3, 
each of which is incident to one of the pairs of vertices {u,, uz} and 
{u,- ,, u,}. We may assume that ci is incident to vr. It follows that c,-* 
is incident to u2. If in addition, ci is incident to u,~ , , then G contains a 

cycle Ch,h, u,-~, cl, ui] of length 4; that is, q < y < 4. Since g = 2v - 2 
and g 3 5, we obtain v > 4 2 q, which is a contradiction. Thus, c1 is incident 
to u, and c,-~ is incident to u,- ,. Because of the cycle (a,, ui, b,, u,+ i, 
C v-29 u2, a,), we get yd6. Since 46v<y<6, we obtain v=4 or 5. Thus 
the only possibilities are Peterson graph and Heawood graph (see Fig. 4). 

Q.E.D. 

1. 
2. 

3. 

4. 
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