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INTRODUCTION 

The Rees algebra of an ideal J in a commutative ring R is by definition 
the graded algebra. 

where t is an indeterminate. 
In this paper we are concerned with proving that certain Rees algebras are 

Cohen-Macaulay, and with answering, under strong hypotheses, the 
question: if R = S/N is a factor-ring of S and I = JR, when is .$(I, R) a 
specialization of ..$(J. S); that is, when is the natural epimorphism 

R @ .A(J, S) + .R(I, R) 

an isomorphism? 
These questions have interest partly because if S and .S’(J, S) are 

Cohen-Macaulay, then so is gr, S := S/J@ J/J’... [ 16 1 and under these 
hypotheses if N is perfect and R @ .S(J, S) = .$(I, R), then R and .7(1. R) 
are Cohen-Macaulay too. Thus, gr,R is Cohen-Macaulay, and its torsion 
freeness and normality, for exmple, can be characterized in terms of analytic 
spreads, as in [ 161; see Section 3 for details. 

We deal with the specialization question in Section 1. It is answered for 
the case where, as above, S and .2(J, S) are Cohen-Macaulay and N is 
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perfect (Theorem 1.1) in terms of the analytic spreads of J localized at 
certain primes. 

We then turn to a consideration of examples. In Section 2 we prove that 
.#(J. S) is Cohen-Macaulay in some “generic” cases, where J is the ideal 
generated by the r x r minors of an r x s generic matrix, by the 2n x 2n 
pfaffians of a (2n + 1) x (2n + 1) alternating matrix, and where J is a certain 
4 generator ideal of height 3 which has some interesting specializations. The 
first two of these three cases are handled as applications of a more general 
result to the effect that if S is an algebra with straightening law in the sense 
of ]8] (or see [lo]; the definition is recalled below in Section 2) then, for 
certain ideals J, .g((J. S) will also satisfy a straightening law. 

Some special cases of the above results have been discovered previously. 
Notably, the case of the r x r minors of an r x (r + 1) matrix has been 
treated by several authors [ 12. 141, and the specialization question was 
studied in this case in [ 15 ] and later generalized in ] 1. 221. 

In Section 3 we give a number of examples where the specialization 
process of Section 1 can be applied to the generic examples of Section 2. 
Some of these examples have treated elsewhere by ad hoc methods; 
references will be found in Section 3. 

One easy but pleasant subsidiary result we obtain (Proposition 1.3) is that 
if S is a ring and J an ideal, then the set of primes P for which the analytic 
spread of J, is > a given number is closed in Spec Seven without the 
hypothesis that the residue class fields of S are infinite. 

We remark that there has been other recent work in the direction of 
showing that rings of the form gr,R are Cohen-Macaulay, or domains: see 
for example [ 8. 17 ]. Vasconcelos and Simis ]2 1, 221 have recently related 
this question to the Cohen-Macaulayness of the Koszul homology of 1. 
Herzog has obtained new results in the classical case where R is local and I 
is the maximal ideal ] I3 ]. Brodman has studied the local cohomology of 
.$(I. R) for certain primary ideals I in non-Cohen-Macaulay rings R (3 I. 

Throughout this paper. all rings will be assumed commutative, unitary. 
noetherian. and universally catenary. This last condition, which is satisfied. 
of course. by any ring remotely resembling an affine ring. has the following 
immediate consequence. which we will use several times. If (S, m) is a local 
ring (in our sense) and A is a finitely generated S-algebra, Q G hl are two 
prime ideals of A such that Af f’ S = m and Q n S = P. then 

dim(AjQ),, = dim S/P + dim S, @ (A/Q),,. 

For the rest. we use standard terminology as found. for example, in the book 
of Matsumura ] 18 ]. 
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1. SPECIALIZATION OF COHEN-MACALJLAY REES ALGEBRAS 

Throughout this section we let S be a Cohen-Macauley ring and let 
R = S/N, where N is a perfect ideal of S, that is, the projective dimension of 
R as an S-module is equal to the height of N-so that in particular R is also 
Cohen-Macauley. For example, N might be generated by a regular sequence 
in S, as in the examples of Section 3. 

Suppose that J is an ideal of S of which we know that .d(J, S) is 
Cohen-Macauley. Writing I= JR, we wish to know when .W(I, R) 2 
R @ .‘%‘(J, S) and when .Z(l, R) is Cohen-Macaulay. 

Recall that if P is a prime of S, then the ana&ic spread of J, in S,,, 
written I(J,), is defined [ 19 1 by 

I(Jp) = dim S,/PS, @ .1(J, S). 

It is proved by Northcott and Rees that if J c P. then 

ht(J) < I(J,) < ht P. 

Our main result is: 

THEOREM 1.1. Let S be a Cohen-Macaulay ring, N a perfect ideal of S, 
and J any ideal of S. Suppose that .W(J, S) is Cohen-Macaulay. Set 
R = SIN and I = JR. The following conditions are equivalent: 

(a) Z(I, R) z R @ .W(J, S) by the natural map. 

(b) For every prime P c S which is the contraction to S of a minimal 
prime of gr,S/N gr,S, we have l(J,,) < ht P/N. 

If these conditions are satisfied, then .(%?(I, R) is Cohen-MacaulaJl. 

Remarks. (1) We will see in the proof that condition (a) implies 
condition (b) for any prime P of S containing J + N. 

(2) It seems reasonable to hope that the conclusion R @ 3’(J, S) z 
,g(Z, R) would remain valid even if the Cohen-Macaulay hypotheses are 
dropped, provided one assumes something like depth P/N > f(J,,) for primes 
PIJ+N. 

(3) It is easy to show from the theorem that. under the given 
hypotheses, the primes P of S which are contractions of minimal primes in 
gr,S/N gr,S are precisely those for which f(J,) = ht P/N; it would be nice to 
have a general result describing these primes. 

(4) We will see in the proof that the conditions of the theorem imply 
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ht I= ht J, so ht(J + N) = ht J + ht N. But much more follows; in fact 
ker(R @ .9(J, S) + .2(Z, R)) is (without any hypotheses) isomorphic to 

1‘ Jk n N/J”N = 
k>O 

\‘ Tor ,(R/Jk. R/N). 
ky0 

Thus, at least modulo Auslander’s conjecture on the rigidity of Tor, and in 
the case of regular rings, the conclusion of the theorem is equivalent to 
grade(N + Jk/Jk) = grade N for every k. 

Proof of Theorem 1.1. (a) * (b): 

I(J,) = dim(S,/PS,) @ .m(J, S) 

= dim(R,,/PR,,) @ .S(J, S) 

= dim(R,,/PR,,) @ 9(Z, R) 

= UP,) 

< ht P/N, 

the last inequality following from the inequality of Northcott and Rees 
mentioned above. 

(a) zj .$(I, R) is Cohen-Macaulay: We may without loss of generality 
assume that S is local, say with maximal ideal M. Write .G‘ = .2(J, S). Since 
N is perfect, 9 IN.9 = <9(Z, R) will be Cohen-Macaulay as soon as grade 
NC?- > grade N. Because .Y’ is supposed C,ohen-Macaulay, it is enough to 
prove ht N.3” > ht N. 

Set ..H=M@J@J’@..- c 9 ; it is a maximal ideal which, since , i’ is 
graded and N.9’ is homogeneous, contains all the minimal primes of N.9 . 
Thus, it is enough to show that ht(N.9,) > ht N. Of course, since .Y fl is 
local and Cohen-Macaulay, it is equidimensional, so ht N,;/ /= 
dim .‘? rl - dim ,? 4/NL%H = dim ;/ x - dim .,%‘(I, R) K. Thus, the following 
well-known lemma will complete the proof of this implication: 

LEMMA 1.2. Let (T, N) be a local ring, and let K c N be any ideal. Zf 
.l‘=N@K@ a’. c R(K, T). then 

dim .#(K. Z) 1 = dim 2(K, T) = max(dim T, ( 1 + (dim T/Q1 Q is a prime 
ideal of K, and Q B K)). 

In particular, dim .2(K, r) , < dim T + 1 with equalitv ifht K > 1. 

Proof. We leave this as an easy exercise for the reader. Also see 120. 
Remark 3.7). 
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(b) + (a): We may without loss of generality assume that S is local. 
with maxima1 idea1 M. say: we set 

.‘i :=.R(J, S). 

//:=M@J@J’@..-, 
- 
/ :=.>/N.i,. 

Since .9 is graded and N. i is homogeneous. all the associated primes of 
N.7 are contained in, H, and it is enough to show that the epimorphism 

is an isomorphism. Let K be its kernel. 
If we invert any element of J, and the corresponding element of I. then i 

becomes the polynomial ring S[t], while .#(I. R) becomes Rlfl (with the 
natural identification) and one sees that the natural map .y + .@((I. R) / 
becomes an isomorphism. It follows that, for some integer k, IhK = 0, and, 
thus, 

dim 7 = max(dim i/Z,i, dim .$(I, R) x). 

We first show that dim FlI.7 < dim R: Note that .r’/l’? = 

(gr,SINgr,S)Tl Thus, there is a prime Q of (gr,S) [, minimal over N gr,S. 
such that dim. / /I. 7 = dim(gr,S/QS) &. Writing Q again for the preimage 
of Q in i’, and P for the intersection with S, we have 

dim i/I. 7 < dim / i /Q 

= dim S/P + dim(S, 0.2 /Q) 

< dim S/P + dim(S, 0.2 /P) 

= dim S/P + I(J,,). 

By our hypothesis I(J,) < ht P/N. This gives dim ,,F/I.y < dim R. 
We now wish to compute dim .A(Z. R), using Lemma 1.2; to do this we 

need ht I > 1. If P/N is a prime of R containing I, then by hypothesis 
ht P/N > I(J,) > ht J. so ht I >, ht J, which is by hypothesis >l. Thus. by 
Lemma 1.2 we have 

dim.$(l,R)=dim.$(I,R)= 1 +dimR, 

dim./,=dim.@(J,S)= 1 +dimS. 
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These calculations imply dim .? = 1 + dim R, so using the fact that fx is 
Cohen-Macaulay and equidimensional, 

gradeNi,=ht(N./,)=dim.i,-dim.7 

= dim S - dim R. 

Since N was perfect. this shows that N./, is perfect, and thus 7 is 
Cohen-Macaulay. Further. since dim s/I. 7 = dim R < dim, 7 we see that 
ht I.7 > 1 and, thus, I contains a nonzerodivisor. Since ZhK = 0 this implies 
K = 0, and we are done with the proof. 

The conditions of Theorem 1.1 are not necessary for the 
Cohen-Macaulayness of .$((I, R). as the following simple example shows: 

EXAMPLE. Let S = k[ uii 1, 1 < i < 2, 1 <j < 3. where for convenience k 
is a field. We regard the u;, as the entries of a 2 x 2 matrix, and let J be the 
ideal generated by the 2 ? 2 minors of this matrix. It is known that the 
symmetric algebra Sym(J) is isomorphic to the Rees algebra of J by the 
canonical map Sym(J) + R(J. S). Now let R = klzc,, . u,~ 1. and consider the 
map S onto R carrying the matrix (uii) to 

( 
UII UI? 0 

1 0 UII Ul, . 

The kernel N of this map is generated by the regular sequence U, 

Ull - zl??, zl,? - zl?j. and is in particular perfect. We have 

R 0. /jl(J, S) = R 9 Sym(J) = Sym(J/NJ). 

>. zl ‘I’ 

Since the generators of N form a regular sequence mod./. we have 
(NnJ)/NJ= Tor,(S/J. S/N) = 0. and so Sym(J/NJ) 2 Sym(l). 

On the other hand. I may be generated by the elements 

7 
Uil. Uil UI?. u;,, 

and these satisfy the quadratic relation (u~,)(u;,) = (u,, ~1,~)‘. so sym, I* I’. 
Thus, R 0 .$(J, S) G!G .@(I. R). However. it is easy to verify that they are 
both Cohen-Macaulay: one can easily check that .%‘((I, R) is isomorphic to 
the quotient of R 1 T, , Tz. r? I by the ideal of 2 x 2 minors (a perfect ideal) of 
the matrix 

( 
Ull T, T, 
UI? 1 T, T, ’ 

under the map T, H UT, t. T, H u,, u,,t. T? I+ zli?t in Rfltl. while 
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R @ .K(J, S) = Sym(1) is isomorphic to R [ T,, T,, T, 1 modulo the two 
minors of that matrix which contain the first column (a regular sequence). 

We will apply Theorem 1.1 in the sequel with a reformulation of part (b). 
Before formulating this, we need to prove the closedness of the locus on 
which a given ideal has analytic spread > a given number. 

Let K be an ideal in a Noetherian ring T, and let k > ht(K) be an integer. 

DEFINITION. L,(K) c T is the intersection of all prime ideals P of T such 
that I(K,) > k. 

PROPOSITION 1.3. Let Q be a prime ideal of T, and let K be any ideal of 
T. If k is an integer > ht K, then Q I L,(K) iff I(K,) > k. 

Equivalently, if k > ht K, then (Q E Spec T/ l(K,) > k} is a closed subset 
of spec T. 

For the proof we will use some facts about the analytic spread, proved by 
Northcott and Rees [ 191. Recall that an ideal K is integral over an ideal 
K’ c K iff, for some n > 1, K’K” = K”+ ‘. If P is a prime ideal, we write 
,a(Kp) for the minimal number of generators of K, in T,. 

PROPOSITION 1.4. Let (T, M) be a local ring, Kc T an ideal. 

(1) If K’ c K and K is integral ouer K’, then l(K) = l(K’). 

(2) l(K) <p(K); if T/M is injnite, then there exists an ideal K’ c K 
with K integral ouer K’; and l(K) =,u(K’). 

(3) If P is a prime ideal of T, then l(K,) < l(K). 

Proof of Proposition 1.3. We prove that the complementary set 
U = (Ql l(K,) ( k) is open. By the criteria in [ 18, (22.13)] it is enough to 
show that P E CJ, Q c P implies Q E U. which is immediate from 
Proposition 1.4(3). and that if P is in U, then a nonempty set subset of 
V(P)= (QlQzP) is in U. 

If P is maximal, this second condition is trivial. If P is not maximal. then 
the residue class field of T, is infinite, so there is an ideal K’ c K and an 
integer n such KkKi = KF” and ,a(K;) < k. We may suppose that K’ itself 
is generated by (k elements. Let H be the ideal (K’K” : K”+ ‘) in T, clearly, 
H&P, and (Q’>PlQPH} IS an open subset of Spec T/Q whose elements 
satisfy I(K,) < k, as required. 

We can now reformulate Theorem 1.3: 

COROLLARY 1.5. Let S2N.J and R=S/NxI=JR be as in 
Theorem 1.3, with .%‘(J, S) Cohen-MacaulaJl. The following conditions are 
equivalent to (a) and (b) of Theorem 1.1: 
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(c) For all primes P of S containing J + N we have l(J,) ,< ht PIN. 

(d) For each k > ht J k’e have ht(L,(J) R) > k. 

(e) There exists a sequence of ideals 

J=J,cJ,c...cJ,cJ,+,=S 

such that 

Proof: The equivalence of (c), (d), and (e) is a straightforward 
manipulation, which we leave to the reader. Condition (c) is formally 
stronger than condition (b) of the theorem and is implied by condition (a), as 
was shown in the proof of (a) + (b) above. 

As a special case, we deduce: 

COROLLARY 1.6. Let S 2 N, J and R = S/N 2 I = JR be as in 
Theorem 1.1, with / 3 (J. S) Cohen-Macaulay. If for all primes P 2 J + N of 
S we have 

Y(J,) < ht PIN 

then .2(Z, R) z R 0 .A(J, S) and .A(I, R) is Cohen-Macaulay. 

Proof: Since ,a(Jp) > l(J,), this is clear from Corollary 1.5. 
Of course, Corollary 1.6 can be reformulated. in the style of 

Corollary 1.5(e), in terms of the Fitting ideals of J. 
We conclude this section with a consequence of Theorem 1.1 for the 

specialization of associated graded algebras. Recall that in [ 13 1 it is shown 
that if K is an ideal of the Cohen-Macaulay ring T and if .#(K. T) is 
Cohen-Macaulay, then gr,(T) is Cohen-Macaulay. Also, Hochster has 
shown 1141 that if T is regular and gr, T is a Cohen-Macaulay domain, then 
gr, T is Gorenstein. 

COROLLARY 1.7. Let S 2 N. J and R = SIN 3 I = JR be as in 
Theorem 1.1. If the equivalent conditions (a) and (b) are satisfied, then 
R 0 gr, S z gr,R. and gr,R is Cohen-macaulay. Moreover, if S and R are 
regular and gr,S is a domain. then gr,R is Gorenstein. 

ProoJ: Note that gr,S = S/J @ @(J, S). and similarly for gr,R. Thus, 
#(I. R) z R @ .B(J, S) implies gr,R = R @ gr,S (and in particular, the 
ideal of leading forms of elements of N in gr,S is generated by N + J/J c 
S/J). The fact that .@(Z, R) is Cohen-Macaulay implies the same for gr,R 
by the result of [ 161 already mentioned. 

Now suppose R and S are regular. Since gr,R is graded, it is enough to 
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show that it is Gorenstein after localizing it at a maximal ideal of the form 
P/I @ I/I? @ ‘. * ; in particular, we may without loss of generality suppose 
that R and S are local. This implies that N is generated by a regular 
sequence. Thus. from the fact that gr,S is Gorenstein 1 141. a.nd 
gr,R = S/N @ gr,S. it follows that gr,R is Gorenstein. 

2. SOME “GENERIC” COHEN-MACAULAY REES ALGEBRAS 

In this section we prove that Rees algebras which arise in several 
“generic” examples are Cohen-Macaulay. The most important of these 
examples are determinantal varieties and we use the theory of Hodge 
algebras, or algebras with straightening law, of DeConcini, Eisenbud, and 
Procesi [8] to prove the Rees algebras of such varieties are 
Cohen-Macaulay. We first review their definition and salient features. 

Let A be a commutative ring and let H be a finite partially ordered set 
(poset) with a map H + A sending, say. CI to (1. We say a monomial 
tn=E, . . . elk is standard if (;I, < ... < ak. 

DEFINITION [S, IO]. Let R be a commutative ring. A a commutative R- 

algebra and H a finite poset as above. The algebra A is said to be a graded 
Hodge algebra on H over R (or simply an ASL) if the elements U for a in H 
are homogeneous of degree greater than 0 such that the standard monomials 
form a free basis for A over R, and such that if a, p are noncomparable 
elements of H. then $?is a (necessarily unique) sum of standard monomials 

with yi, < a and yi, </?. We will refer to this relation as the straightenitzg of 
iiD. 

DEFINITION. If H is a poset, a subset I c H is said to be an ideal if 
whenever a is in I and ,!3 < a, then /I is in I. If A is an ASL on the poset H. 
and I c H. we let r denote the ideal generated by all elements (1 such that u 
is in I. 

If H is a poset and a. /3 are in H. then /I is said to cover u if a < /I and 
there is no 1’ in H such that a < y  < ,8. 

DEFINITION (8 1. If H is a finite poset, H is said to be wwzderful (or 
locally semimodular in the more standard terminology) if. after adjoining 
least and greatest elements, H has the following property: if /I, and pZ are 
less than or equal to y and are covers of the same element a. then there is a 6 
in H which is a common cover of ,f3, and /3* such that 6 < 1~. 
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PROPOSITION 2.1 [8 1. Suppose A is an algebra with straightening law on 
H oL)er R. and suppose 

(1) R is a Cohen-Macaulay Noetherian ring, and 

(2) H is wonderful. 

Then A is Cohen-Macaula}‘. 

Let H be a finite poset and suppose I is an ideal of H. Let H K I be the 
disjoint union of H and 1, where we distinguish the additional copy of I in 
H K I by an asterisk. We place an order on H M I as follows: the subset 
H c H K I has the ordering it already has, while the subset I* c H K I has 
the order it inherits from H. If a is in H and /I is in I, then /I* < CI if and 
only if /I < CL. Otherwise /3* and a are noncomparable. We will say that 
I c H is selfcopering if whenever /3,. p? in I both cover an element a. any 
common cover of p, and pz is in I. 

LEMMA 2.2. Let H be a finite wonderful poser and suppose I is a self- 
cocering ideal of H. Then H K I is wonderful. 

Proof. Suppose we have adjoined greatest and least elements to H # I 
and p,. pz are in H K I, are < y, and are covers of a common element u. We 
may take the greatest element to lie in H. We distinguish three cases. 

Case 1. Suppose /?,, pz are in H c H K I. Then ;I must also lie in H. 
Since H is wonderful, if in addition u E H. there is a common cover 6 of /?, 
and /I, such that 6 < 1’. Clearly. this element still has this property in H K I. 
If u = r* is in I*. then there is a unique element of H which covers U. 
namely. z. Consequently. this case does not arise. 

Case 2. Suppose /?,,/I? are in I*. say /?, = 7: and /I: = 11:. Since 
cl<p,.pz. u-n* where 7~ E I. Define an element T in H as follows: if 
]‘E H, let T = 7, if not then y = r* E I* and let T be the corresponding 
element. In either case. 11, and ;I! < r. By assumption there is a common 
cover 6 m H of I!, and yJ such that 6 < r. Since I is self-covering, : is in 1. 
and so jl= r*. b is in I. and ;I* is a common cover of ,8, and /3?. 

Case 3. Suppose /I, = 11: E I* and P2E H. Since ~>/3~, ;qE H. As 
ct </I,, CI = n* where TIE I. As /I? is in H and is a cover of U, it easily 
follows that p, = 71. Since 11:: is a cover of 7t*, 7, is a cover of 7r. We may 
conclude that IT, is a common cover of ,8, and ,!I: and is < 1’. 

If H is a poset and a E H, we set I, = {/3E HIP < a). 

THEOREM 2.3. Let A be an algebra with straightening law on H ocer R. 
Suppose I is a self-coilering ideal of H and 

( 1) R is a Cohen-Macaulaj- Noetherian ring. 
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(2) H is wonderful, and 
- - 

(3) if a, /I are noncomparable elements of I, then tij? is in I, I. 

Then .$(I, A) is an algebra with straightening law on H M I oL?er R and is 
Cohen44acaulay. 

Proof We identify .Y(I. A) with the subring A [It] of the polynomial ring - 
A[t]. If a* E I* G H # I, we let a* = Et. It is trivial to verify that A[t] is an 
ASL where we adjoin t as an element greater than any element of H. It 
easily follows that the standard monomials of A [It] form a free R-basis of 
A [It I. To show A[ft] is an ASL we must show that the expression for a 
product c$ with a, ,R noncomparable in H # I has the correct form. 

Case 1. Assume a, /I are in HE H # I. It is clear the straightening of c$ 
in A will suffice. 

Case 2. Assume a and /3 are in I*. Set a = 6* and /3 = y*. Then 6 and 1 
are in 1 and are noncomparable. By assumption (3), the straightening, 

has the property that yk, < 6. y and ykI E I. Then 
-- 

is the desired straightening. 

Case 3. Assume a is in H and p = 6* is in I*. There is a straightening, 

of 68 in A. Since yk, < 6, ]jk, is in I. Then 

is the straightening of &/I? in A [It]. 
We have shown A[Zt] is an ASL on H M I over R. By Lemma 2.2, H # f 

is wonderful. Furthermore A[Zt] is graded through the grading on A by 
giving t degree 1. Proposition 2.1 shows A[ltl =.A(I,A) is 
Cohen-Macaulay. 

Before passing to the main cases of interest we mention a simple special 
case: 

PROPOSITION 2.4. Let R be a ring, and let S = R[X, ,..., X,, I/L be a 
polynomial ring module on ideal generated by square-free monomials. Let 
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J c S be an ideal generated by any set of pairwise relatively prime square- 
free monomials in X, ,.... X, . Then .3(J, S) is an algebra with straightening 
lalrv on the poset H # I where H is the poset of nonzero square-free 
monomials in S. partially ordered bJ> m < n if and onlJt if n) m. and I is the 
ideal of H consisting of those monomials which are in J. 

We leave the proof of this result as an easy exercise for the reader. It 
would be interesting to know, supposing R and S are Cohen-Macaulay, 
when .3(J, S) is Cohen-Macaulay, or. equivalently [ 8 1. when H K I is a 
Cohen-Macaulay poset. The case of a wonderful H and a self-covering I is 
not so interesting because H will. in this setup, be wonderful if and only if 
any two maximal square-free nonzero monomials of S differ in at most one 
factor-a condition rarely attained. 

We will apply Theorem 2.3 to two specific examples which were treated in 
[8, IO]. the maximal minors of a generic matrix, and the Pfafians of a 
generic alternating matrix. We describe these in detail. 

Let r < s and let X = (xii) be a r x s matrix whose entries are algebraically 
independent over a commutative ring R. Set A = R[x,l. 

Any k by k minor of X is determined by choosing k rows, 1 <j, < 

A < . . . <j, < r, and k columns, 1 < i, < i, < ‘. . < i, ,< s. We denote this 
minor by the expression (j, ,..., j, 1 i, ,.... ik) and order these as follows: 

(j ,,.... j,li ,,..., i,)< (ji ,..., jklil,..., id) 

if and only if k < m and j, <j{ ,..., j, <j,!,,, i, < ii . . . . . i, < i;. Let H be the 
poset of such expressions. 

PROPOSITION 2.5. A is an algebra with straightening law on H ouer R. 

Now let I, c H be the ideal of maximal minors of X and let Z,(X) = c be 
the ideal in A they generate. 

PROPOSITION 2.6. If R is Cohen-Macaulav, then the Rees algebra 
.3(Z,.(X), A) is Cohen-Macaulalf. 

ProoJ: We apply Theorem 2.3. Conditions (l)-(3) are easily ve+ed. In 
addition, it is clear that I, is a self-covering ideal of H. If Cz and p are two 
noncomparable maximal minors, the straightening of c$ is given by a 
standard Pliicker relation; in particular we may write tip as a quadratic form 
in other maximal minors in such a way that each monomial has one minor 
less than ti and /?. Thus, condition (3) of Theorem 2.3 is also satisfied. We 
may conclude .&‘(I,(X), A) is Cohen-Macaulay. 

We note that the theory of algebras with straightening law developed in 
[ 8 1 now allows us to conclude gr,rc,,(A) is also Cohen-Macaulay without 
using [ 16 1; in fact gr,rf,,(A) . IS a so an algebra with straightening law. I 
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Next we consider the generic Pfaffrans. Let 

be a generic (2n + 1) x (2~ + 1) skew-symmetric matrix with zeroes down 
the diagonal. Let R be a commutative ring and set A = R 1x1, by which we 
mean R with the entries of X adjoined. 

If we choose 2k integers. I < i, < ... < iZk < 2n + I, then the minor of ?I 
determined by the i,,..., iIk columns and rows is a square of a polynomial 
function of the entries of this matrix, called the Pfaffran. We will denote this 
polynomial by [i , . . . . . iZk] and place an order on them by 

Ii , . . . . . i>k] < [j, . . . . . jznr I 

if and only if k > m and i, <<j, for s = I,.... 2nz. We denote the poset of these 
expressions by P. 

PROPOSITION 2.1 17 I. A is an algebra with straightening laity on P oret 
R. 

Let Pfzin c P be the subset of Pfaffrans of order 2n, and place I = Pf?,,(X). 
the ideal generated by these Pfaffians. 

PROPOSITION 2.8. If R is a Cohen-Macaulay Noetherian ring, then 
#(I, A) is Cohen-Macaulay. 

Prooj We apply Theorem 2.3. Conditions (1 t(3) are easily verified and 
moreover it is clear that Pf,,, is self-covering. If E and /? are two noncom- 
parable Pfafians of maximal order, the straightening of c$ also consists only 
of maximal Pfaffians 171. This implies condition (4) of Theorem 2.3 and 
implies Proposition 2.8. 

Again we note that gr,(A) is again on algebra with straightening law 
which is Cohen-Macaulay 181. 

We next consider a class of imperfect ideals I with four generators all with 
resolutions of the form 

O-+S-+S’-+SJ+I-0. 

Our class is a subclass of divisors on scrolls. (See 11 I].) 
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Let R be a regular local ring and let 

be matrices whose entries are algebraically independent over R (except for 
the one repeated entry of Y.) Set S = R[X, Y]. and let I be generated by the 
two by two minors of the matrix 

z = (X, YX). 

This matrix is a 2 x 4 matrix and there are thus six 2 x 2 minors. 
However. due to the form of Y. it is clear that two of these are linear 
combinations of the others: denoting the 2 x 2 minor of Z determined by 
columns i.j (i <j) by A,, we have Aj4 = (det Y) A,> and AZ3 = A,,. 

A resolution for I can be obtained as follows. The matrix s determines an 
exact sequence: 

ei @ ei w \‘ sil, e, ei. 

where (e,, ez} is a chosen basis of S’. 
We may define a map of this complex to the complex 0 --t S +-’ I~ S by 

using the matrix YX and the minors of Z. Map SzS’ + S by sending e;‘ to 

A,,. e, e2 to AZ3 and ef to A:,. This gives a map of complexes. 

S 11: -s 

where 

‘PII ( PI? = yx 
PZl PZZ 1 

The mapping cylinder of this map is a resolution of the ideal I = (A,?. A,). 
.4 :). A,,). This ideal is a height two ideal of projective dimension 2. 



L, =x,,T3 -x12T2 +p,,T, =O. 

L~=x,,T,-.K,~T~+~~,T,=O, 

L.~=~,,T~-x,~T~+P~,T,=O, (3) 

L, = x2, T4 - x2> T3 + pzz T, = 0, 

L, = (det ~1) T: - T: + T, T4 = 0 

are in Q. We claim these generate Q. Let T be the ideal in S[ T, ,..., T, 1 = T 
they generate. By inspection, one sees that L, ,..., L, are the Pfafftans of the 
matrix 

A= 

i 

0 -VI I -x2 1 x22 XI2 

-XII 0 T2 ~‘1, T, - T, -?‘I2 i-1 

x21 -Tz 0 -~2 1 T, -T, -1’1, T, . 

-x22 T3 -YI,T, YZI T, 0 T4 

-*VI2 4’12 T, TJ +Y,, T, -T, 0 i 

PROPOSITION 2.9. If T, J, S and I are as above. then T/J= L’3(I, S) and 
A(I, S) is Gorenstein. 

Proof. We first wish to show that ht J> 3; given the representation of J 
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The four linear relations on the generators of I may be derived by 
choosing any three columns of Z and using the usual linear relation on the 
2 x 2 determinants of this 2 x 3 matrix. Specifically they are 

-y,,A23 - -y,zA,, +p,,A,z=O, 

“2,Az.l - _ 1,?4,3 +p:,A,z =o. 

s,,A,, - _ s,J,, +p,e)fl,> = 0. 
(1) 

s,,A,, - L x22A23 +pzzA,, =O. 

In addition, there is a quadratic relation coming from the usual Plucker 
relation of the 2 X 2 minors of a 2 x 4 matrix. This is 

(det Y)A~z-Af,+A,,Az,=O. (2) 

We consider the Rees algebra .@(Z, S). It is a homomorphic image of 
S[ T,, T,, T3, T,, 1 by the ideal Q generated by all homogeneous polynomials 
F in S[ T, ,..., T,l such that F(A,,, A,,, A,,. AZ,) = 0. Consequently, the live 
equations 
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as the ideal of 5 X 5 Pfafftans of A, the main result of 141 then implies that 
ht J= 3 and T/J is Gorenstein. 

Set T = T/(T,). and write “-” for reduction modulo T,. The elements 
L, ,.... r5 are all of the six 2 x 2 minors of the matrix 

except for 

Now it is easy to see that the 2 x 2 minors of M generate an ideal I?(M) 
of height 3, as do F2, ‘3. r,. On the other hand, from the form of the matrix 
M. (T,,T,,~‘,)AE(L ,,..., r5), so that (T,, FZ, T,) Z,(M) c (L, . . . . . L5) 
whence this latter ideal is of height >3. This implies ht(L, ,..., L,) > 3 in T as 
stated. 

We next wish to show the map T/J-J.2(I, R) is an isomorphism. Since 
the ideal (x,, , x12, x2,, x,>) has height 4 in T. it contains a nonzero divisor 
on T/J. Thus, it suffices to show that f is an isomorphism after localizing T 
at an arbitrary prime ideal not containing (x,, , x,?, x1,, xZ2). Now after 
doing this localization, the skew symmetric matrix A can be reduced to the 
form 0 1 

c-----H? 
-1 0 

0 

0 B 

where B is a 3 x 3 skew symmetric matrix and, thus, (L, ,..., L,) will, after 
this localization, become a complete intersection, and the map 
Sym I-+” .$(I, R) becomes an isomorphism. Since g factors through an 
epimorphism Sym I -+ T/J, we are done. 

Finally we note some of the specializations of the ideal I defined above. 

EXAMPLE 2.10. Let p be the ideal in k[x ,,,- Y?,, x12,xZzl defining the 
projection of the twisted quartic. k[t”, t”rts. t~f“, IV’]. Then p is defined by the 
2 x 2 minors of the matrix 



218 

If we set 
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this is of the form above. 

EXAMPLE 2.11 (see Hochster 114)). Let p be the ideal in k/x,, . .y,, . 
-yzl. x,~\ defining the surface li[u’, u’, UL’, LI]. This ideal is defined by the 
2 x 2 minors of the matrix 

this is a homomorphic image of k\X. Y) in which I goes top. 

EXAMPLE 2.12. Let I be ideal (s. .v) I-J (2. X) in k\s. .v, z. ,131. Supose i is 
in k. Then f = (AZ, XM’, ,VZ. JIG) is also defined by the 2 x 2 minors of 

( 

x J’ ?I .r 
z II’ --z --II’ . 1 

If we specialize 

XT xll 
( 

-y I? 
x2, X2? 

to (-z 1.) and Y to (l, “,), we obtain this ideal. 

3. SOME SPECIALIZATIONS 

In this section we apply the results of the previous two sections to show 
that certain Rees algebras are Cohen-Macaulay. First. however, we discuss 
what other information this gives. We recall two propositions found in 
Huneke (L61. 

PROPOSITION 3.1. Suppose R is Cohen-Macaulaj, (respectiLle[\y 
Gorensrein) and I is an ideal qf R. I’.H(I. R) is Cohen-Macaulav (respec- 
tively Gorensrein), thet? gr,(R) is Cohen-MacuulaJ~ (respectively Goretwteitt). 
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PROPOSITION 3.2. Let R be a Noetherian ring and I an ideal of R. 
Suppose gr,(R) is Cohen-Macaulav. 

( 1 ) [f R/I is a domain. then gr,(R) is a domain if and onl), if’ 

/(I,) < max(ht P- 1, height(I)} 

.for all prime ideals P of R. 

(2) If RjI is integrally closed. then gr,(R) is integrally closed if arid 
onlr if 

/(I,) < max (ht P - 2. height(I)} 

for all prime ideals P of R. 

PROPOSITION 3.3. Let (R, m) be a local ring and let I be an ideal of R of 
height at least one. Suppose gr,(R) is Cohen-Macaulay. Then. 

I(I) = dim(R) - inf depth(R/I”). (1) 

and ifdepth(R/Ik) = inf depth(R/I”), then depth(R/I”“) = depth(R/Ih). 

We remark this sharpens, for the Cohen-Macaulay case. the inequality of 
Burch 151. (See also 131.) 

Proof. Set k = inf depth(R/I”). We may choose elements .Y, ,.... sI, in R 
which form an R-sequence on the modules R/I” for all n > 1. (See [ 2, 5 I.) It 
follows that A+* , ,.... .Y$ E R/I are a gr,(R)-sequence and 

gr,(R l/N ,.... .Y: ) = gi+R), 

where ‘.-‘* denotes reduction by (X , . . . . . sk). Since the .yi may be chosen so 
that dim(R) = dim(R) + k, it follows that I(F) = l(I) and, thus, it is enough to 
verify Proposition 4.3 under the assumption inf depth(R/I”) = 0. 

Let .I= m gr,(R). By definition, l(I) = dim(gr,(R)/J). To show dim(R) = 
l(I) it is enough to show ht(I) = 0 as gr,(R) is Cohen-Macaulay. If 
ht(J) > 0, we may choose an element .Y in tn. s not in I. such that s* E R/I 
is a nonzero divisor on gr,(R). It would follow that .Y is a nonzero divisor on 
R/T’ for all 11 > 1. contradicting inf depth R/I” = 0. This shows 
l(I) = dim(R). 

Suppose depth(R/Zk) = inf depth(R/I”) = 0. Since gr,(R) is Cohen- 
Macaulay and ht I* > 1. we may choose an .Y in I, not in I’, such that X* is 
a non-zero-divisor on gr,(R). Then .Y induces an embedding 

0 + R/lk L R(I”+ ‘). 
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and consequently Ass(R/Ik) G Ass(R/Ik’ ‘). This shows depth(R/I”“) = 0 
as required. 

THEOREM 3.4. Let R be a Cohen-Macaulay domain and I an ideal of R 
of finite projective dimension. Suppose either 

(a) height (I) = 2 and R/I is Cohen-MacaulaJl, or 

(b) height (I) = 3 and R/I and R are Gorenstein. 

Then the following statements hold. 

(1) rffor all prime ideals q 2 I, ,D(I~) < ht q, then .$(I, R) and gr,(I) 
are Cohen-Macaulay. If, in addition. R is a regular ring, then gr,(R ) is 
Gorenstein. 

(2) If I is a prime ideal and for all prime ideals q 2 I, 

p(I,) < max {dim R, - 1, height(I) 1, 

then gr,(R) is a Cohen-Macaulay domain. 

(3) If R/I is integralls closed and for all prime ideals q 2 I. 

,u(I,) < max (ht q - 2, height(I) 1, 

then gr,(R) is an integrallv closed Cohen-Macaulay domain. 

Proof: Without loss of generality we may suppose that R is local. We 
treat cases (a) and (b) separately. Assume we are in case (a). The structure 
theorem of Hilbert and Burch shows I is generated by the n x n minors of an 
n x (n + 1) matrix A = (a,) with coefticients in R. Let X = (xii) be a generic 
n x (n + 1) matrix over R and set S = R Ixij]. Let N = (sii - aji). Then 
S/N z R. If we denote the map from S to R by f and let J- I,,(x) be the 
ideal generated by the maximal minors of S, then (J + N)/N = I. 

By Proposition 2.5, .a(J, S) is a Cohen-Macaulay ring. Now 
Corollary 1.6 immediately implies .A(I, R) is Cohen-Macaulay. and now the 
rest of the statements follow from Corollary 1.7, Proposition 3.2, and the fact 
that W,) <,4&J. 

Now assume (b). By the structure theorem of Buchsbaum and Eisenbud 
[4], we may realize I as the highest-order Pfaffans of a skew-symmetric 
matrix A with zeroes down the diagonal. Let X be the generic skew- 
symmetric matrix with zeroes down the diagonal and set S = R IX]. We may 
define a map f: S + R by sending xii to aij, where these are the respective 
entries of X and A in the ith row and jth column. If we let J= Pf:,(X) where 
X is a (2n + 1) x (2n + 1) matrix, then f(J) = I. By Proposition 2.8, ./9(J, S) 
is Cohen-Macaulay. 
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Statements (I), (2), and (3) now follow immediately from Corollaries 1.5, 
1.6, and 1.7. 

THEOREM 3.5. Let R be a Cohen-Macaulay Noetherian domain and let 
A = (aij) be an r x s matrix (r < s) with coefficients in R. Let I = I,(A). 

( 1) rf height(l,(A)) > (r - t + I)(s - r) + 1 for al! 1 < t < r, then 
.#(I. .S’) and gr,(R) are Cohen-Macaulay. If further R is a regular ring, 
gr,(R) is Gorenstein. 

(2) Zf height(Z) > s - r + 1 and moreover 

height(l,(A))>(r-tt l)(s-r)+2 (l<t<r- 1) 

and I is prime, then gr,(R) is a domain. 

(3) If height(Z) > s - r + 1, R/I is an integrally closed domain. and 

height(Z,(A)) > (r - t + l)(s - r) + 3 (1 <t<r- 1). 

then gr,(R) is integrally closed. 

Proof: Let X = (xii) be a generic r x s matrix over R and set S = R lxi.i I. 
Define a map f: S + R by sending xij to aij. Then N = ker(f) = ‘(xii - aii) is 
a perfect ideal and we are in a position to apply Theorem 1.1. Let J = Z,(X) 
so that (J + N)/N = I. By Proposition 2.6, ,Z?F(J, S) is Cohen-Macaulay. We 
will apply Corollary 1.5. Consider the chain of ideals, 

JcZ,-,(X)c ... cZ,(X), 

and set L’~ = sup(1(&)1 Q E Spec(S) and Q f! I/,-,(X)}. To show R(I. R) is 
Cohen-Macaulay it is enough to prove 

height(f (I,(X)) > 11~. 

However. f (I,(X)) = Z,(A) and by assumption height(Z,(A)) > (r - k + 1) 
(s - r) + 1. Thus, it is enough to verify (r - k + l)(s - r) + 1 > ~1~. 

Suppose Q 3 I,-,(X). Then in S,. by elementary row and column 
operations we may change X to the matrix it- 1 -- 

1 0 

k-11 i. . . 0 

01 1 . 

0 X’ 

X’ is an (r-k+ l)x(s-k+ 1) matrix and Irmk+,(X’)=(I,(X)),=I,. 
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Let Y be a generic (r - k + 1) x (s - k + 1) matrix. Then 
/(la) < /(I,.-,+,(Y)). We claim /(I,-,+ ,(Y)) = (r - k + l)(s ~ 1.) + 1. This is 

well-known 16 1 and can be seen as follows: Let T = kl~‘~~I. let A, be the 
maximal minors of Y = ( J’;~), and let nz = ( yii). Then 

which is the homogeneous coordinate ring for the Grassmanian 
G(r - k + 1, s - k + 1) which has dimension (1. - k + l)(s - r) + 1. 

We will show (2): (3) follows similarly. Since gr,(R) is Cohen-Macaulay, 
to show it is a domain it is enough to show 

/(I,) ,< maxidim - 1, height I). 

This is a local question so we may assume (R, P) is local and we need to 
show 

I(I) < max {dim(R) - 1, height I}. 

Suppose P 2 I,(A) but P $ I,- ,(A). Then from the calculations above. 

l(I,) < (Y - I + l)(s - r) + 1. 

However. since P 2 I,(A). dim R > height(l,(A)) > (r - t + 1 )(s - r) + 2. 
This establishes our claim and an application of Proposition 3.2 proves (2). 

Now let R be a Cohen-Macaulay domain, S = Rlx,, , x,?. x2,. x2?. 
.r,, ,.~‘,~..r~, 1, and let ?= ideal generated by the 2 x 2 minors of Z = (X. YX). 
as in Section 2. Let f: S + R be any R-homomorphism and put I = f (17. Put 
J=f((?C,,,.Y,Z..Y?,.X??)). 

THEOREM 3.6. If height(Z) > 2. height(J) > 3. then .&(I. R) is a 
Cohen-Macaulay ring. If height(J) > 4, and I is prime. then gr,(R) is a 
domain. If. in addition, R is regular, gr,(R) is Gorenstein. 

Proof. By Proposition 2.9. .#(E S) is Cohen-Macaulay. We apply 
Corollary 1.6 to the chain of ideals, 

JE (x,, , x,2. XI,, xzz). 

It is enough to show that 

height(I) > sup (/(&)I Q ?? J} 

and 

height(J) > sup (I(&)) Q E Spec(S)}. 
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The first inequality follows since if Q 2 51 then fQ is generated by two 
elements and so I(&) = 2. The second inequality holds because the 
calculations of Section 3 show A,, is integral over the other three generators 
of [ so I(&,) < 3 for every Q. 

COROLLARY 3.7. Let p E klx,, , xl?, x2,, x2:] = R be a prime and 
consider three cases: 

(a) R/p z klu’, u’, ML’, ~1, 

(b) R/p z k[u’, u3u, uu3, o”]. 

(cl P= @,I, x,J n (x2,, x2?) and iis in k. 
Then in all cases gr,(R) is a Gorenstein ring, and in cases (a) and (b) it is 
also a domain. 

ProoJ This follows immediately from Theorem 3.6 and Proposition 3.1. 
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