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In this paper we study vector spaces of matrices, all of whose elements have rank 
at most a given number. The problem of classifying such spaces is roughly 
equivalent to the problem of classifying certain torsion-free sheaves on projective 
spaces. We solve this problem in case the sheaf in question has first Chern class 
equal to 1; the characterization of the vector spaces of matrices of rank d 3 due to 
M. D. Atkinson (J. Ausfral. Math. Sot. 34 (1983), 306-315) follows. We speculate 
on the situation for higher rank and Chern class. Free resolutions are used to verify 
some properties of the low rank examples and to produce an abundance of exam- 
ples of somewhat higher rank, connected with the theory of curves. 0 1988 Academic 

Press. Inc. 

Confenfs. 1. Vector spaces of matrices. 2. Sheaves on projective space. 3. Free 
resolutions. 4. Basic families and higher ranks. 

1. VECTOR SPACES OF MATRICES 

The basic objects to be considered here are vector spaces of linear trans- 
formations, that is, a pair of vector spaces V and W and a linear subspace 
M c Hom( V, W), over an algebraically closed field. We will say that M has 
rank k if the maximum of the ranks of the matrices in M is k. It is an 
interesting problem to describe the vector spaces M for which the rank is 
small compared to the dimensions of I/ and W; in this paper we derive the 
description given by Atkinson [2] of spaces of ranks 1, 2, and 3 from a 
more general result, which we state in terms of the chern classes of a 
certain associated vector bundle. 

A problem with a slightly different flavor is that of determining the rank 
k spaces M of maximal or near the maximal dimension for such a space, 
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which is vk. This problem was, so far as we know, first considered by 
Dieudonne [6], and, in contrast to the problem considered here, a good 
deal is now known; see Beasley [4] for the sharpest results and an 
excellent survey. The reason that this problem does not include the 
problem described above is that many maximal spaces of matrices of rank 
k have dimension far smaller than the maximum dimension of a space of 
matrices of rank k, which is vk. One refinement to this line of investigation 
not mentioned by Beasley is that in which one looks for large-dimensional 
spaces of matries all of whose nonzero elements have rank exactly k; for 
results and a survey in this direction see, for example, Westwick [13]. 
(Some results of this type can also be deduced from the theorems of Bruns 
[S].) We are grateful to R. Guralnick for pointing out these references to 
US. 

The treatment of the classification theorem in this section will be elemen- 
tary and matrix-theoretic. In the next section we will reformulate the 
problem in terms of sheaves on projective spaces, and state and prove a 
somewhat more general theorem. In the third section we introduce a 
technique from finite free resolutions to verify the properties of some of our 
examples, and use it to complete the proof of the classification theorems 
from Section 1. In the fourth section we speculate on the situation for 
higher rank and Chern class, and show how to produce large families of 
“basic” examples by using projective embeddings of curves. 

The work of this paper was done before we became aware of the prior 
work of Atkinson [2] proving the classification theorem for spaces of 
matrices of rank 63. We hope that the application of the sheaf-theoretic 
methods from algebraic geometry presented here will lead to further 
progress in this interesting and rather little developed area. 

We will say that a space of linear transformations M is equivalent to a 
space of dim Vx dim W matrices if they correspond after a choice of bases 
of V and W, and we say that two spaces of matrices are equivalent if they 
correspond under a change of bases. 

The description of vector spaces of transformations of rank 1 is classical, 
and easy: the elements of any such vector space M must have either a com- 
mon kernel V’ c V of codimension 1, or a common image w’ c W of 
dimension l-that is, M is equivalent to a subspace either of the space of 
matrices of the form 

0 0 ... 0 * 

0 0 ... 0 * 
. . . . 

. . . 

0 0 .‘. 0 * 

(1) 
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or of its “transpose,” the space of matrices of the form 

137 

(2) 

The trivial generalization of these is the space of maps having images 
contained in a fixed k-dimensional subspace of W, and the space of maps 
having kernels which contain a fixed (dim V- k)-dimensional subspace of 
V. To avoid these and related trivialities, we will henceforward assume that 
M is nondegenerate, in the sense that the kernels of elements of M intersect 
in 0 and the images of the elements of M generate W. This assumption has 
the effect of eliminating from consideration spaces equivalent to spaces of 
matrices having rows or columns of zeros in common. 

There is also a less trivial generalization of the types of low-rank spaces 
given in (1) and (2). Suppose that for some subspaces v’ c V and w’ c W 
of codimension k, and dimension k,, respectively, every map in M maps V’ 
into w’. It is easy to see that the rank of M is at most codim V’ + dim W’. 
If equality holds, we will call M a compression space, because its rank 
comes from the fact that its transformations “compress” v’ into IV’. For 
example, in rank 2, taking k, = k, = 1, we get a compression space 
equivalent to the vector space of matrices of the form 

(3) 

In general, a compression space of rank k is one which is equivalent to a 
space of (dim V) x (dim W) matrices having a common u, x w1 block of 
zeros with (dim V-vi) + (dim W- wi) = k, the largest possible value. 

The classical result on rank 1 spaces already mentioned is equivalent to 
the statement that every space of maps of rank 1 is a compression space (a 
generalization is proven in Proposition 2.1). But the naive hope that this 
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might remain true for higher ranks is quickly dashed. For example, con- 
sider the space of 3 x 3 skew-symmetric matrices, 

0 a b 

i 1 

-a oc. 

-b -c 0 
(4) 

Since all skew-symmetric maps have even rank, this family has rank 2. 
Example (4) belongs to the sequence of examples with which most of this 

note will be concerned. Given any (abstract) vector space M, of dimension 
m, say, we may use the multiplication in the exterior algebra to realize M 
as a space of maps of rank (dim M) - 1 from M to n2M. For dim M= 3, 
the first nontrivial case, we get the space of 3 x 3 skew-symmetric maps 
(note that M* = A2A4 in the 3-dimensional case), while if dim M= 4, M is 
equivalent to the space of matrices of the form 

b c d 0 0 0 

-a 0 0 C d 0 

0 -a 0 -b 0 d 

0 0 -a 0 -b -c 

(This notation is to be interpreted as specifying a parametrization of the 
space of matrices considered. It also specifies a matrix of linear forms, and 
thus a linear transformation of free modules over a polynomial ring in 
a, b, c, d. This second interpretation will -be used in Sections 3 and 4.) 

Of course we could use any (graded) algebra instead of the exterior 
algebra, and there are other ways of generalizing the construction of (5) as 
well-so many in fact that the classification problem seems hopeless for 
high rank. We will discuss this a little further in Section 4. 

Since transposition gives an isomorphism Hom( V, W) = Hom( W*, V*) 
which preserves ranks, every rank k space gives rise to another, its frans- 
pose. Of course the transpose of a compression space is again a com- 
pression space, and the transpose of the space (4) is equivalent to (4) itself, 
but this is obviously no longer true for the space (5). 

From a space of matrices of a given rank, we may manufacture a space 
of matrices of higher rank by adding some rows or columns of arbitrary 
entries. Thus, for example, the rank 2 space of 3 x 3 skew-symmetric 
matrices gives rise to the rank 3 spaces of matrices 

I (6) 
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More generally, if V’ c V and W’ c W are subspaces, and 
M’cHom( V’, W/W’) is any space of maps of rank k’, then the space 
M c Hom( V, W) of maps that induce maps in M’ has rank 

k = k’ + codim V’ + dim W’. 

To deal with this phenomenon, we need some definitions. Given V’ c V 
and W’c Wwe write rr=rrvw for the projection map from Hom( V, W) to 
Hom( V’, W/W’) sending a map V+ W to the composition 

v-q v+w++ w/w’. 

We say that a space M c Hom( V, W) is primitive if there are no subspaces 
V’c Vand W’c Wwith (V’, W’)#(V, W) such that 

rank(z-‘(n(M))) = rank(M) with II=x..,,.. (7) 

Proposition 3.2 gives a computationally effective criterion for primitivity. If 
M is not primitive, there will exist V’ and W’ satisfying (7) such that 
AT=71 v’, M(M) is primitive; we call M’ a primitive part of M. 

A projection map 7c corresponds, in terms of suitable bases, to taking 
submatrices. Thus M fails to be primitive if M is equivalent to a vector 
space of matrices in such a way that some space of submatrices M 
accounts entirely for the low rank of M; that is, M is a subspace of a vector 
space fi of matrices having the same rank as M and looking like 

t 

* * 

* * 

* * 

* * 

* * 

* * 

* * * * *\ M’ ri 
Reviewing the examples already given, a compression space (such as (1 ), 

(2), or (3)) is exactly a space whose primitive part is zero; in particular, 
there are no primitive spaces of rank 1. The space (4) of skew-symmetric 
3 x 3 matrices is primitive, as indeed are all the spaces which like (4) and 
(5) are of the form MC Hom(M, LI’M), and a primitive part of the space 
(6) is given by the first three rows. The primitivity of all these can be 
verified easily using Proposition 3.2. 
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One warning: the primitive part of a space of maps is not in general 
unique. For example, the fact that the matrix 

( 0 0 0 0 0 0 0 0 * * * * * * * * i 
(9) 

has rank 3 is attributable to either the top left 2 x 3 submatrix or the top 
left 3 x 2 submatrix. 

The idea of “taking submatrices” is also useful for constructing families 
of maps of rank <k from a given rank k family. Thus if M c Hom( V, IV) 
has rank k and V’ c V, IV’ c W are subspaces, then K y’, ,(M) c 
Hom( V’, W/W’) is a space of some rank <k; examples are given in 
Theorem 1.2 below. 

It turns out that these constructions are enough to produce all spaces of 
linear transformations of ranks ~3, and that we can list the results 
explicitly. First we state the result for rank <2. 

THEOREM 1.1. A space of matrices of rank 6 2 is either a compression 
space or is primitive, in which case it is the space (4) of 3 x 3 skew-symmetric 
matrices. 

In rank 3 there are two complications: projections of the space (5) 
appear, and there are imprimitive spaces which are not compression spaces, 
obtained by adding a row or column to example (4), as in (6). First we 
treat the primitive case: 

THEOREM 1.2. A primitive rank 3 space of matrices is equivalent either to 
(5) or its transpose or to one of the following four projections of (5) and their 
transposes, which are themselves primitive and pairwise inequivalent: 

(10) 
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0 0 c d 0 0 c d 

-b -d 0 0 

-d 0 b 0 ’ 

(12) 

(13) 

We postpone the proofs until Section 3. 

Of course it is easy to derive a list of all nondegenerate spaces of rank 
63: 

COROLLARY 1.3. A nondegenerate space of matrices of rank 3 is either a 
compression space, or primitive, or has rank 3 and primitive part the space of 
3 x 3 skew-symmetric matrices, so that it is of the form given by (6) or its 
transpose. 

One consequence is that the only families of “large” matrices of rank < 3 
are the compression families: 

COROLLARY 1.4. Let M c Hom( V, W) be a nondegenerate space of rank 
k, and set s = min(dim V, dim W). If 

k=l 

or 

k=2 and s>4 

or 

k=3 and S35 

then A4 is a compression space. 

It should be mentioned that a (much weaker) result of this type is known 
to hold for all k; Beasley [4] proves that, with notation of the corollary, if 
s> vk- v + w  -t k, then M is a compression space. Given the result of 
Corollary 1.4, however, it is reasonable to ask whether there exists a bound 
independent of v and w. The extension of the corollary to higher ranks is 
further discussed in Section 4. 

In the course of the proof of Theorem 1.2 it will be necessary to analyze 
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the equivalence classes of projections of the spaces M c Hom(M, A2M) 
which have rank =dim M- 1. This is done by means of the following 
result: 

PROPOSITION 1.5. Let W’ c A2M be a subspace and, considering M as a 
space of maps M c Hom(M, A’M) via the multiplication map of the exterior 
algebra, let M’ = TC M, w(M). Write m = dim M, and suppose that rank 
M’=m- 1, the rank of M. We have: 

(9 ?tMM. w’ : M + M’ is an isomorphism. 

(ii) If w” c A2M is another subspace, then the spaces of maps 

nM, dW and =M, w4W are equivalent if and only if W’ and W” are con- 
jugate under the natural action of Gl(M) on A’M. 

Proof (i) If XEM and rcM,+, (x) = 0, then x A MC IV’. But then for 
any y E M/x, the kernel of the composite - A y: M-P A2M + (A’M)( W’ 
contains both x and y, so that rank rrM, ,.(M) <m - 2, a contradiction. 

(ii) Suppose first that IV’ and W” are conjugate by A2a, for some 
a E Gl(M). For each x E M we have a commutative diagram 

Ma A’M- (A2M)/W 

M h +-), /12M - (A2M)/W”, 

where fi is induced by A2a, so (a, /I) defines an equivalence. 
Conversely, suppose that a: M + M, /I: (A*M)/ W’ + (A’M)/W” are 

any maps defining an equivalence between M’= n,,,.(M) and M” = 
rrMu, ,(M). We must show that IV” = A2a( IV’). First we prove that the map 
y defined on M by the diagram 

M C Hom(M, (A2M)/W’) 

Y  

I I 
Hom(a-I, j3) 

M t Hom(M, (A2M)/W”) 

is the same as a, at least up to a scalar multiple. Indeed, because of the 
hypothesis that rank M’ = m - 1, if x E M = M’ is generic, then ker x is the 
subspace of M generated by x, and x is up to a scalar the only element of 
M’ with this kernel. But ker y(x)= ker pxa-’ =a(ker(x) is the subspace 
generated by a(x). Since x was generic, a(x) is too, so the only transfor- 
mations in M” with this kernel are scalar multiples of a(x) E M = M”. This 
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proves that for each generic x there is a scalar rX such that y(x) = r.p(x). 
Since both c1 and y are linear transformations, this implies that for some 
scalar r, y = ra as claimed. 

From the commutativity of the previous diagram, with y = a, follows the 
commutativity of the “adjoint” diagram 

M@M---+ (n*M)/W 
ac3a 

I I 
P 

M@M- (fPM)/W,r, 

and since the horizontal maps factor through 

we are done. 1 

Here is a possible application: Mirollo in his thesis [12], has used the 
classical description of vector spaces of matrices of rank 1 to classify certain 
subvarieties of the Grassmannian. Briefly, we say that a subvariety of the 
Grassmannian G(k, W) has rank k if its tangent space at a general point 
A E G(k, W), viewed as a vector space of maps from A to W/A, has rank k; 
Mirollo finds that any rank 1 subvariety of G(k, n) of dimension 2 or more 
must in fact be a subvariety of the Schubert cycle of planes containing a 
fixed (k - 1)-plane or contained in a fixed (k + 1)-plane (see Grilliths and 
Harris [9] for a statement for curves of arbitrary rank). It seems likely that 
techniques similar to Mirollo’s will show in general that a subvariety of 
G(k, n) whose tangent space at each point is a compression space will 
likewise be contained in a Schubert cycle corresponding to the compression 
data. It may be hoped that the results of the present paper could be used to 
give a complete description of subvarieties of the Grassmannian of ranks 2 
and 3. 

2. SHEAVES ON PROJECTIVE SPACE 

In this section we will analyze a vector space M c Hom( V, W) by using 
the tools of algebraic geometry. To do this, we pass to the projective space 
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P = PM of one-dimensional subspaces of A4. We then have a map of 
sheaves 

rp’: V@Lo,(-l)+ WQ8, 

sending a vector v @ LA, in the fiber of the vector bundle VO 0,( - 1) over 
the point of PM corresponding to the space spanned by A EM, to the 
vector 2. A(v) E W, more conveniently for what follows, we can twist by 
O,( 1) to obtain 

‘pw: VQO,+ WQO,(l). 

Observe that the map qH carries all the data of the space M: taking 
global sections we get the map V + WQ M* adjoint to the inclusion 
M+Hom(V, W)= V*@ W. 

To analyze (p,,,,, we introduce the image sheaves 8, := Im(cp,), and 
&,, := Im(rp,,,*( 1): W* 0 0, + V* @ Lo,(l)), which are torsion-free sheaves 
of rank k = rank(M), and try to describe them. Note that gM and &., 
nearly determine the data of the map cp, and hence the original vector 
space M of maps: since M is nondegenerate, V and W* are subspaces of 
the spaces of global sections of gM and PM, so that M is a projection of the 
vector space of maps associated to the composite 

gM and FM are related by the fact that the double dual of each is the 
dual of the other, twisted by 8,( 1). Each is a subsheaf, generated by global 
sections, of its double dual. 

The sheaves cZ,,,, and 9,M are caught between two constraints: they are 
more positive than trivial bundles, but less positive than trivial bundles 
twisted by O,( 1). Further, both are generated by global sections. As we will 
see below, these constraints are sometimes enough to determine them. 

To see how the geometry of G)M and &,, relates to the space M, one 
might consider first the simplest possibility, where 8,+, is just a direct sum of 
rank 1 sheaves. It turns out that in this case M is also of the simplest type, 
a compression space. In fact it is enough for CC** to be a direct sum of rank 
1 sheaves: 

PROPOSITION 2.1. The following conditions are equivalent: 

(i ) M is a compression space. 

(ii) 8** is a direct sum of rank 1 sheaves (necessarily copies of 0, 
and O,( 1)). 

(iii) gM and FM have as direct summands trivial vector bundles of 
ranks k, and k, with k, + k, = rank M. 
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ProoJ Let k = rank M. 

(i) + (iii) Let v’ c I’, w’ c W be subspaces such that the maps in M 
carry I” into II” and codim P” + dim w’ = k. If v” is a complement of V 
in V, then (p,,,, maps v” 0 0 monomorphically to (W/W’) 8 8,( 1 )---else the 
rank of &‘,,,, would be <k. Thus cp,,,( I”‘@ 0) is a trivial vector bundle, 
which does not intersect qpM( I”@ 0). Since together the subsheaves 
generate gM, the desired conclusion follows for 8,,,, the trivial summand 
having rank equal to the codimension of v’. Applying the same argument 
to the transpose of M, we are done. 

(iii) = (ii) The existence of a trivial summand of gM implies the 
existence of a trivial summand of &‘** of the same rank. But &** is also 
F$,( 1 ), so it also has as summand a direct sum of copies of O,( 1) of the 
same rank as the trivial summand of FM. Since by (iii) these ranks add up 
to the rank of M, which is the rank of gM, we have proven (ii). 

(ii) =z. (i) Since a rank one reflexive sheaf on projective space is 
locally free, &** is a sum of line bundles. Since both 8** and 8*(l) have 
subsheaves of the same rank generated by global sections, we see that the 
line bundles must be copies of 8, and flP( 1). In particular it is generated by 
its global sections. It is not hard to show that if M is the projection of a 
space of maps M, of the same rank as M, and if M, is a compression 
space, then M is too. Thus we may assume that 8”= &** and that 
V= H’(&?,+,). The hypothesis on GiM implies the corresponding one for PM, 
so we may make a similar assumption there as well. 

Writing 8’ for a maximal summand of gM which is a direct sum of copies 
of 8,, we may take F” to be the kernel of the map induced on global 
sections by the composite map 

and define IF” dually. One checks easily that these spaces have the proper- 
ties that appear in the definition of compression spaces. u 

Since every torsion-free sheaf on P’ is a direct sum of line bundles, we 
get: 

COROLLARY 2.2. Every 2-dimensional vector space of maps is a com- 
pression space. 

Classsically, this corollary is part of Weierstrass’ theory of matrix pen- 
cils; see, for example, Gantmacher [S, Vol. 2, Chap 123. 

Similar ideas lead to a characterization of primitivity which we will use 
in the proof of the main theorems: 
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PROPOSITION 2.3. The following conditions are equivalent: 

(i) M is not primitive. 

(ii) &** or F* * has a rank 1 summand. 

(iii) &” or FM has 0, as a summand. 

Proof (i) + (iii) If rank M = dim V then gM z O,@ V, and similarly 
for W, so we may assume that rank M c min(dim I’, dim W). 

By symmetry it suffices to assume that for some proper subspace V’ c V, 
we have rank M = rank K%(M), where rc = rrV, w, and prove under this 
assumption that gM has &Jp as a summand. We may clearly replace v’ with 
any larger space, and we may therefore assume that it has codimension 1. 
We have 

rank M = rank n- ‘rc(M) 

=l+rankcp,(V’@0,), 

and it follows that if I”’ is any complement of I” in V, then 
c~~(V”@O,)Z~~ is a summand of &,+,. 

(iii) =- (ii) 3 (i) The first of these implications is trivial. Assume (ii) is 
satisfied. Since rank 1 reflexive sheaves on P are locally free, and both 8** 
and F** contain sheaves of the same rank as themselves that are 
generated by global sections, the rank 1 summand must be a nonnegative 
line bundle; since both are contained in a sum of copies of O,(l), this line 
bundle must be 0, or O,( 1). But if &‘** contains Lop(l), then F** contains 
0,, so we may assume that the summand is 9,, and by symmetry we may 
assume that it is a summand of &**. The composite map 

induces a map on global sections which cannot be zero, since 8, and 8** 
have the same rank, so its kernel v’ is distinct from V. It is easy to check 
that the pair V’, W satisfies the conditions for showing that M is not 
primitive. 1 

In the general case, the key invariant of GIM is its first Chern class c,(&~), 
which we view as an integer d by writing ~~(8~) = d. c,(Lo,( 1)). Since JM is 
generated by its global sections we have d 2 0, and if d were zero the sheaf 
gM would be a trivial vector bundle and M would be a compression space 
by Proposition 2.1, so we will assume d 2 1. Applying this as well to FM, 
whose Chern class is 
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we deduce that d < k - 1; and replacing M by its transpose if necessary we 
may assume that 

1 <d< [k/21, (14) 

where [k/2] denotes the greatest integer less than or equal to k/2. 
If now k < 3 we get d = 1, and then the situation is simple: 

THEOREM 2.4. Zf MC Hom( V, W) satisfies ~~(8~) = 1, and Op is not a 
summand of gM, then CC,+, is either O,(l) or the universal quotient bundle Q 
on P defined by the tautological sequence 

o+&(-l)+M@&-+Q+l. (15) 

It is interesting to note that J?,,,, is automatically a vector bundle in this 
case. 

COUNTEREXAMPLE. The theorem fails if we allow JM to have Op as 
summand. For example, if we take M to be given by 

then CC?,, is the direct sum of Up and the product of O,( 1) with the ideal of a 
projective line in P-not a vector bundle. 

COROLLARY 2.5. Zf M is primitive and ~~(8,) = 1, then M is a space of 

dimMxn dim M<n< 

matrices of rank dim M - 1 derived from the space 

Mc Hom(M, A*M) 

associated to the multiplication map of the exterior algebra by projection 
from a subspace of A*M. 

Proof of Corollary 2.5. By combining Theorem 2.4 with Proposition 2.3 
we get 8, = Q. The first map of (15) is also the first map of the Koszul 
complex 

O-+0(-l)+M@U+A*M@0(1)+ . . . . 
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so g,,, is also the image of MQ 0 -+ rl’M@ O( 1). Identifying Ho&( 1) with 
M*, and choosing dual bases { yi} of M and {xi} of H’&(l), this last map 
is given on global sections by 

YVHC (Vi A Y)Oxi for ~EM=HO(M@O). 

In the fiber above a point of P corresponding to an element z E M, we get 
the map 

Y b 1 txitz) .Yi) A Y = z A Y7 

which is the multiplication map of the Koszul complex. It follows that M is 
represented by a projection of the space M c Hom(M, A2M) corresponding 
to this multiplication map. That is, M is obtained by composing the 
multiplication map with an inclusion Vc M and a projection /i2M + W. 
But the rank of A4 and the rank of the space of maps corresponding to the 
multiplication map are equal, and the rank of the latter is dim M- 1, so if 
V# M or dim W < dim M, then M would not be primitive. 1 

Proof of Theorem 2.4. Let v be the dimension of V. We can define a 
rational map Y of [Fp to the Grassmannian G = G(v - k, V) of (v-k)- 
dimensional subspaces of V by sending a general point p of P to the kernel 
of the map cp at p. Away from the (codimension 22) subvariety Cc P, 
where 8, is not locally free, &,, is the pullback of the universal quotient 
bundle Q, on G. Since ci E), = 1, it follows that the map Y carries any line 
in P not meeting C to a line in G (that is, a line under the Plucker 
embedding of G). ‘Y thus maps P linearly onto a subspace ,4 c G which is a 
linear space in the Plucker embedding. Consequently we may obtain Y as a 
linear projection of P onto a smaller projective space P’, followed by an 
embedding of that projective space as a linear space in G. 

To exploit this we use the classical description of the linear spaces lying 
on G: any such space consists either of a subspaces of the set of (V-k)- 
planes containing a fixed (v - k - 1 )-plane or a subspace of the set of 
planes lying in a fixed (v - k + 1 )-plane (this may be proved, for example, 
by the argument of Griffiths and Harris [9, p.7573. We consider these cases 
in turn. 

If the linear subspace P’c G consists of planes containing a fixed 
(v - k - 1 )-plane, then there is a fixed (v - k - 1 )-dimensional subspace I/’ 
of V that is in the kernel of every element of M. Factoring out I” if 
necessary, we can assume that the dimension of V is k + 1. Since the kernel 
X of the map from Ola @ V to &,,, is a second syzygy, it is reflexive, and 
since it is of rank 1 it is thus locally free. Its chern class is of course - 1, SO 
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X z cO,( - 1). Since M* = @Lo,( 1 ), the inclusion X --) 0, @ V must factor 
through O,@ M, and since X is not contained in a trivial summand of 
6, @ V, the induced map M + V is onto. 

Consider the dual sequence 

Because AZ V* generates the kernel of 

@(OPO v*(l)) + fo4P(2)), 

we may factor the map (pM* through the Koszul complex map 

and dualizing again we see that the map A4 + Hom( V, W) is the com- 
position of the epimorphism M + V, the inclusion Vc Hom( V, A2V), 
and a projection Hom( V, A’V) + Hom( V, IV). Since this composite 
is an inclusion by hypothesis, we must have M= V, so that 8,,., = 
coker O,( - 1) + 0, 0 A4 as required. 

Suppose on the other hand that P’c G consists of (u - k)-planes 
contained in a fixed (v -k + 1 )-plane v’. Let V” be a complement to V’ in 
V. Since ranks may be measured on an open set, we see that the ranks of 
the images in 8,+, of 0, @ v’ and 0, @ V” are 1 and k - 1, respectively, and 
in particular that the second is isomorphic to the trivial bundle Lo, @ I”‘. 
Since J?,,,, is torsion free of rank k, it is the direct sum of these two sub- 
sheaves, and from our hypothesis that &,,, does not admit 0, as a 
summand, it now follows that 0, @ V” = 0, so rank 8,+, = 1. 

Since rank 1 reflexive sheaves are free, we see that gM** 2’ O,( 1). It 
follows that we may write O,( 1) @ W as gM* * 0 I!!&( 1) @ IV’ in such a way 
that the induced map &?,,, + O,( 1) @3 IV’ is zero. Thus we may assume from 
the outset that W is l-dimensional, so that M is a projection of the space of 
maps corresponding to the natural map of sheaves 

0,@Ho0,(1)+0,(1). (*) 

But this map of sheaves corresponds to the family 

M c Hom( M*, W) s M. 

If the projection were proper, then A4 would not be included in 
Hom( V, W), contradicting our hypothesis. It follows that A4 corresponds 
to (*) itself, so &,,, E I!?&( 1) as claimed. 1 

607/70/2-2 
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3. FREE RESOLUTIONS 

Proposition 2.3 gives a simple and effective method for determining 
whether a given space of matrices is primitive. The map ‘pw may be 
represented, after a choice of bases, as a matrix of linear forms over the 
polynomial ring S := F[M*], where F is the ground field; indeed, this is 
the same matrix of linear forms that we have been habitually using to write 
down parametrizations of IV, such as those in (lOt( 13). We may regard 
this matrix as a map of graded free modules over S, fM = F*(fpM). We write 
E, for the image off,, and F,,,, for the image off*( 1). We may interpret 
Propositions 2.1 and 2.3 as statements about E, and F, by virtue of the 
following simple result: 

LEMMA 3.1. If E is a graded S-module generated by elements of degree 0, 
and 8’ is the corresponding sheaf on [Fp, then the folowing are equivalent: 

(i) E has S as a direct summand. 

(ii) E** has S as a direct summand, 

(iii) d has 0, as a direct summand. 

(iv) b* * has 0, as a direct summand. 

Proof (i) =+- (ii) and (i) * (iii) are obvious, and (ii)* (iv) is also 
immediate because CC?** is the shealification of E** and E** = T,b*. Thus 
we need only prove (ii) G- (i). If E** -H S is an epimorphism, then since E 
has the same rank as E**, the induced map E + S cannot be zero. Since E 
is generated in degree 0, this map must even be nonzero in degree 0, 
whence it is onto. 1 

With this in hand we give the criterion of primitivity: 

PROPOSITION 3.2. Let A be the kernel offM, and let B be the largest sub- 
module of the minimal first syzygy of A*( 1) which is generated in degree 0. 
Similarly, let A’ be the kernel offML(1)1 and let B’ be the largest submodule 
of the minimal first syzygy of A’*(l) which is generated in degree 0. M is 
primitive tf and only if the rank of B and the rank of B’ are both equal to the 
rank of M. 

Remark. The computations necessary to apply this result are sometimes 
difficult to do by hand; but computer programs such as “Macaulay” of 
Bayer and Stillman [3] make them very quick in many cases of interest. 

Proof By Proposition 2.3 and Lemma 3.1, it is enough to show that 
the image of fM has a free summand if and only if rank B # rank M. This is 
clear; the module A is insensitive to the presence of the free summand. 1 
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Of course the same ideas, applied using Proposition 2.1 in place of 
Proposition 2.3, yield an effective criterion for a space to be a compression 
space. We leave the formulation to the reader. 

We can now give the proof of the classification theorem from Section 1. 

Proof of Theorems 1.1 and 1.2. Theorem 1.1 follows immediately from 
Theorem 2.4 and Proposition 2.3. As for Theorem 1.2, Corollary 2.5 and 
Proposition 1.5 reduce the problem to classifying the subspaces IV’ of /i*M 
under the action of G/(M) in the case where dim M = 4 and dim w’ = 1 or 
2, and to considering the corresponding spaces of linear transformations. 

The necessary classification of subspaces amounts to the classification of 
lines and points in Ps = P(/I’M) under the action of the group PGl(M) of 
automorphisms of the Grassmannian G c P5 of lines in P3. This is easy, 
and the result is well known: there are two orbits of points, those off and 
those on G, and easy computation shows that these correspond respectively 
to the families of matrices (10) and (11). There are three orbits of lines in 
P’, those transverse to G, those tangent to G but not lying in G, and those 
contained in G. The first two correspond to the examples (12) and (13). 
The example corresponding to a line in G may be represented by the 
matrix 

d 0 d 0 0 0 0 0 

0 c 0 c d d 0 0 

O-b O-b 0 0 d d 

-a 0 -b -c \-a 0 -b -c 

which is not primitive because the rank of the family corresponding to the 
last three columns is 2. One checks using the criterion of Proposition 3.2 
that the families (lo)-( 13) are primitive. 

To finish the proof, we must show that the given families are pairwise 
inequivalent. Proposition 1.5 implies that this is so for (lOt(13), and a 
simple consideration of the dimensions of source and target spaces 
eliminates all other possible coincidences except for a possible coincidence 
of one of (12) and (13) with the transpose of itself or the other. Now if two 
spaces M and M’ are equivalent, then the two maps fM and fMc are 
isomorphic up to a homogeneous automorphism of S. If A4 is the transpose 
of either (12) or (13) then the kernel of fM is the tautological map 
S( - 1) + MO S, which is stable under homogeneous automorphisms, but 
one checks that the kernels of the maps corresponding to (12) and (13) 
both have the form S( -2) + MO S. This concludes the proof. 1 
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4. BASIC FAMILIES AND HIGHER RANKS 

To make the classification problem as easy as possible, one seeks to 
eliminate from consideration any family of matrices which can be derived 
from another family in some simple way. For example, one might consider 
only primitive families. We will eliminate still more. 

We first make three further definitions. We will say that a space of 
matrices MC Hom( V, IV) is strongly indecomposable if it is not a projec- 
tion of a family of the same rank and dimension which is split, that is, of 
the form 

M’ 0 

H-1 0 M” 
For example if A4 has the form 

or 

with rank M = rank M’ + rank M” then A4 is not strongly indecomposable. 
In particular, if A4 is strongly indecomposable then it must be primitive, 
and gM must be indecomposable. 

We will say that M is unexpandable if it is not nontrivially a projection 
of a family of maps of the same rank. Thus if A4 is not expandable then 8, 
must be the subsheaf of &** generated by V= HO&**, and similarly for W 
and FM. 

We further say that M is unlzjiable if it is not a proper subspace of a 
family of the same rank in Hom( L’, IV). If it4 is strongly indecomposable, 
unexpandable, and unliftable, we say that M is basic. The results above 
imply that the basic spaces of rank ~3 are precisely the three spaces 
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M c Hom(M, A2M) for dim M = 0, 3, and 4, and the transpose of the last 
of these. 

The reader may easily check that M is strongly indecomposable iff E, 
and F, are indecomposable, unexpandable iff both fM and f&( 1) are the 
linear parts of kernels of maps of graded free F[M*]-modules, and unlif- 
table iff fM is “weakly rigid” in the sense that given a vector space N of 
which M is a summand and a map fN over F[N*] which reduces tofM via 
the epimorphism F[N*] -++F[M*], f,,, must be isomorphic tof,@ F[N*] 
via the inclusion F[M*] 4 F[N*]. 

What are the basic families of higher rank? It may be that the problem is 
tractable if the rank is not much higher than 3, or the Chern class is not 
much higher than 1. For example, if the rank of the family is 4, then by 
(14) above we may assume that cI &‘,,,, d 2, and Theorem 2.4 takes care of 
the case of Chern class 1, so we may assume that c1 EM = 2. We know o&y 
one such basic family: the family of all 5 x 5 skew-symmetric matrices, 
though we have no proof that there are no others. 

On the other hand, “linear maps” such as f,,,, of relatively low rank, 
arise naturally when one considers free resolutions over F[M*], and they 
arise this way in such profusion that it seems as if the classification 
problem will become intractable for high rank or Chern class. 

As a first example, the spaces M c Hom(M, ,4’M) considered above may 
be seen in the free resolution context as coming from the first map in a 
Koszul complex, the resolution of the homogeneous maximal ideal of 
F[M*]. But it is easy to construct many more. For example, if C is a curve 
embedded in P’ by a complete linear series of high degree compared to its 
genus, then the homogeneous ideal of C is generated by a large number, 
say w, of quadrics, and the relations among these quadrics are generated by 
linear relations, say u of them. Thus the second map in the free resolution 
of the homogeneous coordinate ring of C yields as (r + l)-dimensional 
family of w  x u matrices of rank w  - 1. Since an initial segment of the 
resolution will consist entirely of linear maps, we will also get families of 
lower rank compared to u and w  from this source. Since the homogeneous 
coordinate ring of C is Cohen-Macaulay, the dual of the resolution is 
again a resolution, from which it follows that the families so constructed 
are strongly indecomposable and unexpandable. Further, such a family is 
liftable if C is the hyperplane section of a surface other than the cone over 
C. Thus the following suggests that there will be many basic examples: 

THEOREM 4.1. Suppose that Cc P’ is a smooth curve embedded by a 
complete nonspecial linear series. If the degree of C is > 4g -I- 5 or if C is of 
general mod& and genus 223, then C is not the hyperplane section of any 
surface in P’ + ’ except for the cone over C. 
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Proof Sketch. Either hypothesis implies that if S c P”+i is a surface 
whose hyperplane section is C, then S is projectively ruled; that is, S is the 
image of the projectivization ,!? of a vector bundle d of rank 2 on C, 
mapped to P’+ ’ by C$( 1). To see this use the theory of Hartshorne [ 111 if 
the degree of C is > 4g + 5, or the theory of Harris and Mumford [lo] and 
Eisenbud and Harris [7] in the other case. From the inclusions 
ccsc PJr+l we get an exact sequence 

where Y is the line bundle associated to the embedding of C and deg 
J%’ = 0. Since ho2 = r + 1 while ho& > r + 2 it follows that .N = 0, and that 
the coboundary map Ho9 + H’A is zero. But this map is the cup product 
with the corresponding extension class in H’( 8 - ‘). By Arbarello et al 
Cl, ext. III.B.6], the multiplication map Ho2 @ H”X + H”(Y 0 X), 
where X is the canonical sheaf on C, is onto, so dually the map 
H’(9-‘) + Hom(H’9, H’O), sending an extension class of the associated 
coboundary map, is injective. Thus the extension class above is zero. Since 
now 8 z 0 Q 9, S is a cone over C as required. 1 

Although this profusion of families suggests that the classification 
problem is intractable in general, one might still hope that an analogue of 
Corollary 1.4 might hold in the general case. Is it true, for example that for 
each k there is a bound B, such that there is no strongly decomposable 
space of rank k with dim V and dim W both > B,? 
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