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Rank Varieties of Matrices

DavID EISENBUD AND DAVID SALTMAN

Abstract. In this paper we extend work of Gerstenhaber [5], Kostant [9],
Kraft-Procesi [10], Tanisaki [15], and others on orbit closures in the nilpo-
tent cone of matrices by studying varieties of square matrices defined by
conditions on the ranks of powers of the matrices, or more generally on the
ranks of polynomial functions of them. We show that the irreducible com-
ponents of such varieties are always Gorenstein with rational singularities
(in particular they are normal). We compute their tangent spaces, and also
their limits under deformations of the defining polynomial functions. We
also study generators for the ideals of such varieties, and we compute the
singular loci of the hypersurfaces in the space of n X n matrices given by
the vanishing of a single coefficient of the characteristic polynomial.

Introduction.

Let V be an n-dimensional vectorspace over the complex numbers (or,
with suitable scheme-theoretic interpretations of what is to come, over any
field of characteristic 0), and let X = EndV be the space of linear trans-
formations of V into itself.

By analogy with the algebraic subsets of the affine line, it is natural
to consider sets of transformations A € X defined by the vanishing of a
collection of polynomial functions p;(A). Since the rank of a matrix in
case n > 1 can take on values other than 0 and n, it is natural to extend

consideration to sets of matrices of the form
{A € X|rankp;(A)<r;, i=1,...}

for various polynomials p;(t) of one variable, and numbers ;. In this paper
we are concerned with sets defined in this way; we will call them rank sets.

A rank set is clearly invariant under the action of PGL(V) on X by
conjugation. On the other hand, among the rank sets are the closures of
the orbits of this action. Indeed, as shown by Gerstenhaber [5], the closure
of the orbit of a transformation A is the set of those transformations B
such that for every i = 1,2,... and for every A € C (or just every A which

is an eigenvalue of A),

rank(B — )" < rank(4 — \)".
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This case, and in particular the case of a nilpotent orbit closure to which it
quickly reduces, has been studied by many authors from both topological
and algebraic points of view; in particular, the results of this paper were
already known for orbit closures.

At the opposite extreme of the rank sets are the determinantal varieties,
each given by a single condition of the form rank A < r. Here there are
many orbits, of many different dimensions, and infinitely many of these
have maximal dimension.

Both these examples of rank sets are irreducible, but in the general case,
irreducibility cannot be expected: a set of the form

{A | rank[(4 — XA~ ,u)j]} <7,

with A # u, will consist in the union, over pairs of positive integers 1,7
whose sum is r, of the set of A with rank (A—\)* < r; and rank(A—pu)? < ry.
We are thus led to consider first the rank varieties defined in terms of
polynomials p;(t), each of which is a power of an irreducible polynomial,
and we accordingly make the following definition:

For any sequence of complex numbers A = (Aq,...,A;), and for any
doubly indexed set of integers 7(7,7), 1 < ¢ < s, 1 < j let X, x be the
subset of X = End(V) given by

X, »={A € X|rank(A - X)) <r(i,j) forall 1 <i<s,1< 5}

Extending the example above we easily derive:
PROPOSITION. Every rank set is a union of sets of the form X, y.

PROOF SKETCH: Since the intersection of two sets of the form X, x is again
of that form, it is enough to treat the case of a rank set ¥ defined by a single
condition rank p(A) < u. We may factor p(t) into powers of irreducibles
p(t) = (t — A\1)B(t — A2)%2...(t — As)". Given a tranformation 4 € X, we
may split V into eigenspaces of A with distinct eigenvalues, and from this
splitting we see that the corank of p(A) is simply the sum of the coranks
of the transformations (A4 — A j)ii. Thus Y is the union, over all sequences
(ui,...,us) summing to u, of the sets X, x with r(j, k) = n, the dimension

of V, for k < i;, while r(j, k) = u; for k > 1;. O

This being so, we focus our attention on the X, x. Of course the simplest

of these are the ones given by conditions relative to a single eigenvalue,
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that is, those for which s is 1, and, after translating by a scalar matrix, we
may even assume that the eigenvalue in question is 0. For convenience, we

define, for any integer valued function r(7),
X, ={4A¢€ X|rank A7 < r(j) for all 1 < j}.

Of course for general r there may not be any matrix A with rank Al =
r(7) for all j. But it is not hard to show that such an A exists iff r is a
decreasing concave non-negative integral function with r(0) = n; we will call
such a function a rank function. Given an arbitrary non-negative function,
r with r(0) > n, it is easy to see that there is a unique maximal rank
function 7’ with r'(j) < r(j) for every j, and X, = X,.

The main results of Sections 1 and 2 of this paper may now be summa-

rized as follows:

THEOREM 1. The varieties X, x are Gorenstein, and are normal with ra-
tional singularities. Their limits under deformations of the \; are always
varieties of the same form. Each X, x is a generically transverse intersec-
tion of translates by scalar matrices of varieties of the form X,., for suitable
r'(7).

In some respects the hardest part of this is the normality statement, in
whose proof we closely follow and augment ideas of DeConcini and Pro-
cesi [3]. The fundamental notions in their arguments are that of the va-
riety of pairs of transformations whose composition is nilpotent, and that
of a rather natural complete intersection of which it is the quotient, whose
points correspond roughly to the transformations which are the possible
products of the transformations in the original pair. In Section 1 we make
the necessary changes to extend these ideas to the non-nilpotent situation,
proving the normality of the varieties X,. As in the argument of DeConcini
and Procesi [3], the hypothesis of characteristic 0 enters to prove that the
X, are actually the desired quotients.

We return to the geometry of the X, x in Section 2. We construct a
canonical resolution of singularities of the varieties X, x. We then use
the Grauert-Riemenschneider vanishing theorem to derive the normality of
these varieties from that of the X, and to establish the remaining prop-
erties given in the Theorem; of course this requires the characteristic 0
hypothesis again. Nevertheless, it seems reasonable to hope that the theo-

rem remains true over an arbitrary algebraically closed field. We also derive
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an interesting representation for the tangent spaces to X, at some smooth
points.

In the third section of the paper we study the equations of the varieties
X, By the Theorem, it is enough to treat the X,. Choosing a basis for V,
we may identify End V with the set of n x n matrices. We give generators
up to radical for the ideals of polynomials in the entries of these matrices
which vanish on the varieties X,. In a preliminary version of this paper
we conjectured, extending previous conjectures of DeConcini-Procesi [3]
and Tanisaki [15] which dealt with the nilpotent case, that these generators
suffice to generate the ideals of the varieties themselves. After having read
our preliminary version, J. Weyman [16] proved our conjectures in this
direction.

The basic building blocks for the ideals defining the equations of the X,
are ideals identified by Tanisaki that we call I()\}), for various ¢ and d.
I(\Y) is the ideal generated by the coeficients of z'~¢ in the t-th exterior

power of the matrix

T — Agen’

where Agey is the generic matrix, whose entries are the coordinate functions
on X, and z is an auxilliary variable; thus the generators of I(\}) are
polynomials of degree d in the entries of a matrix. By way of familiar
examples, I(\") is generated by the single polynomial which is the d-th
coeffient of the characteristic polynomial of the generic matrix, while I(\%)
is the ideal generated by all d x d minors of the generic matrix.

In the final section, solving the problem from which this paper originally
arose, we identify for all k the singular locus Sy of the hypersurface in X
defined by the vanishing of the coefficient of "% in the characteristic

polynomial

det(z — Agen)

THEOREM 4.10. The matrix A is a singular point of the k-th coefficient of
the characteristic polynomial iff writing d := rank A", we have d < k — 2
and rank A¥—4t1 < (.

We also give an irredundant decomposition of Sy into irreducible com-
ponents: these turn out to be rank varieties (Corollary 4.14).

These singular loci are related in an interesting way to the reduced va-
rieties defined by the ideals I(\L) introduced above. The variety defined



177

by the vanishing of the k-th coefficient of the characteristic polynomial is
V(A}), and we have:

THEOREM 4.15. The singular locus of V(AR) is V(ARZ]).

This result is particularly suggestive in view of the well-known identifi-
cation of the singular locus of a determinantal variety; in that case one has
Sing V(AF) = V(M\F~1). One might at first conjecture that Sing V(A}) =
V()\fc__ll) in general, but examples show that this is false; however, it remains
plausible that this conjecture becomes true if one replaces the two varieties
by their normalizations, or even by the disjoint union of their irreducible

components.

1. Normality.

1A) Linear Algebra. Letr:Z* — Z* be arank function. Our goal is
to study X, = {A € M,(F) | rank(A?) < r(i)}. To begin with, we consider
the open subset Y, = {4 € M,(F) | rank(A4’) = r(i)}. The stable value of
r is zero if and only if Y, consists of nilpotent matrices. The stable rank of
an A : U — U is the stable value of its rank function.

Suppose A : U — U is arbitrary. If U has dimension n define the stable
space, V, of A to be A®(U), a subspace of U. Observe that V is the direct
sum of the eigenspaces of A associated to nonzero eigenvalues. It follows
that A(V) = V and A restricted to V is an isomorphism. Of course, the
dimension of V is the stable rank of A. For any A, we define A’ to be the
induced linear transformation U/V — U/V. Let s be the stable rank of
A. Note that A’ is nilpotent with rank function r — s, where r is the rank
function of A. In general, if r is a rank function, define v’ to be r — s,
where s is the stable value of r. For any Y;., choose U’ to be a space with
dimension dim(U) — s, s being the stable value of 7. Consider Y,/ as a
subset of End(U").

Let us state two elementary properties of the Y,.’s.
LEMMA 1.1. Y, is irreducible and codimpna(U)(Y;) = codimpna(U')(Yr).

PROOF (outline): Let s be the stable value of r and consider the Grassmann
variety G, of s dimensional subspaces of U. Define W C End(U) x G, to
be the locally closed subvariety of pairs (A4,V’) such that A(V) = V. Let
p: W — End(U) and ¢ : W — G, be the restrictions of the projection
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maps. Define W, C W to be the inverse image under p of Y;.. The map p
restricted to W, is an isomorphism. The inverse map sends A to (A,V),
where V is the stable space of A.

Next consider the induced map ¢, : W, — G,. This is a surjection. If
V € Gy, ¢;1(V) consists of A : U — U with stable space V such that
A':U/V — U/V has rank function r' = r — s. We write ¢; (V') as Y;(V).
There is a regular map ¢ : Y,.(V) — End(U/V) defined by ¢(4) = A'. The
image of t is precisely Y,s. For any C' € Y., t71(C) consist of maps, A4,
whose matrix (with respect to a suitable basis) in block form is:

(5 3)

D E

where E is the matrix of A restricted to V', and so is nonsingular. It follows

that all the t~!(C) are irreducible of dimension ns. By e.g., Shafarevich [13,

p. 61], Y(V) is irreducible of dimension dim(Y;+) +ns and again W, is irre-

ducible of dimension dim(Y;+)+ns+s(n—s). Thus codimgaa(U)(Y;) = n?—

dim(Y;) = n? — dim(W,.) = n? — 2ns + s? — dim(Y,») = codimpna(U")(Y,).
O

Our next subject is a theory for pairs of linear maps that parallels the
one above for single ones. Formally speaking, a pair willbe a = (A: U —
V;B:V — U) where U, V are vector spaces and A and B are linear maps.
For fixed U, V, then, a pair a is an element of Hom(U, V) x Hom(V,U) and
we will write @« = (4, B) for convenience. a = (A: U - V;B:V = U)
and 8 = (C: S - T;D : T — S) are isomorphic if there are linear
isomorphisms ¢ : U — S and 7 : V — T such that C = 749! and
D = ¢B77 1. If we fix U and V, then these same equations define an action
of GL(U) x GL(V) on Hom(U, V') x Hom(V, U), that is, on all pairs defined
using U, V. If @ and 3 are as above, we define the direct sum a @ S to be
the pair (A C: U S)—» (VeT); BeD:(VeT)— (UaS)). We
say a is a nilpotent pair if AB (and therefore BA) is nilpotent.

Suppose a = (A : U — V;B :V — U) is a pair, and let V" be the stable
space of AB: V — V. Set U" = B(V"). If n is greater than the dimension
of U and V, then U" = B(AB)*(V) = (BA)"B(V) C (BA)*(U). On
the other hand, U" 2 (BA)"BA(U) = (BA)"*(U). But n > dim(U)
so (BA)"(U) = (BA)"*(U) and U" is the stable space of BA. Now
B is injective on V", and so B induces an isomorphism from V' to U".
Dually, A restricts to an isomorphism from U" to V". If U' = U/U", and
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V' =V/V" then A and B induce A' : U' - V' and B' : V! - U'. If we
define o' = (A' : U' - V';B' : U' — V') then o' is a nilpotent pair. We
call o' the reduced pair of a.

We next must recall the classification theory of nilpotent pairs, for which
Kraft-Procesi [10] is a good source. Fix U and V, and let a be a nilpotent
pair. Then a can be written uniquely (up to order and isomorphism) as
a direct sum of indecomposable nilpotent pairs. There is a one to one
correspondence between isomorphism classes of these indecomposables and
strings of alternating symbols “a” and “b”. For example, consider the
string ¢ = abab...ba of length 2n + 1. To this string we associate the
indecomposable pair described as follows. U has basis a1,... ,a,41 and V
has basis by,...,b,. A is defined by A(a;) = b; for ¢ < n, A(ant1) =0,
and B(b;) = ait+1. Such an A and B look like:

by a
ax — b Yy
A B :
apt1 — 0 "
An+41

We denote the pair we just defined by a(c¢). If ¢’ is the string bab. .. ab of
length 2n + 1, we define the pair a(o') associated to o' just as above but
with U, V; A, B; and the a’s and b’s switched.

We define the indecomposable nilpotent pairs associated with even length
strings as follows. Let o be the string abab- - - ab of length 2n. Let U have
basis ay, ... ,a, and V have basis by, ... ,b,. Define A(a;) = b;y; fori < n,
A(a,) =0, and B(b;) = a;. Such A and B look like:

ay by
N bh —F m
4 . . - . .
an bn bn = an
N
0

This defines a nilpotent pair we again denote by a(c). By reversing a’s,
b’s; A, B and U, V we define a(c'), for the string o' = baba...ba. Note
that our definition here is reversed from the one in Kraft-Procesi [10]. All
indecomposable nilpotent pairs are isomorphic to a(c) for some string o,

and different strings give nonisomorphic pairs.
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Let T be the set of strings as above and let A denote the set of formal sums
of elements of ¥ with nonnegative integer coefficients. To any nilpotent pair
a, the decomposition of a into indecomposables defines a unique 7(a) € A
where for each string o, the coefficient of ¢ in 7(a) is the number of times
a(o) appears in a. Obviously, we have a one to one correspondence between
isomorphism classes of nilpotent pairs and A. Also, n(a®a’) = n(a)+n(a’).
If o is an arbitrary pair, let o' be the reduced nilpotent pair, and define
1(@) = n(a).

For any string o € &, we can define o(4, B) to be the linear map gotten
by substituting A for @ and B for b in the string and then computing the
composition. For example, if ¢ = ababa, 0(A, B) is ABABA. If a = (A, B)
is a pair, we write o(A4, B) as o(a).

Suppose « is a pair, not necessarily nilpotent. Then o defines a rank
function ro : & — Z% as follows. If o € %, define ro(0) = rank(o(a)). If o,
o' are strings, and o is strictly longer than o', then ro(0) < ro(0'). There
is an integer N such that if o is longer than N, r4(o) has constant value,
and this stable value of rq. is the stable rank of a. A function r: % — Z+

is called a rank function if r = r, for some «a.

THEOREM 1.2.
a) Let a, B be two pairs. Then n(a) = n(f) if and only if ro = rg.
b) Let a be a pair and set n(a) = n. Let V;; € Hom(U, V) x Hom(V,U)
be all pairs 3 with n(8) = n. Then V, is a locally closed subvariety
of Hom(U, V) x Hom(V,U).

PROOF: Part a) implies that V;, is defined by rank equations, so b) follows
from a). As for a), suppose n(a) = (). If &' and B' are the respective
reduced pairs, then o’ and ' are isomorphic. In particular, ror = rgr, and
o' and ' are defined on spaces of the same dimension. Thus «, $ have
equal stable rank, s, and ro, =71y + s =71g,+5 =714.

Conversely, suppose 7, = rg. We must show that n(a) = n(8). Asr, and
rs have equal stable values, a and § have equal stable rank s. Letting o,
B' be the reduced pairs again, we have ro» = rg. Thus we may assume «,
B are both nilpotent pairs. Let o be a string appearing in n(a) of maximal
length m. It suffices by induction to show that ¢ appears in j.

To finish our argument, we consider the behavior of the rank function of
an indecomposable nilpotent pair. Recall that a(o) is the indecomposable
associated with o, and 7(a(c)) is the linear map derived by plugging the
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pair of maps of a(o) into the pattern 7 and composing. One can compute
that o(a(c)) is the zero map, and if ¢’ is the string derived from o by
removing the rightmost symbol, o'(a(c)) = 0 also. If m is the length of
o, then 7(a(o)) = 0 for any string 7 of length greater than or equal to m.
However, if 0" is the string with the leftmost symbol removed, o' (a(0)) is
not zero.

The fact that m is the length of a maximal string in n(«) is thus equivalent
to the fact that ro(0) = 0 for both strings of length m but ro(c') # 0 for
some o' of length m — 1. Thus m is also the maximal length of a string
in B. Let ¢ have this maximal length m and let o' be the string with the
leftmost symbol removed. The fact that o appears in n(«) is equivalent to
ro(a'") # 0, and so if o appears in n(a) it appears in n(3). The theorem is

proved.

Since we have shown V; is defined by rank equations, it makes sense to
change our notation and to define, for a rank function r = r4 : szt V.
to be the subvariety of Hom(U, V) x Hom(V,U) consisting of pairs 3 with
rg = r. We have seen that if n = n(a), then V;. = V;,. We study the variety
V, by reducing to the case of nilpotent pairs, as follows.

If r = r, is a rank function, let s be the stable value of r and set r' = r—s.
We know that ' is the rank function of the reduced (nilpotent) pair o/. Fix
u and v as the dimensions of U and V respectively. Choose spaces U , V' of
dimension u — s and v — s respectively, and consider V,» C Hom(U', V') x
Hom(V',U’). Since o' is a nilpotent pair, V;, is the orbit of o' under
GL(U')x GL(V') and so V,, is irreducible. In order to state the next result,
set P = Hom(U,V) x Hom(V,U) and P' = Hom(U', V') x Hom(V',U").

PROPOSITION 1.3. For any rank function r = ro, V, is irreducible and
codimp: (V) = codimpr, (V).

PROOF: Let s be the stable rank of a and let G4(U) and G,(V) be the
Grassman varieties of subspaces of U respectively V of dimension s. Let
W C Hom(U, V) x Hom(V,U) x G4(U) x G4(V) be the locally closed sub-
variety of points (A, B,U", V") such that A(U") = V" and B(V") = U".
There are regular maps p: W — G4(U)x G4(V) and ¢ : W — Hom(U, V') x
Hom(V, U) induced by the respective projections. Define W, to be ¢~1(V;).
Let g, be the restriction of ¢ to W,. If 3 = (A,B) € V;,, let U" and V"
be the stable spaces of 8 in U, V. U" and V" necessarily have dimension
s and we may define f : V. — W, by setting f(8) = (A4,B,U",V"). The
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regular map f is the inverse to ¢, and so W, 2 V...

The restriction, py, of p to W, is a surjection. If (U",V") € G4(U) %
G4(V), then p(U", V") consists of all pairs § = (A, B) such that A(U") =
V" B(V")=U", and the reduced pair (A' : U/U" - V/V";B": V/V" —
U/U") lies in V,s. Thus there is a surjective regular map f : p;y 1 (U", V") —
Vyr € Hom(U/U",V/V") x Hom(V/V",U/U"). If B' € V;, then f~1(B')

consists of all pairs of linear maps whose matrices (with respect to a suitable

basis) look like:
A0 B'" 0
B D)’ E G

where D and G are nonsingular. Thus all f~!(8') are irreducible and
isomorphic, of dimension us 4+ vs. Hence p~1(U",V") is irreducible of
dimension dim(V;+) +us+wvs and W, is irreducible of dimension dim(V;)+
us +vs+s(u—s)+ s(v—s). Thus codim(V;) = 2uv — us —vs — s(u —s) —
s(v —s) —dim(Vy) = 2(u — s)(v — s) — dim(V;») = codim(V;v).
Ifa=(A:U —V;B:V —U)is a pair define 7(a) = AB € End(V)
and p(a) = BA € End(U). If a is a nilpotent pair, we can describe the
Jordan normal form of 7(a) and p(«) as follows. Let II be the set of positive
integers, and ) the set of formal sums of elements of II with nonnegative
coefficients. We think of Q as the set of all possible Jordan normal forms
of a nilpotent matrix. Define a map p, : ¥ — II U {0} By counting the
number of a’s in any string in ¥. u, induces a map, we also call y,, from A
to 2, where p, maps the string “b” to 0. We make an analogous definition
of pp. It is observed in Kraft-Procesi [10] that p14(n(e)) is the Jordan block .
decomposition of 7(a), and ps(n(a)) is the block decomposition of p(a).
Keep the spaces U, V fixed. Let r be a rank function r : ©¥ — ZT with
stable value s. To r is associated an element n € A such that V., = V.
Let 6 = pa(n). Let t be the rank function t : Z+ — Z% associated to
f. If t = t' + s, then t is the rank function of any C : V. — V such that
the reduction C' has form 6. Using reduction it is easy to see that the

restriction of © to V; maps onto ¥; C End(V).
LEMMA 1.4. 7 :V, — Y} is smooth.

PRrOOF: If the stable value s = 0, then this was shown in Kraft-Procesi
[10]. f U’ C U and V' C V, then recall that Y;(V') is the subvariety
with stable space V' and define V,.(U’, V') to be the subvariety with stable
spaces U', V'. An easy argument using reduction shows that the map
7 : Vo (U, V') = Y. (V') is smooth.
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Let P C GL(U) and Q@ C GL(V) be parabolic subgroups such that
Go(U) & GL(U)/P and G4(V) = GL(V)/Q. The maps GL(U) — G,(U)
and GL(V) — G4(V) have sections defined locally, and from this it follows
that the maps f : V,, = G4(U) x G4(V) and g : Y; — G4(V) are locally
trivial. That is, in the second case say, G4(V') has an open cover G4(V) =
UW; such that f~1(W;) = Yy(V') x W; for some V' € W;. The lemma
follows.

1B) Invariant Theory. Let U be a vector space, r a rank function with
r(0) = dim(U), and X, C End(V) the variety {A | rank(A4*) < r(:) for all
i}. It is the purpose of this section to show that X, is a normal variety.
Thus for this section we fix r and consider X = X,..

If r has stable value 0 then X, is the closure of Y, = {4 | rank(4") = r(7)}
and Y, is the orbit of a single nilpotent linear map. In this case Kraft
and Procesi have shown that X, is normal, and a generalization of their
argument proves our theorem. In this section we will outline the proof in our
more general setting, only emphasizing those parts that differ significantly
from Kraft and Procesi’s paper.

Notice that we do not know the radical ideal defined by X; that is, the
equations we have given only define X set theoretically. Thus it is difficult
to imagine how to prove normality directly. One of the beautiful ideas
of Kraft-Procesi is that normality can be proved by showing that X is the
quotient of a normal variety under the action of a reductive algebraic group.
We follow this tack closely.

Denote by s the stable value of r. Let n be the least integer such that
r(n) = s. Note that X, can equally well be defined by the finite set of
inequalities rank(A") < r(:) for i = 1,... ,n. Let Up,Uy,... ,U, be vector
spaces such that U,, = U, and U; has dimension r(n—1). Note that we have
arranged it so that the dimensions of the U; form a strictly decreasing se-
quence. Let M be the affine space consisting of tuples (Ag, By, A1,... , An—1,
B,—1) where A; : U; — Uiy and B; : U4y — U; are linear maps. M is the
set of all tuples of maps that fit into the diagram:

Ao A1 An—l

Bo Bl Bn-—l
Let Z C M be the closed subscheme of M defined by the equations
A;i_1Bi—1 =B;A;fori=1,... ,n—1. Let G be the group GL(Up) X ... X
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GL(U,) and H the subgroup GL(Up) x ... GL(Up—1). We define an action
of G on M by setting (go, .. ,9n)(A0,... ,Bn_1) = (o Aons™ sguBogy ~ss» 4
gnAn_lg;ll,gn_an_lg;I). This action induces an action of G on Z.

The definition of M and Z can be trivially generalized to any sequence
of spaces U},---,Ul. We will write these varieties as M(Up,...,U;) 2
zZ(Uj, ..., U).

The definition of Z can be viewed in the following manner. Let N be the
variety End(U;) x ...End(Un—1) and define ¢ : M — N by setting:

QD(A(), 3 Y ,Bn—l) = (B1A1 - AQB(),. .o ,Bn——lAn—l - An_an_g) .

Z is then the variety ¢ ~1(0), where 0 € N is the 0 tuple.

Next define a map 3 : M — End(U) by setting ¢(Ao,... ,Bn1) =
Ap—1Bn—1. Note that if A = A,_;B,—1 is in the image of %, then
A? = A, 1By 1An_1Bn_1 = Ap_1An_2B,_2B,_;. By induction, At =
An_q1...An_iBp_;...Bp—1. In particular, A factors through U, _; and so
rank(A?) < r(i). Thus A € X. Conversely, it is elementary to see that if
A € X, then there is an @ = (Ao, ... ,Bn—-1) € Z such that all the A’s are
injections and ¥(a) = A.

Let Zyeq be the reduced scheme defined by Z. The action of G on Z
induces an action on Zeq, and by restriction we get an action of H on Z;eq.
Since X is reduced by definition, there is an induced map % : Zreq — X.
The proof of the next fact follows the proof in Kraft and Procesi with only

minor changes and so we omit it.
LEMMA 1.5. % induces an isomorphism Zyeq/H = X.

We next turn to finding some smooth points on Z. Let M°® C M be the
open subset defined by requiring for each = 1,... ,n — 1 that either 4;
or B; has maximal rank. Arguing as in Kraft and Procesi, we observe that
the tangent space map dy : T(M) — T(N) is surjective over each element
of M°. Note that when one follows the proof in Kraft and Procesi, one sees
that no restrictions on Ay or By are required. Set Z° = Z N M° which is
open in Z, and observe that we showed above that Zo maps onto X. Z0 is

certainly nonempty. We have shown:
LEMMA 1.6. Z° is nonsingular of dimension dim(M) — dim(N).

We next want to show that Z—Z° has small dimension. More specifically,

we show:
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PROPOSITION 1.7. Z — Z° has codimension > 2 in Z.

We begin the proof of the above proposition by noticing that elements
of Z have stable spaces that generalize the stable spaces of section 1A. Let
(Ag,... ,Bn_1) = a be an element of Z. Define a; to be the pair (4;, B;).
Let & and A be as in section 1A, and define n;(a) = n(a;). Set U}' C U; to
be the stable space of B;A;. Since B;A; = A;_1Bi_1, U/’ is also the stable
space of A;_1B;_;. Thus all U;' have equal dimension which we call the
stable rank of . In addition, 4;(U}') = U/}, and B;(U}},) =U/".

For this fixed a, define U! = U;/U!. Let M' = M(Uyg,...,U,) and Z' =
Z(US,...,UL). In the obvious way, a induces a point ' = (4g,...B;_1)
such that all A/B! are nilpotent and o' has stable rank 0. We call o' the
reduction of a.

For each a € Z, define I'(a) € (A X ... X A) (n — 1 times) to be the
sequence 7;(«). The relations defining Z force ma(ni(a)) = m(ni-1(a)).
Conversely, any sequence satisfying these relations can easily be seen to
be I'(a) for some a. Note that, by definition, I'(a) = T'(a’). Now fix
I = I'(a), let s be the stable rank of a, set 7 = n,_1(a), and set m4(n) = 6.
Let t : Z+ — Z1 be the rank function of stable value s corresponding to
6. Choose U/ to be a vector space of dimension dim(U;) — s and define M’
and Z' as above. Set Zr to be the inverse image of I in Z, while Zp. is the
same for Z'. Define N' = End(U{) x ... x End(U,,_;). We claim:

PROPOSITION 1.8. Zp is smooth and irreducible of dimension dim(Zr) =
dim(M) — dim(N) — dim(M") + dim(N") 4+ dim(Zy.).

PRrROOF: Let Zx = Z(Up,... ,Un—1) and Z*p C Z* be the inverse image
of T in Zx (yes, the last component of I' is ignored). There is a pullback
diagram:

Zl" —_— V,7

! !

Z*F ¥ Yr

The right column is smooth by 1.4, so induction shows that Zr is smooth
and irreducible. A similar pullback diagram holds for Z}., so the dimension
equation also follows by induction.

Note that Uy is not (0), so Z[. is not quite one of the Zy studied by Kraft
and Procesi. But like the variety defined by them, Z}. consists of nilpotent

pairs. In fact, by adding spaces with negative subscripts, one can see that
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Z1 is the “upper tail” of one of the varieties Z defined in their paper. The
key result can now be stated (compare Kraft-Procesi [10, p. 236]).

PROPOSITION 1.9. Either Zr C Zy or dim(Z°) — dim(Zr) > 2.

PROOF: Let a be such that I' = I'(«). Note first of all that Zr C Z; if and
only if each 7;(«) has the property that either all strings in 7;(«) start with
a “b” or all strings in 7;(a) end with an “a”. T’ which violate the above we
call defective. By 1.6 dim(Z°) = dim(M) — dim(N), so by 1.8 to prove the

Proposition we must show that:
(*) If T is defective then dim(M') — dim(N') — dim(Zp) > 2.

It is necessary to give a formula for the dimension of Zp.. Let ¢ be the rank
function of stable value 0 associated with p4(7n—1(a)) and b the rank func-
tion associated with us(mo(a)). The point is that if @ = (Ag,... ,Bp_q) €
ZL, then t is the rank function of A}, _;B;,_;) € End(Uy,) and b is the rank
function of B Al € End(U}). Using the same argument as in [10, Corollary
p- 241] we have that:

LEMMA 1.10. Let u; be the dimension of U}. Then:

Hm(ZL) = (Z u,~u,~+1) + 1/2(dim(Y3) + dim(Y3)).

Now dim(Y};) < ug(ug — 1) since b is the rank function of a nilpotent
matrix. In order to study dim(Y;), define t' : ZT — Z* as follows. For
i <n,set t'(i) = up—;. Ifn <i<ug+n,set t'(z) = ug—(n—1). Finally, set
(i) = 0if ¢ > uo+n. Since u; —up > 1, t' is a rank function. Furthermore,
t(i) < t'(i) for all 7. By [10, part a) of the Proposition p. 229], Y is in
the closure of Yy, and so dim(Y;) < dim(Yy). By part b) of that same
proposition, (1/2) dim(Yy) =

STHE (G~ 1) = ) = (3 wilwisn — us)) + uo(uo — 1)/2
It follows that (1/2)(dim(Y3) + dim(Y?)) is less than or equal to:
(Z wi{wgpg = ui)) + ug(ug — 1)
Of course dim(M') — dim(N') =

22 UiUipy — zuf = E U1 + Z ui(Uit1 — u;) + uous
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Combining these facts we have dim(M')—dim(N')—dim(Zp) > uo. Thus it
suffices to prove (*) in the cases ug = 1 or 0. If ug = 0, then Zi1sa Zy asin
Kraft-Procesi and the result of their paper applies here. If ug = 1, then we
can set U_; = (0) and Z[., M' and N' are isomorphic to the corresponding
varieties in Kraft-Procesi, so the results there apply again. Thus (*) is
proved.

Given (x), we have the Proposition 1.9. From 1.9, 1.7 immediately fol-
lows. Thus dim(Z) = dim(Zy) = dim(M) — dim(V). Since Z is defined
by dim(N) equations, Z is a complete intersection. Thus Z is Cohen-
Macaulay. As Z; C Z is nonsingular and of codimension 2, Z is normal.
As Z is a cone, it is also connected. By Serre’s criterion (e.g., Matsumura
[11, p. 125]), Z is reduced. Thus by 1.5 X is isomorphic to Z/H. It follows
that X, is normal.

2. Rational resolutions and the proof of the main theorem.

NOTATION: Throughout this section and the next we will adhere to the
following notation: V will be a vectorspace of dimension n over C, r will
be a decreasing non-negative concave integral function (a “rank function”)
with r(0) = n. We will write r(co) for the stable value of r (which is equal
to r(n)). We write a for the partition a(r) = (ar(r),...,0,0,...) with
ai(r) = r(i — 1) — r(s). We write b(r) = (bs(r),...,0,0,...) for the dual
partition to a, that is, b;(r) is the number of indices j with aj(r) > 7. It
is easily verified that if A € End(V) has rank function r, that is rank A* =
r(¢), then
ai(r) = dim((ker 4) N (im A1)

while b;(r) is the size of the i:-th (in descending order) block with eigen-

value 0 in the Jordan normal form of A.

In the last section we saw that if r is a rank function, then
X, := {A € End(V)|rank A* < r(k)}rea

is a normal variety. In this section we will prove that it is in fact Gorenstein
with rational singularities. We will also show that it fits into a flat family
over A™ of normal varieties, whose fiber over a point (A1, ..., A ) such that

the ); are all distinct is

Xearan = {A € End(V)| corank(A —A;) > r(z —1) — {1 )53 = Lgens stk
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In fact we will construct a (“very weak”) simultaneous resolution of singu-
larities for this family of varieties, and we will construct the family from
the resolution. We will use the resolution of X, to give a description of
the tangent space to X, at a point corresponding to an endomorphism A
such that rank A* = r; for all ;. As an application of the tangent space
computation we show that the general fiber of this family can be written
as the scheme-theoretic intersection of varieties like X.

To construct the resolution, suppose that m is the largest number such
that r(m) # r(m + 1). Let z1,...,zm be coordinates on A™, and let
W C A™ be a linear subvariety (that is, the translate of a subvectorspace).
Let F = Flag(V;ry,...,Tm) be the variety of flags

(V=VDdViD--DVuD0) dimV;=r(:).

Let
Xrw CEnd(V)x W x F

be the subvariety of triples (4, A, {V;}) such that, with X; := z;()),
(A-=X)WieicVifori=1,...,m.

Write m; = m; w for the projection of &y w to End(V) x W. Let X, w
be the reduced image of 7; and let XL’W be spec 74Oy, . Since the flag
manifold is complete, 7, is proper, so X, w is a closed affine subvariety of
End(V) x W, and X y, is also affine, and finite over Xrw. If W is a single
point A € A™, and the numbers \; are distinct, then X, w is the same as
the variety X5, .., defined previously.

THEOREM 2.1.

i) X, w is smooth over W and irreducible, of dimensionn?—3, a;(r)?+
dim W, with trivial canonical bundle, while 7y is proper and bira-
tional, with

R'm1.0%, , =0 fori > 0.

i) X, w is normal, so that X, w = X;’W, Xrw is a rational resolution
of singularities of X, w, and X, w is Gorenstein.
ii1) X, w is the restriction of X, am to W, and it is flat over W.

Taken together, statement ii) of the Theorem and the vanishing part of
statement i) may be rephrased as saying that A}y is a rational resolution

of the singularities of X, w; see Kempf et al [8].
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We will postpone the proofs of this and our other results until after all
the statements have been given.

Next we study the fibers of the family X, am over points A € A™ for
which some of the \; may coincide. We partition the coordinates A; of A

by equality. Let p be a permutation of {1,...,m} such that

Apy == Ap(m)s
Ap(mi+1) = = Ap(ma)s
Ap(mat1) = " = Ap(mopa)-
and such that p preserves the order within each interval m; +1,...,m 1.

Thus with a; = r( —1) —r(2), we have ap(m;+1) = *** = Qp(m;y,)- We write

T(i,j) i=dimV — Ap(m;+1) — """~ Ap(mi+j)
fori=1,...58 and 3 = Lyu.osMipq — W
We have:

COROLLARY 2.2. The scheme-theoretic fiber of X, w over A € W is
X, x = {A € End(V)|rank(A — ) < r(i,§) for all i, 5 as above}yeq.
In particular, this variety is Gorenstein with rational singularities for every

A € A™, and X, ) is a rational resolution of its singularities.

Using this description of the desingularization we can give a description

of some tangent spaces to X:

PROPOSITION 2.3. If rank A* = r(i) for all i then A is a smooth point of
X, = X0, and the tangent space to X, at A is naturally equal to

{a € End(V)| Z A'a A’ maps ker A* into im A* for all k}.
i+j=k—1

A consequence is the following transversality result, which will play a role
in the description to be given in the next section of the equations defining

some of the varieties X,:
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COROLLARY 2.4. For all A\ € A™, the variety X, x is scheme-theoretically

the intersection
N; ({A € End(V)|rank(A — ) < r(i,j) for all j as above}red) -

PROOF OF THEOREM 2.1: We first show that X, w is smooth and irre-
ducible. Write 7 : X am — A™ x F for the projection. Choose a cover
of F by sets F' on which the bundles V; are trivialized. The scheme-
theoretic preimage by 72 of A™ x F' may be identified with the product
of A™ x F' with the set of block-upper-triangular-matrices of a suitable
shape, and is thus smooth over A™ x F' and irreducible. As A™ x F is
smooth over A™, we see that X, w is smooth for every W. Since W x F'is
irreducible, so is Xy w .

Next we use the adjunction formula to prove that the canonical bundle
of X, w is trivial. Since &, w is a complete intersection with trivial normal
bundle in X := X, am, it suffices to treat the case W = A™.

Let Vi be the trivial bundle V.x Fon F,andlet W= (VFk=Vy D --- D
Vm D 0) be the tautological flag on F. Let D C End(VF) be the vector
bundle of “upper-triangular” endomorphisms preserving ¥V — that is, those
A with AY; C V; for all ¢ — and let D be the total space of D. We may
regard X, am as a subvariety of D x A™. Inside D is the bundle of “strictly
upper-triangular” endomorphisms, that is, those A with AV;_y C V; for
all ¢; as is well-known and easy to verify by direct computation, it may be
identified with the cotangent bundle 7*(F) to F.

On the other hand, pulling D back to D we get a tautological endomor-
phism A € Dp C End(Vp) which preserves the pullback Vp = (Vp = Vy D
-+ DV D0) to D of the tautological flag on F. Writing A; for the image
of Ain End(V;_1/V;) on D we see that X is the zero locus of the section

(A1 = Ayee oy Am — Am) € H® (D, 07 (End(Vi-1/Vi))D) -

Computing dimensions, we see that this section vanishes in codimension
= rank(®7*(End(Vi=1/Vi))p), so X is locally a complete intersection in D
with normal bundle ®7*(End(V;_1/Vi))x.

By the adjunction formula (Hartshorne [7, Ch. 2]), the canonical bundle
of X is the canonical bundle wp of D tensored with the highest exterior
power of the normal bundle to X in D. But the highest exterior power
of the endomorphism bundle of any bundle is trivial, so this is simply the
restriction of wp to X. It thus suffices to show that wp = Op.
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Now the cotangent bundle 7*(D) of D is easily seen to be the pullback
from F to D of D* @ T*(F). From the description of 7*(F) in terms of

upper triangular matrices we get an exact sequence
0 T*F)—D— @ End(Vi—1/V:) — 0.

From the triviality of the top exterior powers of the End(V;_1/V;), we thus
see that the highest exterior power of D* @ 7*(F') is the same as that of
D* @ D. Since this is trivial we get the desired isomorphism wx = Ox.
From the vanishing theorem of Grauert-Riemenschneider [6] we now ob-
tain
Rim Oy = Rimyuwy =0 for i >0,

completing the proof of part i) of the Theorem. Using duality (see for
example Elkik [4]) we also get wxr == Ox:_, where we have written X'
for X 'T’Am. Thus this last variety is Gorenstein.

ii) Since X, w is the image of X, w, it is irreducible. On the other hand m,
is one to one over the image of the open set of those (A, A, {V;}) such that
(A= X;)Vi_y =V;fori=1,...,m, so m is birational. It is proper because
F is a projective variety. In particular, X ’T,W is the normalization of X, w.

Consider, for any linear varieties U C W C A™, the commutative dia-

gram (of rings, since all the varieties in question are affine):

O g = Uge,

I I

o
OXr,W OXr,U

The horizontal map on the bottom is an epimorphism since X, y, being
a closed subset of End(V) x W by the properness of 7w, is a closed
subvariety of X, .

Consider first the case U = 0. Since O, , is normal by the result of
Section 1, the right hand vertical map is an epimorphism. We wish to
prove that the left hand vertical map is an epimorphism. This will prove
part ii) for spaces W containing 0.

Since the rings on the bottom of the diagram are the reduced rings of
finitely generated graded rings, they are graded, and their normalizations
on the top row of the diagram are graded too. Thus we may use Nakayama’s

lemma to conclude that the left hand vertical map is onto if we establish
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that OX:-,W modulo the kernel of «, or, even better, modulo 1,...,Tm, is
OXi,o' This is the special case W = 0 of the first statement of part iii) of
the Theorem, applied to the X' in place of the X. We will prove it now in
this form for arbitrary W:

Inductively, it suffices to show that if W C W' are linear subvarieties
of A™ such that W is cut out in W' by a single equation y € Owr, then
the sequence

y
0—m*0x,,,, — m *Ox, — m1 *Ox,

wi
is right exact, and this follows at once from the last statement of part i),
proved above. This completes the proof of ii) for spaces W containing 0.
To prove ii) for arbitrary linear varieties U C A™, consider the diagram
above with W = A™, so that by what we have just proved, the left-hand
vertical map is onto. By the version of the first part of iii) established above,
the top horizontal map is onto. Of course this implies that the right-hand

vertical map is onto, proving ii) in general.

iii) We now see that Xy = X, w for each W, so that the first part of iii),
the restriction statement, is already proved. As for flatness, it suffices
to treat the case W = A™. Since Ox, ,m is graded, it suffices to prove
flatness locally at 0 € W; that is, by the “local criterion” (see for example
Matsumura [11]), it suffices to show that z1,...,Z is a regular sequence
on Ox, am. But since Ox, w is a domain for every W, this follows from
the restriction statement. This concludes the proof of Theorem 2.1. g

PROOF OF COROLLARY 2.2: All but the first statement comes directly
from the special case W = {\} of the Theorem. By the Theorem, the fiber
X, x is reduced, so to prove the first statement it is enough to check that
the given variety is the image of X,  set-theoretically. This follows easily

by decomposing V into eigenspaces. O

PROOF OF PROPOSITION 2.3: Smoothness at A follows from Zariski’s Main
Theorem since we know that X, is normal and the fiber of the desingular-
ization X, o over A consists of the single point corresponding to the flag
{A'V}.

We next show that the given set of endomorphisms is contained in the
tangent space by showing that it is in the image of the tangent space of X7.o.
For this it is enough to show that if €2 = 0 then the set {(4 + ea)'Ve[q}
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of subspaces of Vg is a Cle]-valued point of F' over {AV}; it will follow
that the pair
(A+ea,{(A+ea)'Veq))

is a C[e]-valued point of X7 .

The C[e]-valued points of F' over {A*V'} are the sets {Vi} of subspaces
of V := V[, such that for each k, Vi reduces mod ¢ to Vi, Vi D Viy1,
and V; is a direct summand of V. The subspaces (4 + ca)*V obviously
satisfy the first two conditions, and we must show that they satisfy the
third. Since rank A* = r(k) the r(k) x r(k) minors of (A + ea)k generate
the unit ideal of C[e], so we need only show that the (r(k)41)—(r(k)+1)
minors are 0, or equivalently that every exterior product

(A+ ea)kvl A-N(A+ 5a)kvr(k)+l

vanishes. Since codimy ker A¥ = r(k), we may assume that one of the
Vi, SAY Ur(k)41, 18 in ker AF. Writing (4 4+ ea)* = A¥ + eB, with B =
2 epi—n— Ao AT we see that such an exterior product consists of a sum of

terms of the form
(*) E'Ak’Ul /\"'/\B'Uj/\"'/\Akvr(k)—}-l)

each containing one factor with B in place of A*. Of course all but the
term with j = r(k) + 1 vanishes. By our condition on «, Bv,(x)+1 € A*V,
so the expression in (*) vanishes for j = r(k) + 1 as well. This proves that
o is in the tangent space to X, at A.

To show that the given set of « is exactly the tangent space to X, it
now suffices to show that it has at least the correct dimension; that is, that
its codimension in End(V') is at most Y, ai(r)?. Inductively, suppose that
the set

Ey={a€End(V)] > A'aA’ maps ker(A¥) into im(A¥) for k < h}
i+j=k—1

has codimension < ., a;(r)? in End(V). The space Ep4; is defined
in Ej by the condition that >, ., Aiq Al takes ker AP into im ARF1L.
But for a € E), the transformation

Z AlaAl = At + Z Aladl | A

i—|—j=h i+j=h—-1
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already takes ker A* into im A®* and both the codimension of ker AP in
ker A"*1 and the codimension of im A**! in im A" are equal to ap41(r).
Thus codimg, Expt1 < apt1(r)?, and we are done. O

PROOF OF COROLLARY 2.4: The given intersection is certainly equal to X x
set-theoretically, so it is enough to prove that it is reduced. By the dimen-
sion formula of Theorem 2.1, the intersection has codimension equal to
the sum of the codimensions of the varieties being intersected. Since each
of the varieties being intersected is Cohen-Macaulay, the scheme-theoretic
intersection is too, so if it were not reduced, it would be everywhere non-
reduced. Thus it is enough to show that the intersection is transverse at
some one point.

It is easy to write down (for example by using the Jordan normal form)
an endomorphism A € X, x which satisfies rank A = r(i,j) for every ap-
propriate 4,j. The condition on an element o € End(V') for it to belong to

the the tangent space at A to one of the varieties
{A € End(V)|rank(A4 — \;)? < r(4,5) for all j as above}eq

being intersected is, by Corollary 2.3, a condition only on the restriction
of a to the kernel of a large power of A — \;. Since the direct sum of
these kernels, for the different 7, is embedded in V, such conditions are
independant. Consequently the tangent spaces at A of the varieties being
intersected meet properly, and the scheme-theoretic intersection is smooth

at A as required. O

3. Equations.

Throughout this section we will make use of the notations V,n,r,a,b
introduced in the beginning of Section 2. We will also write Age, for the
generic n X n matrix, defined over the polynomial ring C[{zi;}1<i j<n],
which we identify with the coordinate ring of End(V).

The action of GL(V) on End(V) by conjugation induces an action on
the coordinate ring C[z;;] of End(V). Since the variety X, is invariant,
it is natural to wish for equations for X, that are invariant under GL(V').
However, as is well-known, the ring of GL(V)-invariants is generated by the
polynomials in «;; that are the coefficients of the characteristic polynomial

of the generic matrix, so if one requires that the individual equations be
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invariant, one is doomed to failure (except in the case of the “largest”
nilpotent orbit closure X, that for which r(¢) = n — ¢, where the equations
are generated by all the coefficients of the characteristic polynomial!) There
seems little reason to expect in advance anything more than that the whole
ideal I(X,) of functions vanishing on X, will be invariant.

But in fact a stronger invariance does hold. One can construct matrices of
functions which are conjugation invariant as matrices, in a suitable sense,
and the entries of such a matrix generate a conjugation-invariant ideal;
the ideals of functions vanishing on the X, turn out to be sums of ideals
constructed in this way.

Powers, exterior powers, and powers of exterior powers of the generic ma-
trix Agen are all examples of matrices F’ of functions which are conjugation
invariant in a sufficiently strong sense: namely for some t and all endomor-
phisms A of V, F(A) acts naturally on A'V; and for any invertible matrix
B,

F(B™'AB) = (A" B)"'F(A)(\' B).

De Concini and Procesi [3] noticed that there is a very general method
of making such constructions, and this method seems to provide enough
invariant ideals to define all the nilpotent X,.

Tanisaki [15], following the work of De Concini and Procesi, found a
more compact and convenient set of invariant matrices of functions to use:
Let A € End(V). Regarding \*(z — A) as a polynomial in z whose coef-
ficients are endomorphisms of A\'V, we define A\}(4) € End(A\'V) to be
the coefficient of z*~¢. (Note that if d = 0 this is the identity map, while
if d > t it is the 0 map.) The index d in the notation Aj(A) is chosen in
this way because if we choose a basis for V, so that we may regard A and
A(A) as matrices, the entries of A)(A) are polynomials of degree d in the

entries of A. In particular,
Ay = Aj(Agen)

is a matrix of polynomial functions of degree d. We write I(\}) for the
ideal generated by the entries of the matrix A}, and V(A}) for the (reduced)
variety in A™ that they define.

For example, if d =t then we get

XL = Af Agen,
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so the I(\!) are the usual determinantal ideals. On the other hand, A7
is the 1 x 1 matrix whose entry is (up to sign) the d-th coefficient of the
characteristic polynomial.

In the nilpotent case, where r(co) = 0, X, is the closure of a single orbit,
so a collection of functions which arise as the entries of an invariant matrix
has a nice property: to check its vanishing on the whole orbit closure, it
is enough to check its vanishing at a single element of the orbit. In this
case, Tanisaki showed that the vanishing of certain of the A} defines the
variety X, set-theoretically (and a little more); De Concini and Procesi had

previously proved the corresponding results for their matrices.

In the non-nilpotent case the X, are no longer closures of single conjuga-
tion orbits, and it is no longer true that if an invariant matrix of functions —
even an invariant function like a coefficient of the characteristic polynomial
— vanishes on an element of X, —J,, <r X5 then it vanishes on all of X,.
For example, taking r(i) = n, the constant fuction, so that X, = End(V'),
the trace function vanishes on lots of invertible matrices without vanishing
everywhere. But one can hope for ideals of functions with a still stronger
invariance property. To describe what is desirable, we will write A’, for
the restriction of A to its own 0-eigenspace, so that A’ is the “nilpotent
part” of A. Since the membership of an endomorphism A in one of the X
can be determined from A’, what one hopes for are conjugation invariant
matrices of functions in the entries of A, or collections of such matrices,
whose vanishing depends only on A’. Tanisaki’s construction realizes this
hope in a rather strong form.

It follows from an easy argument of Tanisaki that for any ¢ and d the ideal
generated by the entries of the collection of matrices X}, AY, ,...,A{ has
the strong invariance property just described. But in fact — this is perhaps
the main new point in the discussion below — if ¢ < n then the vanishing
of an individual Ay on A € End(V) depends only on A’ (Theorem 3.1).
Thus the A} are a natural source of equations for defining the varieties X,
for arbitrary r. We prove here that they suffice set-theoretically (Corol-
lary 3.3), and as mentioned in the introduction, Weyman [16] has proved
that suitable I(\}) actually suffice to generate the ideal of X,. (Weyman’s
result was proved for some special rank functions r by Strickland [14], and
a preliminary version of this paper contained a proof in some further special

cases.)

The vanishing loci of the A} are interesting varieties in their own right.
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It turns out that they are unions of the X, in all but the familiar case of
A% (Corollary 3.4). In Section 4 we shall see that V(A2~1) arises as the
singular locus of the hypersurface V(A}).

Here is our main technical result, which give the invariance result in an

explicit form:

THEOREM 3.1. Suppose rank A™ = p and let A' be the nilpotent part
of A. If p < d, then \j(A) = 0 iff )\fi__’;(A') = 0. Ift < n then in addition
A4 (A) = 0 implies p < d.

The example of A\}(A), the trace of A, shows, as remarked above, how
badly this fails for ¢t = n.

We postpone the proofs until after all the results have been stated.

Theorem 3.1 allows us to analyze the varieties X, and V(A}) in terms of
each other, at least set-theoretically. First we give a formula telling exactly
which V(A%) contain which X,. Some of these containments follow from
others, as the second statement of the result shows. Here and later in this
section we will use the notations a;(r) and b;(r) introduced at the beginning

of Section 2:

THEOREM 3.2. V(AY) 2 X, if d >t -5, ,bi(r). Ife>dands >1
then V(A3) 2 V(\}) unless s =t = n.

The inclusions in Theorem 3.2 are inclusions of sets — that is, reduced
schemes, and the X, are indeed defined as such. However, we could also re-
gard V()\Y) as a scheme, defined by the ideal I(\}) generated by the entries
of the matrix A\}. Thus we may ask whether the assertions of Theorem 3.2
hold scheme-theoretically — that, whether the corresponding inclusions
hold among the ideals I(\}).

It is immediate from the definitions that Theorem 3.2 holds scheme-
theoretically for d = 1 and d = ¢, and Weyman'’s result implies that the first
statement holds scheme-theoretically, as already mentioned. Also, we have
been able to prove (using the description of the A} given in part A) that the
second statement is true scheme-theoretically for d = e. We have checked
that these statements are true in all cases with n < 6 using the computer
program Macaulay of Bayer and Stillman [1], and we thus conjecture that

they hold scheme-theoretically in all cases.

COROLLARY 3.3. X, =\ V()\}), the intersection being taken over all those
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t and d such that b,_¢y1(r) > 0 and

t<n, d=t+1— Y b(r)

i>n—t

or
t=n, r(co)+bi(r)>d>t— Z bi(r).
i>n—t
Tanisaki proved the weaker result that the above formula holds if the

intersection is extended over the (larger) set of indices with

d>t— Y br).

i>n—t

PROOF (Tanisaki): The formula is obvious if one first diagonalizes z — A;

that is, it suffices to consider the elementary divisors of z — A. O

Our result by contrast cannot be treated simply by diagonalizing the
matrix £ — A over the ring C[z], because this process mixes together the
ideal I(A\Y) with I(A!) for e > d. But by Theorem 3.2 the radical of I(\})
contains I(\!), and modulo this fact the results are equivalent.

Each A} is a 1 x 1 matrix whose entry is an irreducible polynomial,
not a rank variety except for d = n. However for ¢ < n the irreducible

components of the V()\})) are rank varieties:

COROLLARY 3.4. If t < n then V(M) is the union, for 1 < k < 1+
[(d —1)/(n —t)], of the rank varieties

{AlrankA'c <min(n—k(n—t+1),d—1—(k—1)(n—1t))}.

We derive:

COROLLARY 3.5. The following conditions are equivalent if t < n:
1) V(X)) is irreducible.
i) V() = V(A4) = {A|rank A < d — 1}.
il d=tort+d<n.

REMARK: The ideal I()\}) is given with (,C{)? generating polynomials
(where as usual ,C; denotes the binomial coefficient n!/(n — t)!t!). It is
easy to see that they are each expressible as a linear combination of the

d x d minors of the generic matrix, and thus at most (,C4)? of them are
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linearly independent. Now the ,Cy minors of the generic matrix are lin-
early independent (as one sees at once from the fact that one can construct
a matrix of numbers with any given minor nonzero, and all other minors
zero) so if ,C; < ,Cy then I(A\4) & I(A9). In this situation, Corollary 3.5
says that the two ideals even have different radicals.

On the other hand, t4+d < n iff ,C; > ,C4,and in this case the Corollary
says that the two ideals have the same radical; but in fact, in a number of
cases that we have checked by computer (with n < 6) the two ideals are
actually equal when ¢ +d < n. It would be interesting to know whether the
span of the entries of A} in the space of all forms of degree d has dimension
= min((,C4)?, (»Ca)?), the “largest possible” value, in every case.

Our next goal is the proof of Theorems 3.1 and 3.2. We first show how
to compute the minors of z — A if A is in Jordan normal form. (Since we
are interested in the coeffiecients of the different powers of z that appear,
we cannot simply diagonalize  — A over C[z]; this would of course preserve
the ideal in C[z] generated by the minors, but would not preserve the C-
vectorspace spanned by the minors.)

Assume, then, that A is in Jordan form; that is, decompose V as a direct
sum V = @V, in such a way that AV, C V, and (A—A4) qu is nilpotent of
index equal to the dimension of V,, for each a. Choose bases B, for each V,
so that A — A, restricted to V,, becomes upper triangular with ones on the
superdiagonal and zeros elsewhere, and let B = UB,. For subsets I and J
of B, we let d(I,J) = detr j(z — A) be the corresponding minor of z — A
(or 0 if I and J do not have the same cardinality). Writing I, = INB, and
Jo = J N B,, we obviously have d(I,J) = lIod(Is, Jo) if the cardinality
of I, is the same as that of J, for each a.

If I and J have the same cardinality, we let ¢ : I — J be the unique

order preserving map from I to J, and set
eq = card{i € I, | ¢(2) = i}.

We have

LEMMA 3.6. With notation as above, suppose that I and J are t element
subsets of B. The minor d(I,J) is zero iff @I, # J, for some a or ¢(i) #

1,1 + 1 for some :. Else

d(I,7) =TI(z — As)".
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Thus if A consists of a single Jordan block, with eigenvalue X, then the set
of possible values of d(I,J) is given by

{d(1, 1)} = {(= = X}

where e = t if t = n, and else e takes on all values from 0 to t. If A is

nilpotent, with Jordan blocks of size b;(r), then

MN(A)=0ifft—d< Y bi(r).

i>n—t

PROOF OF LEMMA 3.6: We first derive the formula for d(I,J). Since
d(I,J) = Mad(Ia, Ja) we see that d(I,J) can only be nonzero if I and
J,, have the same number of elements for each a, which is equivalent to
the statement that ¢(I,) = ¢(Jo) for every a. Thus we may assume
that this condition is satisfied. Let 7 be the smallest index occurring in a
block I, and let I' = I — {i}, J' = J — {e(d)}. If p(¢) # ¢, ¢ + 1, then
the row corresponding to ¢ in the determinant dets j(z — A) is zero, so
d(I,J) = 0. If ¢(i) = ¢ + 1, then this row has a 1 in the i-th column and
zeros elsewhere, so d(I,J) = d(I',J'). If ¢(i) = ¢ then the i-th column in
the determinant detr j(z—A) has z—\, in the i-th row and zeros elsewhere,
sod(I,J) = (z—Aa)d(I',J'). In either case, since ¢ |I' is again the unique
order preserving function from I' to J', we are done by induction.

It is clear in the one block case that d(I,J) cannot take on any other
values than those indicated. But if 0 < e < t < n then the choice

I'={1,2,...,1},
J={1,...,e,e+2,...,t+1},

yields d(I,J) = (z — A)°.

Finally, in the nilpotent case, a choice of t rows I, that is, ¢ elements
of B, excludes n — t rows, and thus can exclude the elements of at most
n — t distinct B,. But each B, which is entirely included contributes a
factor of z%« to the determinants d(I,—). Thus each of these determinants
is divisible by the Y, ,_, bi(r) power of z, and from the one-block case it
is clear that any power of z larger than this one, up to the ¢-th power, can
be so obtained. Since by definition A\j(A4) = 0 iff the (¢ — d)-th power of =

does not occur, we are done. O
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PROOF OF THEOREM 3.2: If t =n thent —3 ;5 ., bi(r) = r(co). In this
case the first statement of the theorem is elementary, while the second is
vacuous.

We may thus assume ¢t < n. We will first prove that the stated inclusions
hold under the additional assumptions r(co) = 0, and only among the inter-
sections of the given varieties with the set of nilpotent transformations. We
will use this nilpotent case, below, to prove Theorem 3.1. But Theorem 3.1
shows that the general case of Theorem 3.2 follows from the nilpotent case
of Theorem 3.2, so the proof of Theorem 3.2 will be completed when we
complete the proof of Theorem 3.1.

Assume, then that r(co) = 0, and let A be a generic point of X,, so that
A is nilpotent. Of course, since the X, are just the orbit closures in the
nilpotent case, A can have any nilpotent Jordan form. The first statement
of the Theorem in this case follows at once from the last statement of
Lemma 3.6.

To prove the second statement of the Theorem in the nilpotent case —
that is, with V(\2) and V(\}) replaced by their intersections with the set
of nilpotent matrices — we use the fact that the X, are orbit closures.
Using the first statement of the Theorem, it is enough to show that ¢ >
d>t—3,5,_,bi(r) implies e > s — 37, bi(r) in relevant cases. By
induction we may further assume that e and s differ from d and ¢ by at
most 1. The cases s =t,e=d+1and s =t+ 1, e =d+ 1 are innocuous.
If s=t+ 1, e = d then problems can only arise if b,,_4(r) = 0, in which
isn_q bi(r) = 0, so d > t, a contradiction. This concludes the

proof in the nilpotent case. O

case also Y

PROOF OF THEOREM 3.1: First suppose that p < d. In this case we must
show that \{(A) # 0 iff /\‘ti__‘;)(A’) # 0. Since A’ is nilpotent, we may apply
the last statement of Lemma 3.6 and obtain

N o(A) #0

iff
d+p<(t+p)— Y, bl
i>(n—p)—(t—p)
that is, iff

d<t— Y bi(r).

i>n—t
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Let A" be the part of A with eigenvalues # 0, so that A = A’ @ A"
and A" is a p X p matrix of rank p. We may assume that A’ is in Jordan
normal form. The coefficient of z° in det(z — A") is +det A", which is
nonzero, and since by the nilpotent case of Theorem 3.2 and the above the
(t — p) x (t — p) minors of z — A’ are the powers of z from t — 7., bi(r)
to t, we see that the ¢t X ¢ minors of A containing all the rows and columns
of A" already have the powers of z in this range occurring with nonzero
coefficient. Thus )\fi__’;(A' ) # 0 implies A\;(A) # 0. On the other hand, any
t x t minor d(I,J) of z — A involves at least t — p rows and columns of A’,
and thus has as a factor a minor of A’ of size s > t — p. Applying the last
statement of Lemma 3.6 to this minor, we see that it is divisible by = to

IO RO

i>n—p—3s i>n—t

the power

finishing the proof in the case p < d.

To finish the proof we must show that if ¢ < n and A;(A) = 0 then p < d.
From Lemma 3.6, whose notation we adopt, we see that because t < n, we
can find among the entries of /\t(x — A) polynomials of degree t of the form

ps(z) = q(=)/(z = Ap);

where

g(z) =I(z — Ap)®

the A, running over all the eigenvalues (or any t+1 of them, if there are that
many) and A\g running over all the Aq. To say that \j(A4) = 0 thus implies
that the d-th elementary symmetric function in ¢ variables vanishes when
applied to any ¢ of the roots of ¢. In this situation the following Lemma,
applied with n = ¢+ 1, shows that at least n — d+ 1 of the eigenvalues of A
(counted with multiplicity) are 0; that is, n —p > n —d+1, yielding p < d

as desired. 0O
Write 4(z1, ..., 2) for the d-th elementary symmetric function in ¢ vari-
ables. Since o4(x1,...,%¢) is the sum of all multilinear monomials of de-

gree d, it vanishes if at least t — d 4+ 1 of the variables are 0. The converse
of this is of course false except for t = d; however, if more than ¢ variables

are involved, a sort of converse is true:

LEMMA 3.8. If 1 < d <t < n are integers, and \1,..., A, are complex
numbers such that the elementary symmetric function o4(z1,...,&,) van-
ishes on every set of t of the \;, then at least n — d + 1 of the \; are 0.
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PROOF OF LEMMA 3.8: If d =t the result is obvious. If some A\; = 0 then

since

Gl By voe 5Bty 0) = @g(Byg oy Bp1),

the result follows by induction on n and t. Thus we may suppose that
o4(y,...,x,) vanishes on every set of ¢ of the A;, but all the A; are nonzero,
and we will derive a contradiction.

Note first that the sum Ej ad()\ix,...,Xij,...,)\,'tﬂ), leaving out one
index at a time, is a positive integral multiple of oq(Xij,..., A, ), sO

o4(z1,-..,T441) vanishes on every t + 1 element subset of the A;. On the
other hand,

O'd(.’L'l, 5 1617 ,:Et+1) = $t+10'd—1(-T17 P~ ,.’I?t) + 0',1(:131, 55 ,ZIIt),
(This formula also works for d = 1 if we interpret oo(z1,...,%¢) as the

constant function equal to 1.) Since by our hypothesis all the A; are nonzero,
we see that o4_1(z1,...,2;) vanishes on every t-element subset of the ;.
Continuing, we see that oo(z1,...,z) vanishes on every t-element subset
of the );, which is the desired contradiction. O

As already remarked, Corollary 3.3 follows easily from the other results.

PROOF OF COROLLARY 3.4: The rank varieties X, with r(co) = 0 are the
minimal closed conjugation-invariant subvarieties of the set of nilpotent
matrices. Since taking the nilpotent part commutes with conjugation, and
the V(\Y) are invariant, it follows from Theorem 3.1 that each V()}) is the
union of those X, that are contained in it. It thus suffices to show that the
maximal X, contained in a given V(\}) are among those on the list given
in the Corollary.
From Theorem 3.2 we know that X, C V()\fl) iff

d>t— Y b(r)=t—Y (ai(r) = (n—1))4

i>n—t i>1

where we have written (s)4 for max(0,s). But we can make X, larger
without altering the validity of this inequality by replacing r with a rank
function for which the a;(r) that are < n —t are replaced by 0. Suppose
that ax(r) > n —t, but ax41(r) = 0, so that in particular

r(k) <n—k(n—t+1).
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The condition given above then becomes

k
d>t—" (air)—(n—1))
k
=t+k(n—t)—2a,-(r)
=t+k(n—t)—(n—r(k))
=(k—-1)(n—1t)+r(k),
that is,

r(k) <d—(k—1)(n—1t).

But any X, satisfying the above inequalities is contained in
{4] rank A¥ <min(n — k(n —t+1),d —1— (k- 1)(n -t)},

so this is the largest rank variety given our choice of k.
If the inequality on k in the Corollary is violated, then

d—1—(k—1)(n-1) <0,
so the above rank variety is empty and can be dropped from the union.
O

In order to prove Corollary 3.5, we will need to know the rank of a generic
member of the variety {4 | rank A* < s}.

LEMMA 3.9. A generic menber of the variety {A | rank A¥ < s} has rank =
n — a; where a; is the smallest integer > (n — s)/k.

PROOF OF LEMMA 3.9: If A is such a generic member, then since

rank A*™! — rank A' = dim(ker A) N (im A*™!)
< dimker A,

we have s = rank AF > n — k(dimker A), so dimker A > a;. On the other
hand it is easy to construct elements of the variety with dimker A = a;.

O

PROOF OF COROLLARY 3.5: Let

Vi={4]| rank A¥ <min(n —k(n —t+1),d—1— (k- D(n—1))}.
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The generic element of V; = V(\4) is an endomorphism of stable rank d—1,
which is therefore not an element of any of the other V. This proves the
equivalence of i) and ii). We also see that V(A¢) is irreducible iff V; contains
all the other V;, with k < (d—1)/(n—t), and this will be true iff the generic
element of Vi has rank at most d — 1. This rank of a generic element is
computed for us by Lemma 3.9, and straightforward arithmetic leads to the
desired result. O

REMARK: In Section 2 we saw that the variety X, = X, o could be realized
as the flat limit of a family of varieties X, x. Further, Corollary 2.4 shows
that the equations of X, ) are known if one knows the equations of X, for
certain ' > r. This gives an effective method of calculating the ideal of X,

for example by computer) in any particular case.
P ¥

4. Varieties defined by the coeflicients of the characteristic poly-

nomial.

A classical example of the construction A% of Section 3 occurs when
t = n as A} is a 1 x 1 matrix (i.e. a polynomial) such that AF(A) is
the coefficient of "% in the characteristic polynomial of A. In this section
we will consider the singular locus (Theorem 4.10) and its components
(Corollary 4.14) of the variety of matrices defined by A} = 0. For simplicity,
we will often write A} as A\x. We let z;; be the variable corresponding to
the ¢, j entry of our square matrices, and consider A as a polynomial in
the z;;’s. Occasionally, we will work basis free and consider A € Endp(W).
As )\ is PGL,, invariant, we can unambiguously write Ax(A4). Finally, A;
is just the linear, trace polynomial and so its zero set is trivial. We will
henceforth assume that k£ > 1.

To begin with, we mention an alternative description of Ag. If S, T <
{l,... ,n} are subsets of equal order, and A € M, (F), denote by A(S;T)
the submatrix obtained by “crossing out” the rows in S and the columns in
T. A principal submatrix is a submatrix of the form A(S; S). The following

is well known.

LEMMA 4.1. M\(A) is the trace of A*(A), which is the sum of the determi-

nants of the principal k x k submatrices of A.

To prove 4.1, one reduces to diagonal matrices using the Zariski density
of diagonalizable matrices, and then computes. It follows from 4.1 or direct

computation that A\ is a multilinear polynomial.
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LEMMA 4.2. )\ is an irreducible polynomial.

PROOF: Write A\, = z11¢ + r where z,; does not appear in g or r. Of
course, A is irreducible if and only if ¢ and r have no common factors. If
X = (z;j) is the generic matrix, let X' = X(1;1) be the submatrix. By
inspection, ¢ is the coefficient of z™F in the characteristic polynomial of
X'. By induction (and the trivial trace polynomial case), we may assume
that ¢ is irreducible. Thus it suffices to show that ¢ does not divide r, that
is, that ¢ does not divide Ag. It is easy to construct a diagonal A with
q(A) = 0 but A\, (A) # 0, so the lemma is proved. |

Let Wy C M,(F) be the zero set of A\g. As Ay is irreducible, Wy is irre-
ducible and is scheme theoretically defined by Ay = 0. Let Sy = Sing (W)
be the reduced subvariety consisting of the singular points of Wi. As F
has characteristic 0, Sk is the zero set of the n? partial derivatives of Ag.
In order to express these partials, we introduce the following notation. If
S C {1,2,...,n} is a subset, consider the complementary set {1,... ,n}—S
and order this complementary set as usual. For i € S, define i’ = 0g(7) if ¢ is
in the ¢’ position in {1,...,n} —S (lowest first). Note that if X' = X(S5;T)
is a submatrix of the generic matrix, ' = 0g(7), and j' = Or(j) then z;; is
the i',j' entry of X'. If S = T, i.e. if X' is principal, then 0g(z) + 05(7) is
congruent to 7 + j modulo 2.

The proof of the next result is a calculus exercise.

LEMMA 4.3.

o = (-1 det(X(S Ui} SU{j}))
Yo ser

where T is the set of subsets of {1,2,... ,n} with cardinality n — k and not

containing ¢ and j.

We begin our investigation of Sy by examining the restriction of the
polynomials O\ /0z;; to upper triangular matrices. Recall from 3.8 that
ok(y1,- .- ,Ys) is the k degree elementary symmetric function in yi,... ,ys.

An immediate consequence of 4.3 is:

LEMMA 4.4. Suppose A € M,(F) is upper triangular with diagonal entries
a11,022,. .- yGnn. Then X /0z;;(A) = or—1(a11,022,- - ,8jjy--- ,Gnn).

COROLLARY 4.5. If A € S and d is the stable rank of A thend < k — 2.



207

PROOF: Since Sy and the stable rank are invariant under conjugation, we
may assume that A is upper triangular. By 3.8 and 4.4, A has at least
n — k 4+ 2 zeroes on its diagonal. The result follows. O

To derive more information about the elements of S; we must make use of
the equations ONg/0z;; = 0 for 7 # j. If A is upper triangular, half of these

equations automaticaly hold.
LEMMA 4.6. Let A be upper triangular. Then O\ /0zij(A) =01if j > 1.

PRrROOF: If A = (a;;) then by assumption a;; = 0 for : > 5. Let B =
A(S; S) be any principal k X k submatrix with 4,7 ¢ S. It suffices to show
that det(B(SU {i}; SU{j} = 0. If B' = B(SU {i}; SU{j}) = (b;;)
then a little work shows that B’ is upper triangular with b, = 0 for
05(i) < m < 0s(j). O

Once again, Sy, is invariant under conjugation and so it suffices to describe

the A € S which are in Jordan canonical form. So for the next computation

assume that A has the form:

(x5

where B,C' are in Jordan canonical form, B is nilpotent, and C' is nonsin-

gular.

LEMMA 4.7. Let A have the form (1) and suppose © > j. Then det(A({i};
{s})) = 0 unless B is a single Jordan block and the i, j position in A is
the lower left corner of B. Under these circumstances, det(A({¢};{7})) =
det(C) # 0.

PROOF: B has a zero row containing the bottom row of each Jordan block,
and a zero column containing the leftmost column of each Jordan block.
Thus if B has at least 2 Jordan blocks, A({¢};{j}) has a zero row and
zero determinant. If B is a single Jordan block, and det(A({:};{j})) =0,
A({i};{s}) must contain neither the first column nor the last row of B.
Hence 4, j is the position claimed. For such a B and 4,5, A({¢};{j}) has

(6 ¢)

and the result is clear. O

the form:

Given that A has form (1), the next lemma describes the principal subma-
trices of A. Its proof is both straightforward and elementary, and so is left

to the reader.
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LEMMA 4.8. Let A be as in (1) and let D be a principal k x k submatrix

of A.
a) D has the form:
B'" 0
g &
where B', C' are in Jordan normal form, B' is nilpotent, and C' is
nonsingular.
b) A row or column of B' comes from one in B. Similarly for C and
.
¢) The maximum size of a Jordan block in B' is less than or equal to

the maximum size of a Jordan block in B.

We are ready to state and prove the key result, which describes the matrices
in form (1) which lie in Sj.

PROPOSITION 4.9. Suppose A € M,,(F) has the form (1), and that within
B, the size of the Jordan blocks is nondecreasing as you go from top left to
bottom right. Let d be the stable rank of A. The following are equivalent:
a) AeS;.
b) d < k — 2 and all Jordan blocks in B have size less than or equal to
k—d—1.
¢) All principal k x k submatrices of A have rank less than or equal to
k—2.

PROOF: a) => b): Assume a). By 4.5, d < k — 2. Assume to the contrary
that B has a Jordan block of size r > k — d. We can choose this block to
be the one in the lower right corner of B. Let i =n —d, so Bisani X1
matrix. Set j =i —(k—d—1) =n—k+1. Let D = A(S;S) be a principal
k x k submatrix of A with 7, j € S, and set ' = 05(7), j' = 0s(j). Set
D' = D({i};{j}). Assume det(D") # 0. By 4.7 and 4.8, ', j', must be the
position in D in the lower left hand corner of E where D =

2) L2 &)

and where E, G are in Jordan canonical form, FE is nilpotent, and G is
nonsingular. Since j' = 1; 1,2,...,j—1 € S. Since j —1 = n — k,
S ={1,...,7 =1}, G = C, and det(D') = det(C). Conversely if § =
{1,...,7—1}, E is a single Jordan block, and det(D({z'}; {;'}) = det(C) #
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0. In other words, in the sum of 4.3 for O\ /0z;;(A), all terms but one are

zero and that term is 4 det(C') # 0. This contradicts our assumption that
I/ Azij(A) = 0, and b) is proved.

b) = ¢): Assume b). If D is any principal k x k submatrix of A, write D
as in (2). Since G has size less than or equal to d, E has size greater than
or equal to k — d. By 4.8, E contains at least 2 Jordan blocks, and so D
has rank less than or equal to k — 2.

c¢) = a): Let D be a principal k X k submatrix of A and D' a k—1xk—1
submatrix of D. Part ¢) says precisely that all such D' have determinant
zero. In the sum of 4.3 for O\ /dz;;(A), all terms have the form + det(D")
for such D’. Thus c) implies that OAx/0z;;(A) = 0 for all ¢,5. That is,
A€ Sy. O

We are ready to give our description of Sj.

THEOREM 4.10. Suppose A € M,(F) has stable rank d. Then A € Sy if
and only if d < k — 2 and rank (A*—%71) = d.

PROOF: As both sides of the equivalence are conjugation invariant, we
may assume that A is in the form (1). Thus rank (A”) = rank(B") +
rank(C")rank(B") + d. Now part b) of 4.9 is equivalent to d < k — 2 and
k—d—1=rank(B¥91) = rank(4%4-1) — d. O

Let Vf be the variety {A|rank(A¥~4~1) < d}. By the observation in the
introduction, V¥ = {A | rank(4’) < r(:)} for some rank function r. We
next explicitly determine the rank function r.

Since V} = X, is irreducible, r is the rank function of a generic element in
de. Intuitively, such a generic element, A, should have, in the appropriate
sense, 0-eigenvalue block sizes as large as possible subject to the conditions
rank (A") = d and A € V}. To this end write n —d = (k—d —1)g+ f
where ¢, f are integers and 0 < f < k—d—1. Let A be a matrix in Jordan
normal form with stable rank d, ¢ many 0-eigenvalue blocks of size k —d—1

and one 0-eigenvalue block of size f. Let r be the rank function of A.
LEMMA 4.11. V} = X,. That is, r is the rank function of a generic point
of VF.

PROOF: That X, C de is obvious. Suppose B € de has rank function
s. Form the rank function #(7) = max(r(z),s(z)). Note that r(i) < #(7)
for all + and that ¢(k —d —1) = d = r(k —d — 1). It suffices to show
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that (i) = r(i) for all 7. We can suppose, by way of contradiction, that
t(i +1) > r(i + 1) but t(j) = r(j) for all j < i. Since t(j) = r(j) = d for
j>k—d—1,wehavei+1 < k—d—1. Set h = t(z) — t(: + 1). Then
d=t(k—d—1) > t(i)—h(k—d—1—1) =r(i)—h(k—d—1—1). Ifi > f, this
equals n—ig— f—h(k—d—1—1), son—d—f < ig+h(k—d—1—:) implying that
h>qort(i+1)=t(i)—h=r()—h <r(:)—¢g=r(i+1), a contradiction.
Ifi< f,r(i)—h(k—d—1—i)=n—(¢g+1)i —h(k—d—1—1)so we have
n—d < (¢+1)i+h(k—d—1-1%) = (g+1)(k—d—1)—(¢+1—-h)(k—d—1—2).
Thus (g+1—h)k—d—1—1) < (k—d—1—f). Sincei < f,g+1-h <1
or h>¢q+ 1. But t(i +1) =t(i) — h=r(i) — h <r(i+ 1), a contradiction
is again reached, and the lemma is proved. O

We will use the V}’s to give the decomposition of Sy into irreducible com-

ponents. To begin, we use 4.10 to express Sj in terms of the V,}’s.
_ 1 1*2 vk
LEMMA 4.12. S; = Ju—g Vi

ProoOF: Clearly, from 4.10, Sy, is contained in this union. But from 4.11 a
generic point of de is in Sk and the result is proved. O

In order to purge the union in 4.12 of redundancies, we next investigate
when de C lef. Write de = X, as in 4.11, and assume de - Vd'? with
d#d. Thenr(k—d —1)<d'. Toexpressr,letn—d=(k—d—-1)g+ f
where ¢, f are integers and 0 < f < k —d — 1. First of all, » has stable
value dsod < d'. f k—d —1 < fthenr(k—d —1) =n— (k-
d—1)(qg+1) = (d—d)(g—1)+2d" + (1 — k + f) after substituting
n=(k—d—1)q+f+d. Still assuming k—d'—1 < f, then 1 —k+ f > —d'
so(d' —d)(¢—1)+2d'+(1—k+f) > (d —d)(g—1)+d' > d' a contradiction.
Thus k—d' —1> fandr(k—d' —1)=n—(k—d' —1)g— f =d+(d' —d)q
after substituting the same expression for n. Since r(k —d' —1) < d', we
have ¢ = 1. Altogether, if d # d' and VF C V£, then d < d’' and ¢ = 1.
This is part of the proof of:

LEMMA 4.13. Let d, d < k — 2. The following are equivalent:
a) VECVE,
b) Vf CV} for some d # d'
c) ¢=1

PROOF: That a) implies b) is obvious, and that b) implies ¢) was argued
above. Assume c¢). As f <k —d—1 we have that d+1 <k —f—1or
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k—(d+1)—-1> f. Hence r(k—(d+1)—1)=d+ (d+1—-d)g=d+1
and so a) holds. O

With 4.13 in hand, we can give a more precise version of 4.12.

COROLLARY 4.14. Let m be the maximum of 0 and 2k — 2 — n. Then
k—2
Sk == U de
d=

and Sy is not the union of any subset of these V}’s.

PROOF: Since ¢ > 0, we have ¢ =1 if and only if (n —d)/(k—d—1) < 2.
This last inequality is just d < 2k —2 —n. Thus it is precisely the V} with
0 <d < k—2 — n that are redundant in 4.12, and 4.14 is proved. O

We close this section with a result relating the singular set Si and the
matrices A} studied in section 3. Recall that Az = A and V(A}) is the zero
set of the entries of AL. In particular, Vi = V/(A}).

THEOREM 4.15. Sj = Sing(V(A\})) = V(A?T})-

PROOF: According to 3.4, V(A?Z]) is the union, for 0 < s < k — 1, of the
rank varieties {A | rank(A?®) < min(n—2s,k—s—1)}. Substituting k—d—1
for s, we have that V(A}"]) is the union, for 0 < d < k — 2, of the varieties
{A | rank(A4*~471) < min(d,n—2k+2d+2)}. As this minimum is certainly
less than or equal to d, we have by 4.12 that S 2 V()\z:}). Thus by 4.14
it suffices to show that if d satisfies 0 < d < k—2and d > 2k — 1 —n, then
de C V()\Z___}). But d > 2k — 2 — n implies that d < n — 2k + 2d + 2, so
VF appears in the union for V(A?Z1) and the result is proved. O

ACKNOWLEDGEMENTS: Both authors are grateful to the NSF for partial
support during the preparation of this work and to the Mathematical Sci-
ences Research Institute, where the work was done, for providing a conge-

nial atmosphere in a beautiful setting.



10.

11.

12.
13.

14.
15.

16

Dep

212

REFERENCES

. D. Bayer and M. Stillman, Macaulay, a computer algebra program, Available free
from the authors, for many machines including the Macintosh, IBM-PC, Sun, Vax,
and others (1986).

. W. Borho and H.-P. Kraft, Uber Bahnen und deren Deformationen bei linearen
Aktionen reduktiver Gruppen, Comment. Math. Helv. 54 (1979), 61-104.

. C. De Concini and C. Procesi, Symmetric functions, conjugacy classes, and the
flag variety, Invent. Math. 64 (1981), 203-219.

. R. Elkik, Singularités rationelles et déformations, Invent. Math. 47 (1978), 139-147.

. M. Gerstenhaber, On dominance and varieties of commuting matrices, Ann. of
Math. (2) 73 (1961), 324-348.

. H. Grauert and O. Riemenschneider, Verschwindungssatze fur analytische Koho-
mologiegruppen auf komplezen Rdumen, Invent. Math. 11 (1970), 263-292.

. R. Hartshorne, “Algebraic Geometry,” Springer-Verlag, New York, 1977.

. G. Kempf, F. Knudson, D. Mumford and B. Saint-Donat, “Toroidal embeddings,
I,” Springer Lecture Notes in Math., vol. 338, 1973.

. B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85

(1963), 327-404.

H.-P. Kraft and C. Procesi, Closures of conjugacy classes of matrices are normal,

Invent. Math. 53 (1979), 227-247.

T. Matsumura, T., “Commutative Algebra,” Benjamin/Cummings Publishing Co.,

1980.

C. Procesi, C., A formal inverse to the Cayley- Hamilton Theorem, preprint (1986).

I. R. Shafarevich, “Basic Algebraic Geometry,” Springer-Verlag, Berlin/Heidelberg/

New York, 1977.

E. Strickland, On the variety of projectors, J. Alg. 106 (1987), 135-14T7.

T. Tanisaki, Defining ideals of the closures of the conjugacy classes and represen-

tations of the Weyl groups, Tohoku Math. J. 34 (1982), 575-585.

. J. Weyman, Equations of conjugacy classes of nilpotent matrices, preprint (1987).

artment of Mathematics, Brandeis University, Waltham MA 02254

Department of Mathematics, University of Texas, Austin TX 78713



