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INTRODUCTION 

If XC P’ is a projective variety, then the Hilbert polynomial of X is a 
fundamental invariant. A considerable refinement of this invariant is given 
by the free resolution of the homogeneous ideal of X; as Hilbert pointed 
out already 100 years ago, the Hilbert function of the homogeneous coor- 
dinate ring of X, and thus in particular the Hilbert polynomial, can easily 
be computed from the free resolution. But although the geometric 
significance of the Hilbert polynomial has been widely studied, the finer 
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invariants of the free resolution have remained quite mysterious until very 
recently, when a series of investigations and conjectures of Mark Green, 
Rob Lazarsfeld, and others has brought fresh attention to the area (see, for 
example [12, 13, 19, 5, 17, 1, 16, 81). 

Most of this recent work concerns the “linear part of the resolution,” or 
can be interpreted in terms of this linear part. To be explicit, consider 
a graded module .A’ generated by elements of degree 0 over the 
homogeneous polynomial ring S = F[x,, . . . . x,]; in the geometric applica- 
tions, A’ is usually either the ideal sheaf of a projective scheme, or the 
module of sections of twists of the canonical bundle of a projective scheme, 
suitably twisted, in either case, to bring the generators into degree 0. We 
can write the (unique) minimal graded free resolution of A in the form 

$7: . . . -+Fi-+Fi_,-+ . . . -+ F, -+ F, -+ A%? -+ 0, 

where 

F,=c +a,) with au> i 

because we have assumed that A! is generated in degree 0. The linear part 
~$9 is the subcomplex 

pi, : ’ ’ . + Fi’ + F;:- 1 -a . . . +F;-+F;-+Af-+O, 

where 

Fj = 1 S( - av) with au= i. 

It is called the linear part because the maps between the Fi are given by 
matrices of linear forms. 

In many ways the linear part ei, seems simpler than the rest of the 
resolution. For example, &in depends only on the parts of A of degrees 0 
and 1, which we will call A4 and M, throughout this paper, and the part 
of the module structure expressed by the map W@ M+ Ml, where W is 
the vector space of linear forms in S. There is even a sort of “closed form” 
construction of pi, in terms of this data; see [ 15; 4, p. 108, Theorem] for 
treatments of this elementary fact. The ranks of the free modules Fi given 
by this construction is 

rank FL = dim ker 
( 

i W@ M -+ “$,’ W@ M, 
> 

, 

where the map may be represented, for example, as a graded piece of the 
differential of the tensor product of A and the Koszul complex of S. (The 
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homology of this complex is Tor,*(F, J?‘), so the equality is immediate.) In 
Green’s terms [ 111 this is the dimension of the Koszul homology group 
&.,l&K W)* 

Perhaps the simplest invariant attached to qi, is what we will call the 
“linear projective dimension” of 4: it is the largest k for which Fb is non- 
zero. A good deal of the recent geometric work mentioned above rests on 
a simple “Vanishing Theorem” of Mark Green which gives in effect an 
upper bound for the linear projective dimension of JH in certain cases. The 
purpose of this paper is to introduce a number of conjectures strengthening 
and generalizing this vanishing theorem, and to prove them in some special 
cases. 

As Mark Green has pointed out, even the weakest of our conjectures 
(the linear syzygy conjecture, 2.1 below) implies a conjecture of Green and 
Lazarsfeld [13] on the geometric significance of the linear part of the 
resolution of a finite set of points; see [S] for an exposition of this matter. 

To explain our results and conjectures, we begin by establishing notation 
that we will use throughout this paper: 

We work over an arbitrary ground field F. 

W will denote a vector space of dimension w, thought of as the space 
of linear forms in the polynomial ring S= F[ W]. 

JY will denote a graded S-module 

A=M@M,@... 

which we may take to be generated by M= M,. We write m for the dimen- 
sion of M. 

We will often assume that A? has a linear k-syzygy: that is, if ei, 
as above is the linear part of the minimal free graded resolution for JZ, 
then FL ~0, or equivalently TorfCW1(F, &)kr the degree k part of 
Tor[CW1(F, J.&‘), is nonzero. 

With this notation, Green’s Vanishing Theorem says that if J? has a 
linear k-syzygy, and if JH satisfies a certain “global” hypothesis, then 
dim M=m > k. (See Theorem 1.1 for a precise statement.) Since the 
hypothesis that JY has a linear k-syzygy, and also the conclusion of this 
theorem, only depend on the data involved in the multiplication map 
WQ M -+ M,, it is natural to hope for a version of the theorem in which 
the global hypothesis is eliminated in favor of a “local” hypothesis on this 
map alone. For example, Green’s global hypothesis implies the local 
hypothesis that no element of W annihilates any element of M. After a 
study of examples, we became convinced that this should suffice, whence 
we have the following primitive version of one of our conjectures: 
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Conjecture. If A has a linear k-syzygy and no element of W annihilates 
any element of M, then m > k. 

The versions of this conjecture stated in the body of this paper improve 
the one given above by giving quantitative consequences of the existence of 
a linear k-syzygy, both in cases where m > k and in cases where m <k. For 
example, consider the variety 

R, = {(x@m)~ W@Mlxm=O} 

consisting of pairs of linear forms and elements of M that they annihilate. 
The conjecture above can be reformulated as follows: 

Conjecture. If & has a linear k-syzygy and m 6 k, then R, # 0. 

But looking at examples, one sees that the following quantitative version 
is justified: 

Conjecture. If J%! has a linear k-syzygy and m < k, then dim R, > k. 

To understand this estimate in at least one case, consider the situation 
where .M z S/Z, that is, m = 1. The linear part of the free resolution of &’ 
is then a Koszul complex on whatever linear forms happen to lie in Z, and 
thus &? has a linear k-syzygy iff at least k independent linear forms lie in 
Z iff dim R, > k. This shows that the conjecture is correct and sharp in this 
case. The reader may convince himself that all the conjectures in this paper 
are satisfied in a similarly trivial way in the case m = 1. 

This conjecture may be modified to apply to modules with any values of 
k and m (2.1 below), but all the cases may be deduced from the case where 
m = k, which we think of as the critical case. In this critical case, various 
strengthenings are possible. One of the most interesting is perhaps the 
“epimorphism conjecture.” To state it we will restrict ourselves to the 
“minimal case,” and assume that for any M’s M, the submodule 

.A?‘=M’@M,O ... CJki! 

has no linear k-syzygy. We have: 

Conjecture. If m = k and & is a minimal module with linear k-syzygy 
in the sense above, then every element of M is annihilated by some element 
of W; that is the projection map R, + M is an epimorphism. 

We can actually prove a statement closely related to this last conjecture, 
and, aside from the examples and special cases that we know, this provides 
the main evidence for believing the conjectures. To explain this statement, 
we must introduce another idea. 

A linear k-syzygy of M corresponds to an element e of the kernel of the 
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Koszul map IC: Ak W@M+ A’-’ W@M, induced by the multiplication 
map WQ A4 --f M, . Let R be the kernel of the multiplication map, so that 
R is the set of linear first syzygies (and R,, defined above, is the set of rank 
1 tensors in R.) The map IC factors as 

k-l 

- /j WQM,, 

where A is the diagonal in the exterior algebra. It is easy to check that with 
these notations A @ M(e) E A”- ’ WQ R, and taking adjoints we get from 
e a map A k-1 W* + R. Instead of asking about the locus R, c R, we may 
now ask about its preimage in AkP1 W*. In fact, we can do even better. 

The elements of Ak - ’ W* which are “most likely” to map to elements 
of R, seem to be the “pure (k- 1)-vectors,” that is, the products 
a1 A “’ A akel. These can be thought of as elements of the afhne cone 
r over the Grassmannian G of (k - 1 )-quotients of W, which is naturally 
embedded in the projective space of lines in A”-’ W*. Let 

ri= (y~Tly goes to an element of R, in R} 

Our strongest conjectures concern the image of r, in R,. What we can 
actually prove, except in special cases, concerns r1 itself. 

The plan of the paper is as follows. Section 1 contains an algebraic ver- 
sion of Green’s proof of his original vanishing theorem. In Section 2, which 
is the heart of this paper we discuss various conjectures strenghthening it. 

Section 3 contains some elementary remarks on linear syzygies in 
general, which serve, for example, to reduce the Linear Syzygy conjecture 
to the case m = k. Section 4 contains our main theorem on the set r1 intro- 
duced above. 

The remaining sections treat various special cases. The first two are 
rather trivial, and we treat them very briefly: In Section 5 we do the 
“monomial” case where (in the notation above) the image of 

k 

e:M*+/\W 

is generated by elements of the form xi, A . .. A xi, for some basis 
xi,...,x, of W. In Section6 we do the cases k=w and k=w-1. 

In Section 7 we classify the “basic” examples of 2-generator modules with 
linear second syzygies (k = 2). Surprisingly, there is a unique example over 
each polynomial ring in w variables with w = 2 or w odd, none when w > 2 
is even. The reduced support of the example in w = 2d + 1 variables is the 
affine cone over a rational normal curve of degree d, we conjecture that 
the examples are associated with some geometrically familiar sheaves on 
the rational normal curves. 
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With all these reductions and special cases done, the simplest remaining 
open case is that of 3-generator modules with a linear 3rd syzygy over a 
polynomial ring F[ IV] in five variables (that is, W is 5-dimensional). Such 
things correspond, by the method of analysis described in Section 2 below, 
to 3-dimensional families of forms in A3 WS A* W*. Thus we may regard 
them as coming from nets of skew-forms in five variables. 

It turns out that the classification of such nets is finite: In [6] we give 
the classification and deduce that our conjectures hold in live variables. 

Much, of course, remains to be done. Aside from proving or disproving 
the conjectures we have left, the following seems to us some of the more 
central problems: 

1. Find stronger conditions that hold in the case m > k. In particular, 
it would seem natural to study a linear k-syzygy of a module JZ by looking 
at it as a linear (k - 1)-syzygy of the first syzygy module of &‘, but this 
syzygy module usually has many generators. Find some conditions strong 
enough to make an induction. 

2. The relations between linear syzygies: How many linear (k - l)- 
syzygies does one obtain from a given linear k-syzygy? Which linear 
k-syzygies imply the existence of linear k + 1 syzygies? What conditions 
on a module &? are implied by the existence of two (or more) linear 
k-syzygies ? 

3. What subvarieties of PM x P W can be the rank 1 locus, or the 
image of r,, for a module with a linear k-syzygy? 

4. Study the derivative to prove that the image of r, is small and the 
image of r1 is large; that is, analyze the map T-t R in the neighborhood 
of a point of r,,. For example, if one could show that the differential to this 
map could not map the tangent space of r,, onto R, one could use the ideas 
of Section 4 to prove at least part of the conjectures. 

5. Could something similar to the epimorphism conjecture hold-for 
codimension t subspaces-in case dim M= k + t? Does this correctly 
predict the numbers observed in the special cases? What should be the 
generalization for m <k? 

6. Specialization theorems for linear syzygies: Under what conditions 
does a module with a linear k-syzygy specialize to one with a linear 
k-syzygy? For example, it has been shown that the ideal of 2 x 2 minors of 
a l-generic p x q matrix (regarded as a module generated in degree 0 by 
twisting by 2) always has a linear r + s - 4 syzygy (Eisenbud, unpublished), 
and this has been extended by Koh and Stillman [17] to certain ideals of 
4 x 4 pfaftians. 

7. It seems reasonable to hope that the result on the monomial case 
in Section 5 could be strenghthened to include some of the stronger versions 
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of the conjecture, (or perhaps used to find counter-examples !) At any rate, 
it should be possible to give a combinatorial analysis of the situation in this 
case. 

This work was begun while Mike Stillman and the second author held 
NSF postdoctoral fellowships at Brandeis University, and early parts of it 
owe much to the collaboration with Stillman; in particular, the idea of 
doing the monomial case (Section 5, below) is his, and we are grateful to 
him for his permission to include it here, and also for many other useful 
discussions of the material. In addition all our conjectures were derived 
from examples made using the program Macaulay of [2]. 

1. GREEN'S VANISHING THEOREM REVISITED 

Here is an algebraic version of the Vanishing Theorem of Mark Green 
[ 11, Theorem 3.a.11. Though the statement is considerably more general 
than Green’s, the proof is simply a translation of his proof into algebraic 
language. 

VANISHING THEOREM 1.1. Zf A? is a graded module over the polynomial 
ring S := F[ W] and A is torsion free as a module over R := F[ W]/P for 
some (absolutely irreducible) homogeneous prime ideal P not containing a 
linear form, then the length of the linear part of the free resolution of A is 
-C the vector space dimension of M; that is, 

Tors(F, A),, = 0 for p 2 dim, M. 

Proof: Note that the projective dimension of .4 is < dim W- 1, since 
& has depth at least 1. Thus if dim, M > dim W there is nothing to prove, 
and we may assume that dim, M < dim W. But if dj # 0 for some j < 0 we 
would have dim Ma dim W, thus it follows from our assumption that 
Aj = 0 for all j < 0. 

Since P is absolutely irreducible, we may assume that F is algebraically 
closed. 

The proof consists of a Koszul cohomology computation and a general 
position result. First the Koszul computation: 

Since J&,, = 0, the module Torz(F, A),, is the kernel of the map 

jy WQM+p~l WQM1 

sending t = x,x,@ e, to xj., +x,- jQ xje,. Here Z runs over the set of 
p-tuples of the elements of a fixed basis x of W. If we let .Z range over the 
(p - 1 )-tupels, we may rewrite this as 
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Suppose now that t is in the kernel of this map. The elements x,-~ 
are independent, so for each (p - 1 )-tuple of .Z of basis elements, 
Cj+J xje,+ j= 0. Collecting all the equations that bear on a fixed p-tuple Z, 
we see that e, is knocked by each xi for j E Z into the submodule of A! 
generated by the x, A for k $ I; that is, e, E socle A/( {x~}~ + I A’. We wish 
to show that for a general choice of coordinate system, this represents p 
independent conditions on e, (one for each element of I). This is an 
algebraic translation of the fact that for a global section of a vector bundle 
to vanish at p general points is at least p linear conditions: 

LEMMA 1.2. Let A! be as above. Zf a basis x0, . . . . x, of W is chosen 
generally, then for all subsets xi,, . . . . xi, of W, the set 

A4 n socle A/(x,, . . . . x,)&f= (rn~A4I Wmc(x,,, . . . . xi,)M) 

has codimension > w + 1 - r in A4 or is 0; in particular it is 0 if 
dimM<w+l-r. 

Proof Given any eE M, there is an open set of closed points p in 
Proj R such that, writing 9 for the prime ideal associated to p, e becomes 
a free generator of the free R,-module A$,, and there is a homomorphism 
cp: .A$ + x(p) sending e/l to something nonzero (here A$, denotes &/9&Y, 
the “fiber” of 4 at p). 

It follows that there is an open set of w + 1-tuples of such points and 
maps (PO, cp,,), . . . . (p,, cp,) such that the kernel of the corresponding 
homomorphism 

has codimension w + 1 or is 0. Because Proj R is irreducible and non- 
degenerate in Proj S and F is algebraically closed, a general such w + l- 
tuple corresponds to a general choice of coordinate system x0, . . . . x, in 
which the pi are the coordinate points 

(1, 0, . . . . 0) ..- (0, . ..) 0, 1). 

We claim that such a coordinate system satisfies the condition of the 
lemma. 

To check this, simply note that if 

e fz socle A/(xi,, . . . . xi,) A? 

then certainly 

e E socle(Ap, := A/(x0, . . . . (xk left out), . . . . x,) A!) 
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for k 4 il, . . . . i,, so e + 0 in J&,~ for w + 1 - r values of k. The desired 
conclusion follows. 1 

Problem. We have used irreducibility and torsion-freeness to say that a 
general choice of points satisfies the condition that M+ @ K(P~) is of 
maximal rank, and spans the space. Can this somehow be done without 
algebraic closure? 

Remark. The lemma implies a restriction on which l-generic pairings 
W@ M -+ M, come from a nondegenerate module in the sense above. 

2. CONJECTURES ON LINEAR SYZYGIES 

Notation. If R c M @ W is a subspace and j B 0 is an integer, then we 
write Rj for the subvariety of all tensors of rank <j in R. (Despite our 
other conventions, this is NOT the jth graded piece of R !) Equivalently, 
regarding R as a subspace of Hom(M*, W), we take Rj to be the set of 
maps in R of rank 6 j. 

Linear Syzygy Conjecture 2.1. If A = MOM, has linear k th syzygies 
over F[ W] (lpd 2 k), then 

R:=kerM@ W-+M1 

satisfies: 

ifdimM<kthendimR,ak 

if dim M>k then dim Rmpk+, >k, 

where m = dim M, 

Remarks. (1) (Green) This conjecture (in the case m = k) implies the 
Green-Lazarsfeld conjecture [ 131 on resolutions of small numbers of 
points in projective space. See, for example, the discussion in [S]. 

(2) The conjecture can be reduced to the case dim M= k-see the 
reduction following Proposition 3.1. 

(3) From examples, the conjecture seems fairly sharp in the case 
dim M < k, but can probably be improved in the case dim M > k. 

Method of Analysis and Stronger Conjectures 
By Koszul homology analysis, a linear kth syzygy corresponds to an 

element of Ak W@M that goes to zero under the composition 

Ak W@M-t Ak-l W@ W@M+ Akpl WQM,, 
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that is, setting N= M*, a map N+ A” W such that for all c1 E Ak- ’ W* the 
composition 

N- AkWA W 

lies in Rc Hom(N, W), where we have written B for the map corre- 
sponding to ~1. Thus we may without loss of generality suppose that R is 
the set of all maps obtained in this way, and the conjecture, in the case 
dim N < k, say, amounts to proving that for every map (equivalently, 
inclusion) N c AkW, the image R of 

Ak-’ W* + Hom(N, W) 

has rank 1 locus of dimension 2 k. 
Strengthenings of the conjecture, and a heuristic reason to believe in it, 

come by restricting our attention to the locus r of pure vectors in 
Ak-’ W*, the cone over the grassmannian G = Gr( iV+ k - 1). Let N, and 
W, be the trivial bundles obtained by pulling back N and W to G, and let 

O-S-W,LQ-0 

be the tautological exact sequence on G. Composing the diagonal map 

A wG:AkWG+Ak~lWG@WG 

with /j’-‘q@ W, we derive a map of vector bundles 

p: AkWG+ Ak-‘Q@ W, 

on G whose fiber p Ic over the point of G corresponding to an element 
a E Akpl W* is, up to a scalar, the map 6 (note that B does not define a 
map of vector bundles Ak W, --, W, because when a is multiplied by a 
factor r, the map E is multiplied by r as well; the @ Ak-‘Q serves to 
“cancel out” this scalar.) Restricting p to N, c Ak W,, we obtain 

p,,,: N, + Ak-‘Q@ W,. 

The image of r in Hom(N, W) is just the set of maps obtained fiber by 
fiber from this map of vector bundles. 

We can make a stronger conjecture by requiring the inequalities of the 
linear syzygy conjecture to hold for the subvarieties of the R, consisting of 
points in the image of r; that is, we may look in r at the locus r, where 
the map pN: NG+ A k-‘Q@ W, has rank <s, and require that the image 
of r, in R, have at least the given dimension: 
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Strong Linear Syzygy Conjecture 2.2. The image of r, + R has the 
dimension predicted for R, in the Linear Syzygy Conjecture; for example, 
if m 6 k, then the dimension of the image of r, is at least k. 

Two kinds of degenerate examples of modules with linear kth syzygies 
limit the possible strengthenings of the conjectures: 

( 1) If A4 contains an element annihilated by a k-dimensional space of 
linear forms, then A’ (or even the submodule generated by that element) 
obviously has a linear k-syzygy. 

(2) If W= IV”@ (x), A? has a linear (k- 1)-syzygy over W’, and A? 
is annihilated by x, then A’ has a linear k-syzygy. Of course if m = k, then 
A4 may have no rank 1 relations as a module over IV’, so the rank 1 locus 
of the relations on .A? will be exactly the space (x) 0 M. 

Remark. In (2), if (x) 0 A4 does not consist of images of pure vectors, 
then of course the strong conjecture is false! 

Of course the simplest way for the strong conjecture to hold would be 
for the following still stronger condition to be true. For simplicity we deal 
only with m <k: 

Generic Injectivity Conjecture (Also Suggested by Mark Green) 2.3. If 
m 6 k and A does not have a linear kth syzygy over a polynomial ring on 
any W’s W, then the map f 1 + R is generically injective. In particular 

dim R,Bk+(k-m)(w-k). 

Note that if m = k this reduces to the old conjecture. Note that the 
restriction that A’ does not have a linear kth syzygy over a polynomial 
ring on any W’s W is necessary: given an A? with m < k, we can increase 
w arbitrarily by tensoring everything with a polynomial ring in some new 
variables (that is, add elements to W, but no new relations at all). Thus 
generic injectivity cannot hold in general. 

Note that one should almost never hope for injectivity, as opposed to 
generic injectivity, again because r, is mapped to the 0 element of 
Hom(N, W). For example, when 

as is usually the case, we may guarantee r, # 0 by simply choosing an M 
in the kernel of the map induced by some pure element of Akpl W*. 

Perhaps more manageable strengthenings of the Strong form are the 
following, which give “reasons” for the image of r1 in R, to be large: 
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Image Conjecture 2.4. If JZ is not annihilated by any linear form, and 
m <k, then the closure of the set of points in W which are the images of 
rank 1 transformations from r1 form a subvariety of dimension > k in W. 

Another version is the following, which is heuristically supported in the 
case w > k > 2, or k = 2, w odd by Theorem 4.2. (In the cases k = w, and 
k = 2, w even, it holds vacuously, as every ..M with dim A4 = k and a linear 
kth syzygy has a proper submodule with a linear kth syzygy over a smaller 
W In case k = w this is elementary, as such an JZ must contain the residue 
class field in degree 0. In case k = 2 it is proved below.) 

Epimorphism Conjecture 2.5. In the situation of the Linear Syzygy 
Conjecture, suppose that dim M= k and that no submodule of M supports 
a linear k-syzygy. Then the maps induced by nonzero elements of r1 have 
as kernels every codimension 1 subspace of N-that is, every element of M 
is annihilated by some linear form. 

A Wrong Idea Exposed. This conjecture says that if no subspace of M 
supports a linear k-syzygy, and m = k, then every codimension 1 subspace 
of N is closed in the sense that there is an element of ri vanishing on it but 
not on all of N. A natural hope would be that it is actually closed in all 
of A“ W-one might even hope that every k - 1 space might be closed in 
this sense. This is quite false. In fact already in the case k = 2, the closure 
of an element of A*W, thought of as a skew-symmetric map from W* to 
W, is the set of transformations with kernel containing the kernel of the 
given one. Thus no l-dimensional set is closed in A2 W! What saves the 
conjecture in that case is that under the hypothesis that no element of M 
is annihilated by an element of W, N cannot contain any transformation of 
rank < w - 1, and this implies that it cannot contain any two transforma- 
tions with the same (or even with an inclusion of) kernels, so l-dimensional 
subspaces of N are closed in N. 

3. GENERAL REMARKSON LINEAR SYZYGIES 

We begin by showing that Conjecture 2.1 reduces to the case m = k. The 
reduction rests on two simple constructions of new modules with linear 
syzygies from old ones. 

PROFQSITION 3.1. Suppose that M has a linear k-syzygy. 

(a) For any subspace w’c W of codimension c, the F[ W’] module 
MO M1 obtained by restricting scalars has a linear (k - c)-syzygy. 
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(b) For a generic subspace M’ s M, the module 

JV=A’/(F[W] M’)=(M/M’)@(M,/WM’)@ . . . 

has a linear k-syzygy. 

Proof. (a) We may inductively assume that c = 1, and write 

w= w’@(x). 

Let 

e=e,+e,Ej\ WQM=(x* j\l W’QM)@(i WQM) 

be the Koszul cycle corresponding to the linear kth syzygy, where e, and 
e, are the components corresponding to the given direct sum decomposi- 
tion. Let 

k-l 

XA /j W’QM 

lC: Kh 
(A WYQM) --&+ (*i; fQMl) 

be the corresponding decomposition of the koszul map K. Note that rc2 is 
the Koszul map for W’, and IC, =x A u2. From x(e) = 0 we derive 
rcr(er) =0 and rc2(e2) = -rc12(el). Thus if e, #O then M has a linear 
(k- 1)-syzygy over w’, whereas if e, =0 then Ic2(e2) =0 and M has a 
linear k-syzygy over IV’. 

(b) Again suppose that e EA’ WQM corresponds to a linear 
k-syzygy. The commutativity of the diagram 

AWQM - 

k-l 

A WQMl 

I 

i WQMjM’ 

k-l I 

- /j WQM,/WM 

shows that if the image of e in Ak WQM/M’ is nonzero, then JV has a 
linear k-syzygy. The image is certainly nonzero for generic M’, so we are 
done. 1 

Remark. The conclusion of (a) can be rephrased as saying, with 
obvious notation, that if W’ is a subspace of codimension 

c < lin proj dim w 4? 
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then 

lin proj dim w M - c < Iin proj dim a,, JZ. 

It seems plausible that we will have equality for generic choices of W’. 
If this is so, it would give an interesting condition on the Koszul kth 
homology for the (k + 1)st homology to be 0. 

Reduction of Conjecture 2.1 to the Critical Case. First suppose that 4 
has a linear k-syzygy and m > k. In this case, by Proposition 3.1(b), if we 
choose a generic subspace M’ c M of dimension m -k, then A?/F[ W] M’ 
has a k-linear syzygy. If Conjecture 2.1 holds in the critical case, then there 
is a k-dimensional family of linear relations of rank 1 on this module. 
However, each such relation gives rise to a relation of rank at most 
m-k+1 on&,sowearedone. 

Next suppose that dim M < k. Using Proposition 3.1(a) in the case when 
w’ has codimension 1 in W, and writing PR, for the projective variety 
associated to R, we see by induction that since .M has a linear (k - 1) 
syzygy over F[ W’], the spaces 

(PW’xPM)nPR,cP(W@M) 

all have dimension at least k- 2. Since the intersection of all the 
P w’ x PM is empty, it follows that PR, has dimension > k - 1, and thus 
that R, has dimension > k as required. 1 

Remark. Since the choice of h4’ in the first part of the reduction is 
arbitrary, it should be possible to obtain more from this. It seems likely 
that the conjecture is far from sharp in the case m > k. 

Similarly, the image conjecture can be reduced to the critical case: 

~OPOSITION 3.2. If the image conjecture is true in all cases of k-linear 
syzygies of modules with m = k generators, then it holds in general. 

Proof: We may suppose by induction that the image conjecture holds 
in all cases where k-m < d, and we must prove it under the assumption 
that k-m = d. If 4? has a linear kth syzygy then of course it also has a 
linear (k - 1)st syzygy-in fact many, in general. Among these are the ones 
corresponding to composite maps N + Ak W + Ak-’ W, where the second 
factor is obtained by operating with an element y of W*. By Lemma 3.5, 
below, we may assume that no such y annihilates N. Thus y(N), and with 
it N, has a (k - l)-dimensional family of rank 1 images in W under 
elements of ri. All of these images are contained in the hyperplane 
ker y: W+ F. 
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This shows that every hyperplane contains a (k - 1)-dimensional family 
of rank 1 images, so there must at least a k-dimensional family of them to 
start with. 1 

Now let A be a module with a linear k-syzygy corresponding to 

eEiW@M=Hom N,iIV. 
( ) 

We will suppose that A is minimal in the sense that e represents an inclu- 
sion N c Ak W, and we will identify N with this subspace of Ak W. 

The following is a very weak version of our conjectures: 

PROPOSITION 3.3. For any N c A” W there is a subspace V of dimension 
k in W* such that the image of Ak- ’ V c r in Hom( N, W) has dimension k. 

Proof Write n E N as a sum of pure vectors, say 

n=xl A ... Ax,+ ‘..) 

with respect to some basis of W, with dual basis y,, . . . . y,,,. By our 
hypothesis, we may assume that V= (y,, . . . . yk). We can act with the k 
elements 

YI A ... ( A yi omitted) A . . . A y, 

to obtain elements of the form 

xi + (linear combination of xk + i, . . . . x,). 

Since these span a k-space, the proposition is proven. 1 

Notation. Define L by 

LEMMA 3.4. IfLcAkVhas codimension <k, then A :L@V+Akf’V 
is onto. 

Proof. Akt’ V is spanned by subspaces Ak+’ V’, where V’ ranges over 
the k + l-dimensional subspaces of V. Further, L meets each such in 
codimension <k, and in particular nontrivially. Thus it suffices to prove 
the lemma when dim V= k + 1. In this case, indeed, it suffices for L to be 
nonzero, as required. 1 

Define K by 

O+K+Ak-‘W*+R-+Q. 
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We have 
0 + Hom( W*, L) + Hom( W*, Ak W*) --+ Hom( W*, M) - 0 

J J J o- K - /Ik-lw* - R -0 

Note that we thus have L 2 K A W*. 

LEMMA 3.5. If L contains a subspace of the form y A Ak-’ W* then y$il 
has lpd over w’ = ker y; in fact the relations R only involve variables from 
W’. A fortiori, the same is true if K contains a subspace of the form 
y A Ak-2w*. 

Proof In this case M* is contained in Ak w’ t Ak W, so the images of 
M under the maps of R are contained in W’. 1 

4. A SCHUBERT CALCULUS PROOF OF A WEAK VERSION 
OF THE CONJECTURES 

We may weaken the versions of the various linear syzygy conjectures 
involving the images of the f, by requiring the dimension inequalities to 
hold for the r, themselves rather than for their images, and we will prove 
this weakened version, in a version corresponding to the epimorphism conjec- 
ture, below. 

From this point of view it is perhaps more natural to look at the corre- 
sponding loci in G rather than in r, and we will accordingly define G, to 
be the set of points in G where the rank of the map pN is at most s. Of 
course G, is simply the projective variety corresponding to the afftne cone 
r,, so dim r, = dim G, + 1. 

The key advantage of this viewpoint is that the image of p is contained 
in the subbundle 

Ak-‘Q@Sc Ak-‘QQ W,. 

To see this, we need only show that the composition of p with the natural 
map Ak-‘Q@ W-r A”-‘Q@Q is zero. This however follows from the 
commutativity of the following diagram, whose top row is p: 

A WC: AkWG- Ak-‘WGQ w,------+ Ak-‘QQ W, 

I I 
de: AkQ > Ak-‘Q@Q 
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We can give an upper bound for the codimension of any component of 
G, from the usual formulas for the codimensions of determinantal loci. If 
we treat p as a map to Ak-‘QO W, we do not obtain an interesting result; 
but if we treat p as a map to nk- ‘Q @ S, then because Ak- ‘Q 0 S, has 
rank only w -k + 1, the result is much sharper: if s < min(m, w -k + l), 
the codimension of any component is at most (m - s)( w - k + 1 - s), SO we 
obtain the 

Basic Dimension Estimates 4.1. If s < min(m, w-k + l), and G, is non- 
empty, then 

dimG,>(k-l)(w-k+l)-(m-s)(w-k+l-s) 

=(k-m+s-l)(w-k+l)+(m-s)s, 

and 

dim r, = dim G, + 1. 

We will prove this nonemptyness for most values of k and w in 
Corollary 4.3. Thus when m = k, for example, we obtain 

dimr,a(s-l)(w-k+l)+(m-s)s+l, 

and when s = 1, m arbitrary, we obtain 

dimr,>k+(k-m)(w-k) 

when these are nonempty. In particular, we see that if m < k, then 
dim r1 2 k, which is to the promised weakening of the strong Linear 
Syzygy Conjecture. 

It remains to show the nonemptyness of G, in some cases. Actually, we 
will prove a still stronger result, corresponding to the “epimorphism 
conjecture” below: Given any P c N with dim P < k - 1, there is a nonzero 
element of r which annihilates P. 

We are grateful to Joe Harris and Jerzy Weyman for their help with the 
proof of the following result: 

THEOREM 4.2. Let P c Ak W be a subspace, and let r(P) be the set of 
pure vectors u E A k- ’ W* such that a(P) = 0. Suppose that k < w and that 
either k > 2 or k = 2 and w is odd. If dim P < k - 1, then T(P) is nonempty 
and of dimension > 1 + (k - 1 - dim P)( w - k + 1). 

COROLLARY 4.3. G, is nonempty if m - s + 1~ k < w and either k > 2 or 
k=2 and w is odd. 
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ProoJ Set d= dim P. We will prove instead the corresponding state- 
ment for the subvariety of the Grassmannian G 

G(P):= {XEG lp).v(P)=O} 

which corresponds to the afline cone T(P); that is, we will prove that 
dimG(P)>(k-l-dimP)(w-k+l). 

Picking a basis for P, we see that G(P) is the intersection of the zero loci 
of d sections of the bundle Ak-‘Q @ S, a bundle of rank 

r:=w-k+l. 

The rth Chern class c = c,(Ak-’ Q @I S) of this bundle in the Chow ring of 
the Grassmannian is supported on the zero locus of any section. Thus if 
c # 0, the components of these zero loci have codimension at most r. Since 
the dth power cd of c in the Chow ring is supported on the intersection of 
the zero loci of the d sections, it suffices to show that cd # 0; then 

dim G(P) > dim G - dr 

=(k-l)(w-k+l)-d(w-k+l) 

as required. Of course it is enough to show that cd #O for the largest 
allowable value, and thus we may take d = k - 1. 

We will use some facts about the Chow ring of G which may be found, 
for example, in [9, p. 2711. First there is a basis of the Chow ring of G 
represented by the Schubert cycles, which are named by symbols of the 
form {A,, . . . . A,}, with 

k-la/I,> . . . >1,>0. 

The number Ci li is the codimension of the cycle representing the class 
(1 1, .-a, A,}. The class of a point is thus {k - 1, . . . . k - 11, This basis has the 
very important positivity property: the product of two Schubert cycles is a 
linear combination of Schubert cycles with positive integral coefficients 
(determined by the “Littlewood-Richardson rule,” [9, p. 264-2651). 

The Chern classes of the universal subbundle S on G are given by 

c,(S)=(-l)‘{l’), 

where we have written ( 1 i} for the string of i ones followed by w - k + 1 - i 
zeros, {li} = (1, 1, . . . . LO, . . . . 0}, and the notation is that of [9, p. 2711. 
(This fact is obtained by putting together [9, p. 270 Example 14.6.51 and 
[9, p. 54, Remark (a)].) Writing 

{~}=c,(Q~=~~(~j,~ Q) 
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for the first Chern class of Q, we obtain (from [9, p. 55, formula on the top 
of page1 ). 

c=c,(Ak-‘Q&S)= 1 (-l)i (l}‘-’ {li). 
i=O 

First we treat the case k = 2, where it is easy to be explicit. Here G is 
simply projective space, { 1 } is the class of Lo(l), and { Ii} = { 1 }i. Hence, 
{lj}{lj} = {li+j}, and 

c= i: (-l)i{Y) 
i=O 

as claimed. 

0 if w = r + 1 is even = 
U’l if w=r+ 1 is odd, 

Now suppose that k > 2. We group the terms in the formula for c into 
pairs: 

c= 1 Pi 
i20 

with 
pi={1}~-2i{12i}_{1}r-2i--l {12i+l}, 

where the last term vanishes is 2i + 1 > r. 
Examining this formula, one sees trivially that P,=O. On the other 

hand, if i > 0 then 

{l}{l2i}={12i+i}+{2,12i--} 

by Pieri’s formula (see [9, p. 271]), and thus 

{l}r-2i-1{2, 12’-‘} if 0<2i<r 

In particular, these P, are all positive linear combinations of the 
Schubert cycles. We will show that Pt- ’ # 0; by the fundamental positivity 
property of the Schubert cycles, this will show that ck- ’ # 0. 

Since we have assumed that k < W, we have r = w-k + 12 2. If r = 2, 
then only P, = {l’} occurs, and we have 

by (for example) the dual of Pieri’s formula. 
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Thus we may assume that r > 3. Using Pieri’s formula again we have 

P, = { 1 jr-3 {2,1’> 

= (2, I’-‘) + (a positive linear combination of 

other Schubert cycles), 

so that it suffices to show 

{2,1’-2}k- 1 # 0. 

By the Littlewood-Richardson rule, {a’}(F) = {(a+b)‘j for any 
integers a, b. Thus it is enough to show that 

(2, lrp2}*= (2’) + {3,2’-*, 1) 

and that 

{2,1r-‘j3 = (3’) + (a positive linear combination of 

other Schubert cycles). 

The first of these formulas follows at once from the Littlewood- 
Richardson rule; the “strict r - 1, l-expansions of (2,l ‘-‘I” that are 
required [9, pp. 264-2651 are represented by the following diagrams: 

{2’) = 

(3,2’,1) = 
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To check the second of the required formulas, we use the first, and thus 
see that it suffices to show 

{3,2’-*, 1}{2, lre2} = (3’) + (a positive linear combination of 

other Schubert cycles). 

The “strict r - 1, l-expansion of { 3, 2’~ 2, 1 }” that we require is given in 
the following diagram: 

(3') = 

This completes the proof. 1 

5. THE MONOMIAL CASE 

In this section we will deal by combinatorial methods with the case when 
NC Ak W is generated by “monomials” xi, A ... A xi, with respect to 
some basis x,, . . . . x, of W. The results in this section are due to Mike 
Stillman. We prove only a weak version of our conjectures: 

THEOREM 5.1 (Stillman). Suppose that M has a linear k-syzygy 
represented by the koszul homology class e E Ak WQ M, and that the corre- 
sponding map 

e:M*-+A W 

is a monomorphism with image generated by “monomials” xi, A . . . A xi, 
with respect to some basis x, , . . . . x, of W. If the dimension of M is <k, then 
M is spanned by elements which are annihilated by linear forms, and these 
relations come from elements of IT 

Proof: Let y,, . . . . yw E W* be a dual basis to x1, . . . . x, E W. For any 
subset Z= {i,, . . . . ik} we write 

X,=Xi, A ... A XikEA w, 

and similarly for y,. 
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By hypothesis, N admits a basis consisting of elements x,,, . . . . x,~, with 
m 6 k. We will show that for each i, there is a (k - 1 )-subset .Zi such that 

Y, b-1,) z 0 while YJ, (XI,) = 0 for j# i. 

The y, are pure vectors, and thus in Z; from the above formula it follows 
that if a,, . . . . a, are a basis for M dual to the basis x,,, . . . . x,~ of N, then 
yJ, maps to a relation on 4’ of the form xa, = 0 for a suitable linear form 
x E W, as desired. 

To this end recall that the map A” W + W induced by an element 
b,E/jk-’ W* takes a, to 0 if J d Z, and to xIeJ if JcZ. Thus it suffices 
to show that for each i there is a k - 1 element subset of Zi which is not 
contained in any other Zj. Of course Zi and Zj can have at most one k - 1 
element subset in common, and there are k distinct k - 1 element subsets 
of Ii, but only k - 1 other Zj, so the result is immediate. 1 

6. THE CASES k=w AND k=w-1 

These two cases are quite simple compared to the general ones, and 
nearly everything can be worked out. Here is a sample: 

Case k = w. /1” W is l-dimensional, so a linear wth syzygy is deter- 
mined by the l-dimensional quotient M* + A”W, that is, by a l-dimen- 
sional subspace M’ of M, which must be annihilated by all of W. Thus 
R, 3 M’ @ W, and has dimension > w, as required. In this case G, = G is 
projective w - l-space, Z1 is mapped injectively, and Z, is 0. 

Note that this is a case where the expected dimension of Z, is w-m > 0, 
even though Z,, is 0 (that is, G,, is empty.) 

Case k = w - 1. Using the duality in the exterior algebra we identify 
AkW with W*, and Ak-’ W* with A2 W. The maps W* + W induced by 
the elements of A2W are precisely the skew-symmetric maps, and those 
induced by Z are the skew-symmetric maps of rank 2. We must study the 
compositions of these with a map M* = N -+ A”-’ W = W* corresponding 
to a linear (w - 1)st syzygy. 

First note that if m > k, then in any case we may take m = w = k + 1, 
since the syzygy in question must be induced by one involving only that 
large a subspace of M (the dual of the image of N in W*). Taking 
m = k + 1, we obtain N = W*, so there is essentially only one example of 
this type. Of course there are no skew-symmetric transformations of rank 
1, so R, =0 in this case. On the other hand we have 

dim Z’,=dim r=2k- 1 for all s > 2, 
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and r= r2 maps isomorphically to R,, while in general dim R,, = 
dim R 2r+l=GHW12’). 

A natural generalization of the epimorphism conjecture is true here: 
there is in this case a unique element of r, whose kernel is a given 
Z-codimensional subspace (that is, a unique rank 2 relation involving a 
given 2-dimensional subspace of elements of M). 

In the case where m d k = w - 1, our conjectures predict that r, and R, 
are of dimension B k. In order for a pure vector a A b E /1* W to induce a 
map of rank 1 on N, it is necessary for some element of the space (a, 6) 
to annihilate N; for if a, b are independent modulo the annihilator of N, 
then a A b acts as a nonzero element of /i*N*, and thus induces a transfor- 
mation of rank 2 on N. On the other hand, if a EN’, then a A b induces 
the transformation n H b(n)a, so a A b and a A b’ induce the same trans- 
formation on N iff b E 6’ mod N’. 

Thus Gi may be identified with the Schubert cycle 

cm- l,O,O... (notation from [14, p. 1971) 

of all 2-planes in W meeting N’ in a space of dimension > 1, and identi- 
fying W/N’ with N, the image of 

r, -+ R, c MO W= Hom(N, W) 

is the set of all rank 1 transformations in Hom(N, NL), the affine cone over 
PNL x P(N). Thus, for any m with 1 Q m <k, the image of ri in R, has 
dimension k. On the other hand, 

dimr,=dimG-(m-1)+1=2(w-2)-m+2=2k-m, 

the generic value, so the general fiber has dimension k -m, and the fiber 
over 0 has larger dimension (except when m = k, k - 1): 

dim~,=2(w-m-2)+1=2k-2m-1 form<k (but = 0 for m = k). 

In particular, if we take w - 1 = k > m > 1 we arrive at a situation where 
the map rl-‘RI is not generically injective, and JZ does not have 
lpd = w - 1 over any proper subspace of W, since no element of M is 
annihilated by a codimension 1 subspace of W (the images of M under the 
maps in ri are all contained in N’). 

We claim that in fact the image of r, is all of R, in this case. To see this, 
write W= N* @ NL, so that A*W=A*N*@N*@N’@A*N’. Since 
elements of n2NL induce the zero map on N, we may ignore them, and it 
suffices to prove that any vector inducing a transformation of rank 1 must 
have its component in ,4*N* equal to 0. This is, however, clear, since an 
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element of A*N* induces a rank 2 transformation with image in N*, 
whereas the images of the transformations in the other components are all 
in N’. 

One can write the relations forced by a linear (w - 1)-syzygy rather con- 
cretely. Choosing a basis a,, . . . . a, of A4 and a basis x1, . . . . x,, of W such 
that a dual basis to a,, . . . . a, in N maps to the first m elements of a dual 
basis to x1, . . . . x, in W*, the implied relations R appear as the 2 x 2 minors 
of the matrix 

( 
Xl 3 ..., m, x x m + 1, . ..> xl+ 

0, . ..) 0 > . a, ? . . . . %, 

Since this case is so accessible one might hope to complete the linear 
syzygy conjecture in this case to a necessary and sufficient condition for the 
existence of a linear (w - l)-syzygy. Some preliminary experimentation 
suggests that the variety R, must be rather special. 

7. THE CASE k=2 

In the case k= 2 the strong form of Linear Syzygy is the same as the 
weak form. But actually something stronger is true: 

PROPOSITION 7.1. Zf A has a linear second syzygy and m 3 2, then 

dim R,-, Zm. 

Remark. If m = 1, then of course lpd A? 2 2 iff dim R = R, > 2. 

Proof: If k = 2 then as soon as K= ker W* + R # 0 we may apply 
Lemma 3.5 to see that not all the variables are involved. Thus we may 
assume K= 0, so that the natural map AkP I W* = W* -+ R is a 
monomorphism. With this assumption, we have Z,,, _ i c R, _ r, so it will be 
(more than enough) to show that dim Z,,- r > m. By the basic dimension 
estimates, any nonzero component’ of Z,_, has dimension 
2 (m - 2)(w + 1) + m, which is 2 m as soon as m B 2. Thus it suffices to 
show that if m > 2, then Z,,, _ r is nonzero. 

To say that Z,,, _ I = 0 means that every nonzero element of W* maps 
to an element of rank m in MO W; that is, regarding MO W as 
Hom(M*, W), every nonzero element of W* induces a monomorphism 
M* + W. However, the rank m - 1 locus has codimension only 
w-m + 1 c w in the space of maps, so this is impossible. 1 

We can go further and completely characterize the modules A’ with 2 
generators having a linear second syzygy. Given such a module over a ring 
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F[ IV’], for some W’s W we may of course tensor it over F[ IV”] with 
F[ W] to obtain such a module over F[ W]. Also, given such a module, we 
can factor out further relations of degrees > 1 and again obtain such a 
module. We will say that J%’ is a basic module with a linear second syzygy 
if it cannot be obtained by either of these procedures. The following result 
classifies the basic modules with linear second syzygy: 

THEOREM 7.2. Suppose m = 2. Zf ~4’ is a basic module with a linear 
second syzygy iff either : 

(1) w = 2 and A? has presentation matrix 

Xl x2 ( > 0 0 

for any basis x,, x2 of W, or 

(2) w is odd, say w = 2d + 1, and A! is presented by the matrix 

( 

xl,&, . . . . xd, 0, -Yd+l, xd+2, ..', X2d 

0, xl,-, xd-l,xd,exd+2,xd+3, ~~Zdf, > 

for some basis x, , . . . . xZd + I of W. 

Proof: Suppose first that & is a basic module with a linear second 
syzygy. If w = 2, then JG? has a linear second syzygy iff M contains an 
element annihilated by all linear forms, that is, iff a presentation matrix 
for 4’ contains the matrix given in (1). This proves the theorem in the case 
w = 2, so we may assume that w > 2. 

Under these circumstances, no element of M is annihilated by two inde- 
pendent linear forms; else & comes from a module with a linear second 
syzygy over F[x,, x2] (perhaps by adding further relations) so that since 
w > 2, J? is not basic. 

Adopting the notation of Lemma 3.5, the fact that J$? is basic implies 
K = 0, so that W* + R is a monomorphism. Since JV is basic, it follows 
that W* --f R is an epimorphism. In this case we will show that w is odd 
and that the presentation matrix for J%? is as in (2) above. 

No submodule of 4 generated by a proper subspace of M can have a 
linear second syzygy; for such a submodule is cyclic, and if it had a linear 
second syzygy its generator would be annihilated by two independent 
linear forms. Thus the map 

is a monomorphism. We may regard N c A2 W as a space of skew sym- 
metric maps from R = W* to W. We claim that under the hypothesis of the 

607:90,'-6 
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theorem, every nonzero element of N corresponds to a map whose rank is 
precisely w - 1; in particular, this will show that w is odd. 

First, suppose that N contains some element n with 

rankn<w-1, 

and choose two independent elements a, b E R in ker n. The elements a, b 
are both of rank 1 as maps N--+ W, since they both kill n, so they 
correspond to rank 1 relations. Let n, n’ be a basis for N and let m, m’ E M 
be a dual basis, so that n(m) = n’(m’) = 0 and n(m’) = n’(m) = 1. The rela- 
tion corresponding to any c E R is then 

n(c) 0 m’ + n’(c) @m, 

so the two relations corresponding to a and b are of the form 

n’(u) @ m and n’(b)Om. 

Since a, b are independent rank 1 transformations from N to W with the 
same kernel, they must have independent images, n’(a) = xi and n’(b) = x2, 
say. Thus m is annihilated by the two independent linear forms xi and x2, 
contradicting our hypothesis. It follows that no element of N has rank 
<w-l. 

Next suppose that some element n of N had rank w. It follows that this 
is so for all n, since the rank of a skew symmetric matrix is always even, 
and thus we could not have transformations of ranks w and w - 1. But then 
no element of R has rank 1, contradicting Proposition 7.1. 

Since the rank of every element of N is even and exactly w - 1, we may 
write w = 2d+ 1. We can now apply the following classification of pencils 
of skew-symmetric matrices with constant rank: 

LEMMA 7.3. If N c A’ W is a 2-dimensional linear space of matrices of 
constant rank w - 1 = 2d, then N can be represented by a skew-symmetric 
matrix of linear forms of the form 

where L, denotes the d x (d + 1) matrix 

t 0 . . 0 
Ost. .o 
. . . . 
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Proof. We will use the results developed by Gantmacher [lo, Chap. 
XII, Sect. 43 (note that our L is the homogenization of Gantmacher’s). 
Gantmacher shows that after changing bases in source and target we may 
express any l-dimensional linear space of matrices N, by a matrix of the 
form 

A= 

where A4 is a square matrix of linear forms in s and t with nonzero determi- 
nant. In our situation A4 has to be 0 because N is of constant rank whereas 
any generically nonsingular one-parameter family of matrices A4 drops 
rank. Since N can be expressed by a skew-symmetric matrix of linear forms, 
the degrees of the minimal relations among the rows and among the 
columns of A is the same; thus p = q and (after rearranging) ei = ni for all 
1 <i<p. Since 2x iciGpei=rank A= rankN=2v andp+2C,.i,,ei= 
size of A = size of N = w, we have p = 1 and e, = V. Using row and column 
operations, we may transform A to B above. Since N and B are the same 
up to changes of basis, and both skew-symmetric, they are congruent (that 
is, differ by a transformation of the form 

B H P’BP, 

where P is an invertible scalar matrix) by Gantmacher [lo, Chap. XII, 
Theorem 61 and we are done. (Theorem 6 was stated over the field of com- 
plex numbers but it stays valid over any field which contains square-roots 
of its elements.) 1 

It is easy to check that the presentation matrix given in (2) above is 
precisely the matrix of linear relations corresponding to the subspace 
N t A’ W given in Lemma 7.3. This shows that every basic module with a 
linear second syzygy, for w 2 3, has the given form. 

It remains to show that the given examples are basic. Now if the example 
for a given w = 2d + 1 were not basic, there would be no basic example 
with w variables, by the above classification. Thus the given example would 
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be a homomorphic image of a module with a linear second syzygy and a 
smaller presentation matrix. The space N corresponds to the module A%? 
together with a linear second syzygy. It is easy to see that this linear syzygy 
does not come from a module over a ring with fewer variables; thus if A? 
were basic, it would have some other linear second syzygy. However one 
can check directly that there is only one linear relation on the columns of 
the matrix given in 2): it is the column vector with entries 

-xd+ 1, ..., -$d+ 1, -xl, ..a, xd. 

This concludes the proof. 1 

Remark. Actually it is easy to show slightly more: if w = 2d + 1 and the 
linear part of the presentation matrix for &? properly contains the one 
given in (2) above, then some element of ,I is annihilated by two inde- 
pendent linear forms. Of course, we may assume that the presentation 
matrix has exactly one more column. But the only variable not present in 
the first row of the given matrix is &d+ , , and the only element not present 
in the second row is x, + i, so the new column may be taken to have entries 
of the form XZd+l, ax,+l. This new column, together with the last v 
columns of the original matrix, forms a 2 x (u + 1) matrix in u + 1 variables, 
and thus is not l-generic. Since every linear combination of the rows in the 
matrix made of the first II + 1 columns of the original matrix obviously has 
dependent entries, we see that some linear combination of the rows of the 
augmented matrix has two entries dependent on the rest, showing that 
some element of M is annihilated by two independent linear forms. 

Here are the betti numbers of the module A for a few values of d, 
computed with Macaulay : 

; d=l 
3 total: 2 3 1 
, 
3 0: 23 1 

; d=2 
, total : 2 5 910 5 1 
7 
3 0: 25 I--- 
, 1: ---81051 

; d=3 
3 total : 2 7 70 33 73 43 14 2 
3 
, 0: 27 l------ 
9 1: -- 32 70 13 43 14 2 
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The annihilator of A contains the 2 x 2 minors of the presenting matrix of 
A!, so that the reduced support of A’ is the rational normal curve 

x,= . . . = Xd = 0, 

X d+icS 
d--i+ lti- 1 for i= 1, . . . . d+ 1. 

We do not know a nice geometric interpretation of this module . . . . 

ACKNOWLEDGMENTS 

Joe Harris and Jerzy Weyman (independently) contributed a key idea of the proof of 
Theorem 4.2; to them we give our thanks. 

We are also grateful to Ngau Lam, who read an earlier version of this work and made 
many helpful remarks. He has found a solution to the problem of giving a sufficient condition 
for Green’s vanishing theorem to hold in terms of the pairing II’@ M + M, alone, and has 
made some further conjectures, extending some of ours. His work will appear elsewhere. 

REFERENCES 

1. E. BALLICO AND A. V. GERAMITA, The minimal free resolution of the ideal of s general 
points in P’, in “Canadian Math. Sot. Conf. Proc.,” Vol. 6, pp. 1-9, 1986. 

2. D. BAYER AND M. STILLMAN, Macaulay, a computer algebra program, for many machines 
including the Macintosh, IBM-PC, Sun, Vax, and others. Available free from the authors 
(or ftp 128.103.1.107, login ftp, password any, cd Macaulay), 1982-1990. 

3. D. EISENBUD, Linear sections of determinantal varieties, Amer. J. Math. 110 (1988), 
541-575. 

4. D. EISENBUD AND S. GOTO, Linear free resolutions and minimal multiplicity, J. Algebra 88 
(1984), 89-133. 

5. D. EISENBUD AND J. KOH, Remarks on points in a projective space, in “Commutative 
Algebra,” Conf. Proc. of the 1987 conference in Berkeley (M. Hochster, C. Huneke, and 
J. D. Sally, Eds.), pp. 157-172, Math. Sciences Res. Inst. Publ. 15, Springer-Verlag, 
New York, 1989. 

6. D. EISENBUD AND J. KOH, Nets of skew symmetric matrices and the linear syzygy conjec- 
ture, in preparation. 

7. D. EISENBUD, J. KOH, AND M. STILLMAN, Determinantal equations, Amer. J. M&h. 110 
(1988), 541-575. 

8. P. ELLIA AND A. HIRSCHOWITZ, Voie ouest I, to appear. 
9. W. FULTON, “Intersection Theory,” Springer-Verlag. New York, 1984. 

10. F. R. GANTMACHER, “The theory of Matrices,” Vols. I and II, Chelsea, New York, 1959. 
11. M. GREEN, Koszul Homology and the geometry of projective varieties, J. Differenfiul 

Geom. 19 (1984) 125-171. 
12. M. GREEN AND R. LAZARSFELD, On the projective normality of complete linear series on 

an algebraic curve, Invent. Math. 83 (1986), 73-90. 
13. M. GREEN AND R. LAZARSFELD, Some results on the syzygies of finite sets and algebraic 

curves, Composirio Math. 67 (1988) 301-314. 



76 EISENBUD AND KOH 

14. P. GRIFFITHS AND J. HARRIS, “Principles of Algebraic Geometry,” Wiley, New York, 1978. 
15. J. HERZOG, W. V. VASCONCELOS, AND A. SIMIS, Approximation complexes and blowing up 

rings, I, J. Algebra 74 (1982), 466493. 
16. L. T. HOA, J. ST&KRAD, AND W. VOGEL, Towards a structure theory for projective 

varieties of degree = codimension + 2, to appear. 
17. J. KOH AND M. STILLMAN, Linear syzygies and line bundles on an algebraic curve, 

J. Algebra 125 (1989), 120-132. 
18. N. LAM, Thesis, Brandeis University, in preparation. 
19. F.-O. SCHREYER, Syzygies of curves with special pencils, Math. Ann. 275 (1986), 105-137. 


