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ABSTRACT. — In this paper we study families of linear series of dimension r and degree d on curves of
genus g with negative Brill-Noether number

P=g-(r+i)(g-d+r)

and, allowing specified ramification at a point, on smooth pointed curves. In particular, if p = — 1 we prove
that there is exactly one irreducible family of curves and linear series whose curves vary in codimension 1 in
the family of all smooth curves. Thus there is at most one component of the Hilbert scheme of nondegenerate
smooth curves of genus g and degree d in P'' dominating a codimension 1 subvariety of the moduli space of
curves of genus g.

1. Introduction and statement of results

Throughout this paper, curves will be reduced, connected, projective curves over the
complex numbers.

We will denote by Jf^ ̂  ^ the union of the components of the Hilbert scheme whose
general members are smooth curves of genus g and degree d nondegenerately embedded
in P^ A basic problem in the study of ^a,g,r ls ^° determine the dimensions of its
(usually numerous) components, and to describe the family of abstract smooth curves
that appear in a given component. In general, the character of the answer obtained

(1) Both Authors are grateful to the National Science Foundation for partial support during the preparation
of this work.
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34 D. EISENBUD AND J. HARRIS

seems to be strongly affected by the Brill-Noether number

p:=^-(r+l)(g-d+r).

Very little of the solution to this problem is known in general, but in the case when
p>0, an interesting partial answer is furnished by results of Kleiman, Laksov, Gieseker,
Fulton and Lazarsfeld (see [F-L] and the references found there) among others. From
the point of view of moduli of curves—that is, considering a curve in P'' essentially as
an abstract curve together with a linear series of degree d and dimension r, or in classical
language a ^—they show that in case p>0 that the scheme G; parametrizing g^s on a
general curve C is smooth and irreducible of dimension p (see [ACGH], vol. 1, for a
formal definition of the scheme G;(C)). It follows from this, in conjunction with the
result that a general such g^ really corresponds to an embedding [E-H4], that whenever
p>0 there exists a unique component of ^d,g,r dominating the moduli space Mg of
curves; and that this component will have the "expected" dimension

dim(^)+p+dim(PG4+i)=3^-3+p+(r+l)2-!

([ACGH], §5 and references therein).
Some of these results were extended in [E-H1] to the case when p=0 by considering

not just the family G;(C) of linear series on a general curve C but the family ^
parametrizing pairs consisting of a curve CeMg (without automorphisms, say) and a
linear series on C-that is, the union of all the G^(C)'s; see [E-H2], [E-H3] and the
forthcoming second volume of [ACGH] for a formal definition—and showing that as in
the case p>0 there is a unique component dominating My In the present paper we
will prove some analogous results for p<0, and obtain in particular the analogous
irreducibility result for p= — 1:

THEOREM (1.1). — For any d, g and r let p=g—(r+1) (g—d+r). Then
(i) If p< —1, the image in My of any component of the variety ^ has codimension at

least t\vo; and
(ii) J/p= —1, there is a unique irreducible component of the variety ̂  \vhose image in

Jig is of codimension one.
From the equations defining the variety ̂  locally it is apparent that each component

of this variety has dimension ^ dim My + p (and a similar remark holds for ^^ ̂ ,.). But
no such principle is known for the images of these components in My

Note that the fact that we have only defined ;̂ over the locus in My of curves without
automorphisms is harmless, since for g>3 the set of curves with automorphisms is
of codimension g—1^1 in My while for g^3 the only examples of smooth curves
possessing g^s with negative p are hyperelliptic curves of genus 3.

We immediately derive:

COROLLARY (1.1 A). — For any d, g and r such that p=g—(r+l)(g—d+r)=—\ there
is at most one component of the variety Jf^ ̂  y -whose members vary in a subvariety of
codimension one in My
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FAMILIES OF LINEAR SERIES 35

The "at most" in the statement stems from the fact that we do not know whether the
general member of the component of ^; whose existence is asserted in Theorem (1.1) is
very ample; if it were not, there would be no component of ^^ ^ y corresponding to this
component of .̂ We do believe that indeed this component of ^d,g,r exists when
r^3; this statement (for sufficiently large g) is a special case of the general conjecture
made in the following section.

We may also derive a related statement for abstract curves:

COROLLARY (1.1B). — The locus M^^Ji^ of curves that possess a linear series of
degree d and dimension r has a unique irreducible component of codimension one.

We also extend the principle involved in Theorem (1.1) to pointed curves. Given a
curve C with a point peC and a sequence a=(ao, . . ., a^) of natural numbers, we can
define a variety G^ (C, p\ a) parametrizing linear series g^ on C having ramification
sequence a^(^)^a^ greater than or equal to a at p. For a general pointed curve
(C,/?)e^, the variety G;(C,/?; a) has dimension equal to the adjusted Brill-Noether
number

p/•.=p(g, r, 0-|a[ (here|a[:=2a,),
«

and is empty if p ' <0 (see [EH-2], section 1).
To express a relative version of this construction, let °K -> ̂  be any family of smooth

curves with section CT : ̂  -> °K. Using a Grassmann bundle over the relative Heard
variety of the family one can define a variety ^(^/^, <j; a) and a map of
^;(^/^, cr; a) to ^ whose fiber over a point CG^ will be the variety ^;(C, a(C); a)
parametrizing g^s on C with ramification at least a at a(C). Applying this construction
to the universal pointed curve My^ i = Cg and the universal family with section n: 3C y -> ̂ g
(that is, ^=^x^^^, with n the projection on the first factor and a the diagonal
map), always keeping away from pointed curves with automorphisms, we arrive at a
variety ^(oc) that is in effect the union of ^(C, p\ oc) over all pairs (C, p) without
automorphisms. Our theorem is then

THEOREM (1.2). — For any d, g, r and a, let ^=g-(r-\- l)(^-d+r)-£a,.
(i) If p"< —1, then the image in ̂  of any component of ^i(a) will have codimension

at least two; and
(ii) If p'= —1, there is a unique irreducible component of ^(a) whose image in ̂

has codimension one.
One can of course extend the statements of this Theorem to multiply pointed curves;

we would conjecture that they remain true, but new ideas seem to be required for a
proof.

The proofs of Theorems (1.1) and (1.2) proceed by looking at certain stable curves
(resp. pointed curves) lying in the closure in Jig of the image in My of any component
of ̂  [resp. the closure in ̂  of the image in ̂  of any component of ^i(a)]. Specifically,
in the case of Theorem (1.1) we first prove that a certain class of curves belongs to the
closure of every codimension 1 component of Ji\^ ^ in the compactified moduli space of
stable curves: these are curves consisting of a union of a curve of genus g—2 and a
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36 D. EISENBUD AND J. HARRIS

smooth curve of genus 2, attached at a Weierstrass point of the curve of genus 2. It
turns out that on such a curve there are generally many g^s with p= — 1 (so that ̂
and Jf^ ^ ,., under the best of circumstances, will many-sheeted covers of M^ ̂ )? but that
the monodromy transformations coming from certain families of reduced curves of
compact type permute the sheets transitively. Thus over a suitable small neighborhood
of a point in the closure of every component of M^^ ^ the variety ̂  is irreducible. At
the same time, we will see that such a curve Co possesses no g^s with p= —2, which
will suffice to establish part (i) of Theorem (1.1). Theorem (1.2) involves an analysis
of the behavior of ^(a) near similarly defined points in the compactification ̂  of .̂

As will be clear from the above, there should be a general result on the irreducibility
of the variety ̂  of all g^s on all smooth curves; we might hope that such a result could
be obtained by looking at an extension ̂  of ^ parametrizing limits of g^s on stable
curves. Unfortunately we know how to construct such a variety only locally, in the
neighborhood of a given linear series on a curve of compact type. Thus, it is a priori
possible that additional components of the variety ̂  exist that do not contain any curve
of compact type in their closure, and so are "undetectable" by these methods. Two
possible solutions to this problem exist: one is to extend the theory of limit linear series
from curves of compact type to all stable curves, and the other is to prove more refined
theorems about the intersection of closed subvarieties of My with the boundary. At
present, though, neither has been successfully carried out.

2. Counter-examples and a conjecture

If p is strictly positive then there are a number of theorems describing the geometry
of ;̂, that taken in sum we will call the Brill-Noether-Petri Principle, or BNPP

(i) the variety ̂  contains a unique irreducible component £ dominating My and this
component has dimension p + 3 g — 3;

(ii) a general fiber of the map from £ to My is smooth;
(iii) when r ̂  3, a general g^ e £ is very ample (when r ̂  1 it is base point free and

when r^ 2 it is immersive); and
(iv) the multiplication map ̂ : H°(L)®H°(KL~1) ^H°(K) is of maximal rank (that

is, injective when p^O and surjective when p^O) for [L | a general ̂ e£.
Note that these statements taken together imply that there is a corresponding com-

ponent of the Hilbert scheme ^d,g,r tnat nas dimension p+3^—3+(r+l ) 2 —!). (See
for example [ACGH] or [E-H4] and [E-H5] for recent proofs and the original references
for these statements).

This principle fails beyond the case p>0, in the following sense. There are clear
analogues of the statements of the BNPP: we can replace (i) and (ii) above with

(i') the variety ̂  contains a unique irreducible component £ dominating a subvariety
of codimension — p or less in My and this component has dimension p+3^—3; and

(ii') a general fiber of the map from £ to its image in My is reduced of dimension 0;
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FAMILIES OF LINEAR SERIES 37

while statements (iii) and (iv) above make sense as they stand. As it turns out, though,
most of the statements above are violated for some values of g, r and d (the one exception
is the statement about the smoothness of the fibers of the map from ̂  to its image in
My to which we know of no counterexample). In general, the Hilbert scheme ^d,g,r
may be reducible. Examples abound of values of rf, g and r for which J^f^ ^ y has many
components, even having different dimensions, some nonreduced, many of dimension
strictly greater than predicted, and some consisting entirely of singular curves [H2]. (We
will see that even in cases where the Brill Noether number is positive, so BNPP holds,
there are sometimes "extra" components of ^^ ^ ^ living over proper subvarieties of the
moduli space of curves and having dimension greater than that predicyed by the
BNPP. On the other hand recent results of Bin [El], [E2] show that Jf^, g, r is irreducible
in some ranges of cases if p is sufficiently large—for example when r=3 and rf^-h3,
that is, p^g. This suggests that perhaps the Brill-Noether number is not the correct
way of distinguishing components of the Hilbert scheme satisfying the BNPP from those
violating it.)

In this section we first present some (very isolated) examples of families of curves
violating the BNPP, to give some sense of what goes on. We then propose the conjecture
that a certain aspect of the examples holds in general. We will focus here primarily on
the issue of when the dimension of the Hilbert scheme is that predicted by the BNPP,
by way of terminology we will call a component of the Hilbert scheme of dimension
strictly larger than that predicted an exceptional component of Jf.

a. EXAMPLES OF EXCEPTIONAL COMPONENTS. — Where should we look for examples of
aberrant behavior? To begin with, the BNPP holds in the case r= l [ACGH], §5 and
loc. cit. In the case r=2, it is easy to characterize counterexamples to BNPP: if we
restrict to components of ^ whose general members are birationally very ample (in
effect, looking at the Severi variety) we find that the BNPP is known to hold in most
respects; specifically, the variety parametrizing curves together with birational embeddings
in the plane is irreducible of the correct dimension [HI], §3 and loc. cit. (It is an
interesting open problem to deal with the rank of the Ho ̂ P f01' the general member of
a Severi variety.) Most components of ^j whose general members fail to be birational
will violate the dimension statement; for example, an element of the variety ̂  consists
of a hyperelliptic curve with the double of its g\ so that ̂  will have dimension 2^—1;
on the other hand, the predicted dimension is 3^—3+p=^+3.

Complications emerge when we get to r^3. One way of arriving at exceptional
components of 3^d,g,r ls to use multiples of a linear series. For example, when the
genus g is sufficiently large we can construct one such component out of trigonal curves:
a general trigonal curve C of genus g^S may be embedded, by the linear series
Q) = K — 2. g\ residual in the canonical series K to twice the pencil of degree 3, as a curve
of degree 2g—S in P^~5 (that 2 is very ample follows from looking at the rational
normal scroll Xc=P^~ 1 containing the canonical image of C: if F is the class of a ruling
of X, the linear series Qi is cut out by the linear series \(P^(1)(—2F) |, which embeds X
as a rational normal scroll in P^~5). According to the BNPP the codimension in moduli
of the locus of curves so expressible (it's not hard to see that if a curve is so expressible
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38 D. EISENBUD AND J. HARRIS

it is uniquely so) should be

-P=-^+(r+l)te-rf+r)
=-^+fe-4)(3)
=2^-12,

whereas in fact the locus of trigonal curves has codimension g—4 in moduli. Thus for
g>S the Hilbert scheme ^2g-s,g,g-5 violates the BNPP.

Needless to say, we can make up similar examples using multiples other than 2 of
linear series other than a g\. To give one example, we can consider a plane curve
Cc=P2 of degree d, re-embedded in projective space by the nth Veronese map for any
n-^d—5. Whether or not such curves are actually dense in a component of the Hilbert
scheme is not so clear, but in any event the component of the Hilbert scheme containing
them will map to a subvariety of M'g of dimension at least (d+ l)(d+2)/2—9=g+3d—9,
i. e., of codimension at most 2g—3d-}-6. On the other hand, the predicted codimension
in ̂  of curves in this Hilbert scheme is

-P=-g+(r+l)(g-d+r)

which will in general be huge compared to 2g—3d+6.
We can use another generalization of this construction to find examples of exceptional

components of the Hilbert scheme even when the Brill-Noether number is positive:
all we have to do is to consider projections of curves described as in the previous
example. Specifically, look again at trigonal curves, and for any k consider the series
residual to k times the pencil of degree 3; this will generically have degree 2g—2—3k
and dimension g—l—2k (that it is in general very ample follows from an argument
identical to that given above in the case fe=2). Now look at projections of these curves
to a projective space P^. Choosing a projection means choosing an (r+l)-dimensional
quotient of a (g— 2 k) -dimensional vector space, and so involves (r+ l ) ( g — r — 2 f e — l )
additional parameters; thus the space of such curves has dimension

(2^+l)+(r+l)fe-r-2fe-l)+(r+l)2- l=2^+(r+l)(^-2fe) .

On the other hand the BNPP predicts a dimension of

3^-3+p+(r+l)2-!

=3^-3+^-(r+l)(^-(2^-2-3fe)+r)+(r+l)2-!

=4^-4+(r+l)fe-l-3fe).

Thus by choosing k relatively large [i.e., slightly larger than 2^/(r+l)] we will get a
component of the Hilbert scheme violating the BNPP.
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FAMILIES OF LINEAR SERIES 39

Another way of finding components of the Hilbert scheme violating the BNPP is by
looking either at complete intersection curves or curves of large degree on a fixed surface
in projective space. To carry out some cases of this explicity in P3, note first that the
BNPP predicts a particularly simple answer for the dimension of the Hilbert scheme of
curves in P3: we have

3^-3+p+(r+I)2-1=3^-3+^-4. (^-rf+3)+15=4^.

Now consider first the case of complete intersections of surfaces of degrees d^ and d^,
with d^<d^. To specify such a curve we have to specify first the surface of degree d^

which introduces ( 1 ) — 1 parameters, and then the surface of degree d^ modulo

those containing the surface of degree d^ which introduces ( 1 )~( 2 1 )~1

more; so that the dimension of the component Hilbert scheme parametrizing such curves
is (2 d\ + 3 dj d^ - 3 d^ d\ +12 d^ d^ + 22 d^ - 6)/6. (Note that in case d^ = d^ this is off by
one, since the first surface is not uniquely determined by the curve; the correct number
is the dimension of the Grassmannian of 2-dimensional subspaces of the vector space of
polynomials of degree d^ which is one less than that given by the formula.) On the
other hand, the degree of such a curve is of course d^. d^ so that the BNPP predicts a
dimension of ^d^d^; it follows that for all but the pairs of values (d^ d^)=(2, 2), (2, 3)
and (3, 3), this component of the Hilbert scheme will be exceptional.

To give an example of the second type suggested above—curves of high degree on a
fixed surface—consider curves of type (a, b) on a quadric surface in P3 with a, fc^4. To
specify such a curve we have to specify first the quadric, which involes 9 parameters;
and then a bihomogeneous polynomial of degree (a, b) on Q^P1 x P1 (up to scalars),
which involves ( a + l ) ( ^ + l ) — l more; the dimension of the component of the Hilbert
scheme (such curves do form a dense open subset of a component of the Hilbert scheme
when a, b^3) will thus be (a+!)(&+!)+8, which will be greater than the number
4(a+b) predicted by the BNPP except in the case where a or b is 3.

Note that the "first" case of each of the last two examples coincide: they are both the
family of complete intersections of quadrics and quartics in P3. Here the dimension
estimate of the BNPP fails by just one: the actual dimension of the family is 33, as
opposed to the predicted dimension of 32.

b. WILD SURMISE. — Given the above, what might still be true? At first glance the
profusion of counterexamples to virtually every extension of the BNPP might suggest
that "exceptional component" is something of a misnomer, being more aptly used to
describe a component of ^ actually satisfying the BNPP rather than those violating
it. On further examination of these and other examples, however, we may note one
common phenomenon: all the components violating the principle lie over relatively small
subvarieties of the moduli space, specifically in codimension on the order of g or
greater. For example, our first two collections of counterexamples to the BNPP all
consisted just of trigonal curves and plane curves, which have codimension g—4 and
2g—3d+6 in My (the latter of these numbers is never smaller than g—3 as long as
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40 D. EISENBUD AND J. HARRIS

d^5, i.e., as long as the corresponding component of Jf is exceptional). Of our last
two classes of examples the simplest case, complete intersections of quadrics and quartics,
lives over a sub variety of dimension 33—15=18 in the moduli space, which has dimension
3^—3=24, so that the codimension is g—4, in every other case of either of these two
classes of examples the codimension is strictly greater than ^—4.

All of the above leads us to formulate the questions:
(1) Do there exist subvarieties "Ly^My of codimension o(g)^g such that the Brill-

Noether-Petri principle holds in every possible respect over My—^Ly.
(2) Does there exist a function o(^), of the order of g, or perhaps a constant times g,

with the properties that for any d, g and r with p^ —a(g).
(i) the variety of curves of genus g possessing a linear series of degree d and dimension

r has a unique irreducible component of codimension less than a(g) in My and this
component has codimension — p (2);

(ii) the variety ̂  has a unique irreducible component mapping onto a subvariety of
codimension less than a(g) in My and this component has dimension p+3g—3;

(iii) the variety ^d,g,r has a unique irreducible component mapping onto a subvariety
of codimension less than a(g) in My and this component has dimension
p+3^-3+(r+l)2-!?

Alternatively, if we were really only concerned with the question of dimension, we
could phrase the whole thing this way: Let <7o (g) be the minimum over all d and r and
exceptional components S of the Hilbert scheme ^d,g,r °^ ̂  codimension of the image
of £ in My Then we conjecture that

liminf(ao(g)/^)>0.

Perhaps the idea of this paper—analyzing the intersection of the loci M\^^Mg with
the boundary in MQ— could shed some light on cases in higher codimension.

Of course, as we indicated in the previous section, we can also ask analogous questions
for pointed curves (C; p^ . . . , p^ and linear series on C with specified ramification at
the points py In this setting the counterexamples to the analogous statements having
smallest known codimension come from the family of Weierstrass points with first non-
gap gfl; this will have codimension roughly g / 2 ([E-H6]). In particular, one could
certainly conjecture that the analogue for multiply pointed curves of the theorems actually
proved below should still hold; that is, that the locus in the moduli space My^ of k-
pointed curves (C; p^ . . ., p^ possessing a linear series g^ with ramification at least a1

at pi will have codimension at least two when p' = p (g, r, d) — E | a11 < — 1 and will have
at most one irreducible component of codimension one when p'= — 1, and so forth.

(2) The existence of at least one component of codimension exactly -p is known for a range of d, g and r;
see [E-H3].
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FAMILIES OF LINEAR SERIES 41

3. Proof of Theorem (1.1)

In this section and the next we assume familiarity with the basic ideas of [EH 1-3].
First, let us fix notation. Except when the contrary is explicitly stated, g, r, and d

will denote integers such that p(g, r, d)=g—(r+l)(g—d-^r)= —1. We will denote by
^^d^^g ^e locus of curves of genus g possessing a linear system of degree d and
dimension r, and by M\^ lts closure in My As in the previous sections, ̂  will denote
the variety of pairs (C, Q) where C is a curve of genus g without automorphisms and 2
a linear system of degree d, and dimension r.

If ^ -> B is a family of stable curves of compact type, with B local (that is, in the
algebraic setting, B = Spec R with R local; in an analytic context, B may be taken to be
a poly disc), then we further define

^(^/B)^B

to be the associated family of crude limit linear series (basic ideas about limit linear
series and curves of compact type may be found in [E-H2] and [E-H3], or in the
forthcoming second volume of [ACGH]). Thus a point of ^(^/B) is essentially a pair
(C, Q) where C is a stable curve of compact type, a fiber of ^ -> B, and Q is a limit
linear series of degree d and dimension r on C. If B° <= B is the germ of the set of points
of B corresponding to smooth curves without automorphisms, and C° -^ B° is the
restriction of ^->B, then we define ^(^/B) to be the closure of ^(^/B0) in
^(^/B). Applying this to the Kuranishi space of any stable curve C of compact type,
we obtain a variety ̂  (depending on C) which maps naturally to the intersection of the
closure M^ ̂  with the open set ^U c= My of curves of compact type.

To prove the Theorem, we will first exhibit a locus in My that must lie in any
codimension 1 component of the closure M^^ ^ of M^^ ^ and then show that at most one
component of ̂  passes above this locus.

For the first part, we consider first the following stable curve Cet^^My: let B and
Co be general curves of genus 2 and g—2 respectively. Let qeCo be a general point
and p e B an arbitrary point, and form a curve C by identifying p and q:

C=CoUB/^-p.

LEMMA (3.1). —Any component of M^^ having codimension one in My contains all
curves of the form C for \vhich p is a Weierstrass point.

Proof. — Let ^F be any such component. From [E-H2] (Theorem 1. Note that the
proof given there yields the result of Theorem 1 for every component. Note also the
misprint "e" for "3" in the formula Theorem 1) we see that the class of the divisor M^^
in Pic(J^g) is given by

/ -^1 [g/2] \
[^J=^(fe+3)A-^——.8o- E ffe-0.8.)

\ 6 f=i /
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42 D. EISENBUD AND J. HARRIS

for some constant c; and moreover that the class of any codimension one locus in Mg
lying in the closure of the locus of smooth curves possessing a linear series with negative
Brill Noether number must be a multiple of this. In particular, the class of ^F is
expressible in this way, with c^O since any nonzero effective divisor has nonzero class.

Now let r= { Cp} cA^ be the family of curves obtained by identifying a variable point
p on the curve B with a fixed general point q on Co. By the computations given in [H-
M p. 81] we see that the degrees of all the divisors ^ and 8^ for i^l are zero on r, while
degr(82)= —2, so that ^F will intersect r; on the other hand by Lemma 3.2 below x?
can meet r only at the points Cp e F corresponding to Weierstrass points p of B. Since
the set WcrA^ of stable curves obtained by attaching a curve of genus g—2 to a curve
of genus 2 at a Weierstrass point of the latter is an irreducible (because the family of
Weierstrass points is irreducible, as one sees in the case of curves of genus 2 by construct-
ing the curves as double covers of P1) codimension 1 locus of A^, it follows thatx? must
contain the locus of such curves. •

Remark. — In fact, we do not really have to write down explicitly the class of ^g^
or determine the degrees of the divisors \ and 8̂ . on the curve Y introduced there: by
Theorems (2.1), (3.1) and (4.1) of [E-H2], any codimension 1 component of the variety
^g^d ^at failed to contain the locus WcA^ would have class 0.

LEMMA (3.2). —Let C be as above. If C possesses a crude limit g^ Q, then Q is
actually refined, p is a Weierstrass point on B, and ^ consists of the linear system
|(r+2)p| -\-(d—r—2)p on B (that is, the linear system formed by sums of divisors
De|(r+2)/?| and the fixed divisor (d—r—2)p) and a g^ on Co with ramification sequence
(0, 1, 2, . . ., 2) at the point q.

Proof. — The last part of this statement—the ramification sequence of the aspect of
Q) on Co—follows from the rest by the definition of limit linear series, given that the
ramification of the series \(r+2)p\+(d—r—2)p on B at p is (d—r—2, . . ., d—r—2,
d—r— 1, d—r). Now, since (Co, q) is a general pointed curve of genus g—2, by Theorem
(1.1) of [E-H2] the adjusted Brill Noether number of any linear series on Co with respect
to q is nonnegative; by the additivity of adjusted Brill Noether numbers (see [E-H3]) it
follows that the adjusted Brill Noether number with respect to p of the aspect on B of
any limit linear series on C having negative Brill-Noether number is negative. Lemma
(3.2) now follows from

LEMMA (3.3). — For any r and d, any g^ S> on a curve B of genus 2, and any point
p e B, the adjusted Brill-Noether number of 2 with respect to p is greater than or equal to
—1, mth equality holding if and only if p is a Weierstrass point of B and
^=\(r-^2)p\+(d-r-2)p.

Proof. — For any linear series g^ on B with r^2 we have d^r+2; for any g^ we
have d^2 with equality holding if and only if the g\ is the canonical pencil. If the
vanishing sequence of the linear series Q) of dimension r and degree d on B at p is
OQ, . . ., a^ the linear series ^(—a,/?) has degree d—a^ and dimension r—i', applying this
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we have

and

a^d-r+f-2, for f^r-2;

ar-^d-1

a<d.

Thus the ramification indices satisfy a ^ d — r — 2 for i^r—2; a ^ _ i ^ d — r — l and
a^ri—r. Adding these up we have that the total ramification of 3) at p is at most
(r+ l ) (d—r—2)+3, and the adjusted Brill Noether number is thus at least

p^-(r+l)fe-d+r)-(r+l)(d-r-2)-3

We see at the same time that equality can hold only if a^==d (so that Q'cz\dp\),
ao=rf-r-2 (so that 2=2'^-(d-r-l)p for some ^/c:|(r+2)^|, which must then
equal |(r+2)/?| because they have the same dimension) and OLy_^=d—r—\ (so that
Q) ( — a^ _ i p) = | I p \ + (d — r — 2)p is the g\ and hence /? is a Weierstrass point of B). •

Returning to our assumption that p(^, r, d)= — 1, we consider ̂ ^ in a neighborhood
of the point C. Let ^ -> ̂  be the Kuranishi space ([ACGH], vol. 2) of the curve C.
Let H be the number of linear series on the curve Co having ramification sequence
(0, 1, 2, . . ., 2) at the point p. There are by the above at most n distinct points of
;̂ ( ^ I S ) over the point of ^ corresponding to C, corresponding to those of the p, linear

series on Co that are aspects of smoothable limit series on C. In fact each of the [i
limit series on C is smoothable, as follows from our smoothing results in [E-H3], so
there are exactly p points in this fiber. We will show next that ̂  is unibranch at each
of these points:

LEMMA (3.4). —Let C be as above and let (C, ^)e^ be any limit linear series on
C. Then ̂  is smooth in a neighborhood of(C, Q>).

Proof. — With notation as above, let ^=^(^/^); observe that since all limit linear
series on C are smoothable, this coincides with the space ^(^/^). Also, let Ac=^ be
the discriminant divisor, ^^->A the restriction of the family ^ -> ̂  to A, and
^^^(^A/^) -> A the corresponding family of limit linear series. Our proof that ^ is
smooth at (<^, D) will proceed in two steps: first, we will argue that ̂  is smooth, using
an explicit description of this family; then we will argue that this implies the smoothness
of ^. Note that this would follow immediately if we knew that ^^ was m ^act ^e

(scheme-theoretic) inverse image of A in ^, i.e., that formation of the family ^(^/^)
communed with base change; but, despite the assertion to this effect in [E-H3], this is
proved only on the set level.

For the first part, to see that ̂  ls smooth at (C, ^), observe first that A is isomorphic
to the product of the Kuranishi spaces (n^: ̂ \ -> ̂ \, 04: ̂ \ -> ̂ \) and
(^2: ̂ 2 -> ^2» a!: ̂ 2 -> ̂ 2) f01* AG pointed curves (B, p) and (Co, q)\ and moreover by
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the definition of ̂  given in [E-H3] ̂  ls m a neighborhood of the point (Co, 3)} the
fiber product of the pullbacks of the schemes

^i=^Wi/^i; ̂ i, (d-r-2, . . ., rf-r-1, d-r))

and

^2= Wll^2\ ^,(0,1, 2 , . . . , 2)).

Of course, since the pointed curve (Co, q) is general the scheme ^2 ls ^l6 over ^2 at

(Co, ^co)» an^ ^2 ls smooth because C is 1-dimensional, so we need only verify the
smoothness of ^i at the point (B, (d—r—l)p-\-\(r-\-l)p\). But we see from the defini-
tions that

^Wi/^i; (Ji, (d-r-2, . . ., d-r-1, d-r))

=^^(^i/^i;^,(0,...,0, 1,2))

=^(^/^;ai,(l,2))

=^(^/^;ai,(0, 1))

by using alternately the observations that for any family ^ -> ̂ ,

^W^; a, (ao, . . ., o0)=^_^/^; a, (0, oci-ao, . . ., oc,-(Xo));

and for r i=2^—l+5 , r = ^ — l + 5 with 8^0 we must have (Xo=. . . =a§=0 (or else
^=0) and

Wl^\ CT, (0, . . ., 0, a^i, . . ., a,))=^-^iW^; ̂  (as+i, . . ., ^r)\

But now ^i(^i/^i) maps isomorphically to ^i (the fiber of ^i(^i/^i) over (B, p), for
example, is the scheme G^(B), which is reduced by e.g. Theorem (4.2) of [ACGH]).
^i(^i/^i» ^i? (O? ^)) ls correspondingly isomorphic to the locus ^c^i of Weierstrass
points, which is an etale cover of the Kuranishi space of B. Thus ̂  is smooth at the
point (C, 0} as claimed.

This leaves us with the second part, to deduce that ^ is smooth. Referring to the
construction of ^(^7^) in [E-H3], recall the definition of the auxilliary scheme
^(<^/^) of framed limit linear series, whose equation are given explicitly on page 358
of [E-H3]. From these equations, we see that the formation of <^(^y^) does commute
with base change, though the same cannot necessarily be said of ^(<^/^), which is
simply defined to be the image of ^(^/^). In the present circumstances, however, we
may use this to prove the chain of implications

^;(^/A) smooth
==> ^(^A/A) smooth
=> ^;(^/^) smooth

=> ww.
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The first of these implications is immediate, since ^;(^/A) is simply a fiber bundle
over ^(^/A). The second follows from the fact that formation of ^ does commute
with base change, which says that ^(^A/A) is a Cartier divisor in ^(^7^). Finally,
the third implication is a consequence of our present circumstances: first, as we have
said, ^i(^M) is a fiber bundle over ^(^/A), so that the differential of the map
n^: ̂ (^A/A) -> ^(^A/A) has the maximal possible rank dim(^)? anc! since the divisor
y ̂ ^ is reduced, it follows that the differential of n: ̂ (^/^) -^ ^(^/^) likewise has
the maximal rank dim(^). For some (indeed, any) point x of ^(^7^) lying over Co,
then, we can choose a subvariety of ^(^/^) transverse to the fiber of n at the
point x. Since the fiber of 71 though x is connected, a neighborhood of x in this cross-
section will then map isomorphically onto a neighborhood of n (x) in ^, which is therefore
smooth. Indeed, we see as well that the divisor A in ^ is reduced, and so coincides with
^, f. e., in this case formation of ̂  commutes with restriction to A. •

Remark. — In fact, we see from the above that the variety ^ is transverse to the
curves F introduced in the proof of Lemma (3.1). It follows that the intersection
number of ^i\^ with F is 6^1, where n is the number of g^s on the curve Co with
ramification (0, 1, 2, . . ., 2) at q, and hence that the constant c appearing in the expres-
sion above for the class of ^\^ ls ^ 1 /̂2 (§~ 2).

Putting together all the above, we see that there are at most n distinct branches of ̂
passing over the point C, and the closure of every irreducible component of ̂  contains
at least one of these branches. Now, let the curve C vary in ̂  by fixing the pair (B, p)
and letting the pair (Co, q) vary in the moduli space of pointed curves of genus g—2. We
claim that the branches of ̂  over C are in this way permuted transitively, i. e., that the
branches of ^ passing over C belong to a unique irreducible component of .̂ Of
course, Theorem (1.1) above will follow from this statement, which in turn amounts to
the

LEMMA (3.5) .—Let (^=<^0^ be the moduli of pointed smooth automorphism-free
curves of genus g—2, and let ^F -> ̂  be the cover whose fiber over (Co, q)e^ is the set of
linear series g^s on Co with ramification sequence (0, 1, 2, . . ., 2) at q. Then the mono-
dromy on the points of a general fiber of x? over ^ is transitive, that is ^F has a unique
irreductible component dominating (€.

Proof. — This is really just an extension of the theorem proved in [E-H1] that, for
any g, r and d with Brill Noether number p=0 the family ̂  of g^s on curves of genus g
has transitive monodromy over J^g. Specifically, in the paper [E-H1], this statement is
reduced to the fact that the simplicial complex of chains of Schubert cycles (relative to a
fixed flag) on the Grassmannian G(r, g—d-\-lr) is equidimensional and connected in
codimension one. More generally, for any pair of nondecreasing sequences
a=(ao, . . ., a^) and P=(Po» • • • » Pr) let ^i(A <?» a, P) be the variety parametrizing g^s
on smooth two-pointed curves (C; p, q) having ramification sequences a^ (p)^^ and
oc^ (q) ̂  P^. By the same argument, it may be seen that the irreducibility of this family
follows from the analogous statement that the simplicial complex of all chains of Schubert
cycles on G (r, g—d+2r) contained in the Schubert cycle T and containing the Schubert
cycle |LI is equidimensional and connected in codimension one, where for some n and m
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with n—m=g—d-{-r, T and \i are the cycles

^ ^m-ao, m-ai, . . . , m-ay

and

^^^H, Pr-l+n, . . ., Po+"'

The proof given in [E-H1] of this fact in case a=P=0 applies verbatim in the present
circumstances. •

Note that this lemma is a special case of the more general.

LEMMA (3.6). — Let g, r and d be integers, and a=(ao, . . ., a,.) and P=(Po, . . ., P^)
sequences of integers such that the adjusted Brill-Noether number

p'=^-(y+l)^-rf+y)-|a|-|p|=0.

Let M^ 2 be the moduli of two-pointed smooth automorphism-free curves of genus g—2,
and let ^F -> ̂  be the cover whose fiber over (Co, p, q)eJ^^ 2 ls the set of linear series
g^s on CQ with ramification sequences a at p and P at q. Then the monodromy on the
points of a general fiber of ^¥ over M^ 2 ls transitive, that is, ^F has a unique irreducible
component dominating M^ 2-

The proof of this is exactly the same as that of the special case a=0,
P=(0, 1, 2, . . ., 2) above. We should note that while there is no reason to limit the
statement to two-pointed curves—there is an obvious analogue for linear series with
adjusted Brill-Noether number p'=0 on fe-pointed curves—it appears that our techniques
will go no further than the two-pointed case. The general case remains, thus, a conjec-
ture.

4. Proof of Theorem (1.2)

As in the preceding case, let us start by fixing notation. We will be given integers g,
r and d and a sequence a=(ao, . . ., a^); unless otherwise stated we will assume that the
adjusted Brill-Noether number p ' ^—^+lK^—d+^—Sa^—l . We will denote by
^, d^^^g ^e locus of pointed curves (C, p) of genus g possessing a linear system of
degree d and dimension r having ramification at least a at p, and by ̂ ,, its closure in
.̂ As in the previous sections, ^(a) will denote the variety of triples (C, p; S} where

(C, p) is a pointed curve of genus g without automorphisms and Q) a linear system of
degree d and dimension r having ramification at least a at p. If ^ -> B is a family of
stable pointed curves of compact type with section a: B -> ̂ , with B local, then we
further define

^WB,a,a)^B

to be the associated family of crude limit linear series. Thus a point of ^(^/B, CT, a)
is essentially a triple (C, /?, Q)) where (C, p) is a stable pointed curve of compact type—a
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fiber C=Q, of ^-^B whith point /? = CT (b) — and ^ is a Jfmf? (m^ar series of degree rf
and genus g on C with the appropriate ramification at p. If B° <= B is the germ of the
set of points of B corresponding to smooth pointed curves without automorphisms, and
^° -^B° is the restriction of ^-^B, then we define ^(^/B, a, a) to be the closure of
^(^/B0, a, a) in ^(^/B, CT, a). Applying this to the Kuranishi space of a stable
pointed curve we can define, a variety ̂  (a) which maps naturally to the intersection of
the closure ̂  ^(a) wlt!1 ̂ e open set ^c=^ of pointed curves of compact type.

With this out of the way, the proof of Theorem (1.2) decomposes into two steps in
the same way as that of Theorem (I .I) : we will first exhibit a locus in ̂  that must lie
in any codimension 1 component of the closure ^.^(a) of ^,d(a), and then show that
at most one component of ^(oc) passes above this locus. The latter half of the argument
is essentially isomorphic to the corresponding part of the proof of Theorem (1.1), but
the first step is different: it is not the case that all components of ^d(a) must have
similar classes in Pic(^), as it was in the corresponding case quoted from [E-H2] in the
course of the proof of Lemma 3.1. Instead, we have the following analog of the result
from [E-H2], which is the main result of this section:

THEOREM (4.1). — Let D be any divisor in ^y not supported on the boundary ^y—^y
and such that for a general point (C, p) in the support of D there exists a linear series g^
on C having ramification on at p mth ^—(y*+!)(<?—d+y*)—Sa^ —1. Then the class of
D 15 a linear combination

(*) D-^.B+v.W

\vhere

B^+S^-^.So- Z i(g-i)^i6 i= i

and

W . . ^fe+1). 'yfe-Ofe-^1).W- -X+ —-—o)- ^ ————^———— 8,.

Further, if D is effective, then the coefficients |LI and v are non-negative.

Remark. — B here is just the pullback of the class of any divisor in Mg supported on
the locus of curves possessing linear series with negative Brill-Noether number, while W
is the class of the locus of Weierstrass points [Cuk]. The first example of a divisor D
whose class is a nontrivial linear combination of these two is the divisor in ^4 that is
the closure of the locus of ramification points of g^s on smooth curves of genus 4; its
class is (6/5) B+(2/5) W.

Proof. — Suppose the class of D is given by

D-a)i+bo)-Sc;8f.
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We will show that

^+1 1 ,c == ———— a + ————— b
6fe+3) 3^+3)

and

,-^-t) ̂  /fe-Ofe-^-1) , 4 f fe -Q \1 ^+3 \ ^(g-i) ^-i)fe+3v
for f ^ l , which together are equivalent to the first statement of the Theorem. We prove
these by considering the restrictions of D to each of 2 loci in ̂ .

The first locus we look at is a part of the universal curve over the locus in M'g of
curves with g elliptic tails. Specifically, let Pg denote the moduli space of stable
^-pointed rational curves, and fix once and for all g pointed elliptic curves (E^, q^). We
then have a map

^ P î-^.

obtained by associating to the (g-{- l)-pointed stable curve (Co, p^ . . ., pg+i) the pointed
curve (C, p) where C is the curve obtained by attaching the g elliptic tails (Ep qj) to Co
at the points p ^ , . . ., pg and p is the image of pg +1 in the quotient. For a = 1, . . ., g — 2,
let 8, be the divisor which is the closure in Pg+^ of the locus of (Co, pi, . . ., Pg+i) where
Co has two components, with pg+^ and exactly a of the points p^ . . ., pg lying on one
and the remaining of the points pj lying on the other; as observed in [E-H2] these divisors
will be independent in Pic(P^-n).

We want now to describe the pullback map fe*. First of all, we have, clearly,

fe*(6,)=e, for a= l , . . . , ^ -2

and also, as in [E-H2],

k*X=k*6o=0.

To evaluate the pullbacks of Sg_ i and co, we use the set-up of [E-H2, § 3]: we let K : ̂  -> B
be any family of stable (^+l)-pointed curves with sections c^, . . ., c^-n: B-^^ let
n: ̂  -> B be the family obtained by blowing down, in every fiber of n, the components
not meeting the image of c^+i and c^ the corresponding sections (such a blow-down
may be obtained, for example, as the image of the map defined by a high multiple of
the relative divisor which is the image of c^+^). We then have

^(^-O-^ZCT^B)2

1=1

and

fc*(o))=-^a^(B)2.
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As in [E-H2] we can evaluate these in terms of the e, by using the basic relation

^W+a^^^a^.a^B).

We first sum this over all 1 ̂ i<j^g to obtain

9

^-O^E^B)^^ ^ ^(B).a,(B)
1=1 l=i<./^

9-1

=E^-l)e.
(=2

and hence

^-^^Ec^B)2

1=1
^ 9-1 9-1

=—, E^- i )^ -E^
5 ~ 1 f = 2 1=1

f f - 2 ., -

=E^-°e.
1=1 ^-1

Next, we sum the basic relations above for f=^+1 and 7= I, . . . ,g to obtain

_ 9 _ 9

^^^(B)^^ E ^(B)^^ ^ a,(B).a,^(B)
1=1 i= i

=2 E fe,
1=1

so

^^(B)^ ^ al(B)2=2 E fe,- f (^+0£,
1=1 1=1 i= i

=EO--?)e,

and

fe*(o))=-^CT,+i(B)2

1 / 9 9 ' f '\ \

^(Ete-O^E^e.)
g\i=l (=1 ^-1 /

^y (g-Ofe-i+1)^

.=1 ^(^-1) E>'
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Thus, a divisor D on ̂  with class a .X+fc .co—Ec^ would pull back to a divisor
with class

..(Di-'S '̂̂ -̂ .̂-.̂ -c,).,
i=l\ ^fe-1) ^-1 /

On the other hand, if D is any divisor in ̂  supported on the closure of the locus of
pointed curves admitting a linear series with adjusted Brill-Noether number —1, then
the support of D will be disjoint from the image of i. We have thus proved:

LEMMA (4.2). — Let D be any divisor on ^g satisfying the hypotheses of Lemma (4.1),
and suppose that D^^A+b.co—Sc^. Then for i^ 1,

fe-Ofe-^-1)^. i(g-i)c.= ————————b-\- — — — c - i
g(g-^ ^-1 '

Next, we consider a map from the moduli space ^2 °f pointed curves of genus two to
^ analogous to the map j to My described in [E-H2]. We fix a general curve Co of
genus g—2 and two general points p, qeC^ and then to any pointed curve (B, r) of
genus two we associate the stable pointed curve C=CoUB/^r obtained by identifying
q and r, and taking the image of p in the quotient as the marked point. The pullback
map 7* on divisors is then given by

j*'k='k

7*co=0

7*80=80

7*8^=0, for a=l ,2 , . . . ,g -3

7*8-2=-G) ;

and

7*8-,=8,.

Suppose now that (C, p) is any pointed curve in the image ofj where C=C()UB, and
that Q) is a limit g^ on C with negative adjusted Brill-Noether number with respect to
p. Co, p and q being generic, the adjusted Brill-Noether number of any linear series on
Co with respect to the two points p and q will be non negative by Theorem (1.1) of
[E-H2]. By the additivity of the adjusted Brill-Noether number, then, the aspect on B
of 2 must have negative adjusted Brill-Noether number with respect to r; f. e., by
Lemma (3.2) above the pair (B, r) must lie in the closure of the locus W<=^ °f
Weierstrass points. By the argument for Theorem 2.1 of [E-H2], we deduce:

LEMMA (4.3). — Let D be any divisor on ^g satisfying the hypotheses of Theorem (4.1),
and suppose that D ̂  a. 'k + b. co — £ c^ 8 .̂ Then

fl=5c,_i-2c,_2;
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and

-f-f-
Combining Lemmas (4.2) and (4.3) we can solve for the coefficients c; in terms of a

and fc, thereby establishing the first statement of Theorem (4.1).
We can also obtain information about D by restricting, for example, to the variety ^3

of pointed curves of genus 3. Thus, we fix a general curve Co of genus g—3 and two
general points p, q e Co, and define a map

m: .3-^

by sending a pointed curve (B, r) of genus 3 to the curve C=CoUB/^r, with marked
point the image of p. The pullback m*D of any divisor in ̂  satisfying the conditions
of Theorem (4.1) will be supported on the union of two loci: the closure of the locus 83
of curves (B, r) with B smooth and hyperelliptic, and the closure of the locus W3 of
pairs (B, r) with B smooth and r a Weierstrass point of B. The pullback class will thus
be a linear combination of the classes of

B3-9X-8o-38i-382

and

W3--^+6(o-38i-82

(see [HI] and [Cuk] respectively for these computations). Now, in the Rcard group of
^3 the classes X, co, 80, 8^ and 83 are independent; and under the pullback we have

m*X=X

m*o)=0

m*8o=8o

m*8,==0, for i= 1,2, . . .,^-4

m*8^_3=-co

m*8._2=8i

and

m* 8^1=82.

Making the relevant computation, we see that we get exactly the same information about
the class of a divisor satisfying the hypotheses of (4.1) from this map as we did from the
map j. Explicitly, by comparing coefficients of o and 80, we see that if the pullback

(**) m*D^.B3-^.W3
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then the divisor D must be equivalent to the linear combination

D^B^-3^^.
^+1 V ^+i /

But on the basis of this last computation, we can say a little more if D is effective. To
begin with, D will then have nonnegative intersection number with a fiber of the map
n:^g-> My but since the divisor class B has intersection number zero with this fiber,
this amounts to saying that the coefficient v in the expression (^) of D as a linear
combination of the divisor classes B and W is nonnegative. Moreover, if D is effective
then, since its support cannot contain the boundary component A3 and so will not
contain the image of m, the pullback m* D will be as well. Inasmuch as, as we remarked,
fe*D is supported on the union of the two loci B3 and W3 and is effective, it follows
that both the coefficients of B3 in the expression (^^) for the pullback will be
nonnegative. This implies that the coefficient [i in (^) will be nonnegative as well,
completing the proof of Theorem 4.1.

Let us return now to examining the variety ̂  ^(a)c=^. The rest of the argument
follows very much as in the preceding section. Let Co be a general curve of genus g—2
as above, p and q two general points on Co, and let B be a general curve of genus 2 and
r any point of B. We consider then the stable pointed curve (C, p) e ̂ g where

C=CoUB/^-r

and p is the image of the point p in the quotient. We claim then that

LEMMA (4.4). — Any component o/^^a) having codimension one in My contains all
pointed curves of the form C for \vhich r is a Weierstrass point.

Proof. — Fix Co, p, q and B and let r={(C^, 7?)}c=A^_2<=^ be the family of pointed
curves obtained by identifying a variable point r on the curve B with a fixed general
point q on C. As before, the degrees of all the divisors ^, co and 8^ for i^g—2 are zero
on r, while degr(8^_2)= —2. It follows that both divisor classes B and W have positive
intersection with F, so that any component ^F of ^d(a) will met F. But as we have
seen such a component can met r only at the points (Cy ,p)er corresponding to Weier-
strass points r of B. Since the set WcA^.^ of stable pointed curves obtained by
attaching a 2-pointed curve of genus g—2 to a curve of genus 2 at a Weierstrass point
of the latter is an irreducible codimension 1 locus of \-^ it follows that ^F must contain
the locus of such curves. •

Next, consider what ^(a) looks like over the point (C,p)e^g. By Lemma (3.2)
above, we see that any limit linear series Q> on C with ramification a at p will have to
have aspect Qi^=\{r-\-l)p\-\-(d—r—l)p on B; and hence its aspect on Co will be a g^
with ramification a at p and (0, 1, 2, . . ., 2) at q. Moreover, by the analogue of Lemma
(3.4) we see that ^(a) is smooth over (C, /?), so that the branches of ^,d(a) at (C, p)
correspond to such linear series on Co.

Now, as before we let the curve C vary in A^ by fixing the pair (B, p) and letting the
pair (Co,/?, q) vary in moduli space of two-pointed curves of genus g—2. We claim
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that the branches of ^^ (a) over C are in this way permuted transitively, i.e., that the
branches of ^,4 (a) passing over C belong to a unique irreducible component of ^,4(01);
this follows from the general form of Lemma (3.6) and we may deduce Theorem (1.2) as
a consequence. •
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