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Introduction 

The problem of explicitly finding a free resolution, minimal in some suitable sense, 
of a module over a polynomial ring is solved in principle by the algorithm of 
Hilbert [H]. However, this algorithm is of enormous computational difficulty. If 
the module happens to be finite dimensional over the ground field, and if the 
module structure is given by specifying the commuting linear transformations 
induced by the indeterminates, then a little-known result of Scheja and Storch, 
resumed in Sect. 1, allows one to write down an explicit free resolution of the right 
length without computation. The same idea can be used for many Cohen- 
Macaulay modules (Example 1.1). But although the Scheja-Storch resolution is 
minimal in some cases, it is not minimal in the main case of interest where the 
module is a factor-ring of the polynomial ring and not the ground field itself. 

It is the goal of this paper to write down a universal resolution for certain 
factor-rings which is minimal in some cases of interest. We obtain in particular a 
free resolution, over a polynomial ring, for any affine Cohen-Macaulay ring 
(Example 3.3), and the resolution is minimal in a suitable sense if the ring has 
(locally at some point) minimal multiplicity for its embedding dimension; the cases 
of main interest are perhaps the 2-dimensional rings with rational singularities 
(Sect. 4), and the ("relatively Cohen-Macaulay") total space of the versal defor- 
mation of a ring of the form k[xl,  . . . ,x,]/(x x . . . . .  Xr) 2 (Example 3.1). 

We now describe the situation in which we work, beginning with the leading 
special case (all rings in this paper are commutative and associative, algebras 
have a unit element 1): 

Let R be a ring, and let A be an R-algebra which is finitely generated and 
projective as an R-module, with R ~- R. 1 C A. Since 1 is locally part of a minimal 
system of generators of A as an R-module, we may write A = R ~ E  (as R-modules) 
for some finitely generated projective module E. Given the decomposition above, 
there is a natural epimorphism from the symmetric algebra S: = S(E) = ~'. SkE to 

o k 
A, which is an isomorphism on R ~ E  = So(E)~)SI(E)C S. 
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More generally, suppose that E is a finitely generated projective R-module and 
A is any factor-ring of S(E) such that for some l>= 2 the induced map 

Z Sk(E)-*A 
O < k < l - 1  

is an isomorphism. Our main result (Theorem 3.2) gives a projective resolution of 
A as an S(E)-module in this case, and describes when this resolution is minimal. 

This is applied to affine Cohen-Macaulay rings, as indicated above, by 
involving the Noether normalization theorem. 

Of course the simplest case of our result is that in which 
A ~-R[x 1 ... . .  x,]/(x 1 .... , x,) t as an algebra. The well-known minimal free resolu- 
tion of A as an R[xl, ...,x,]-module may be described as an Eagon-Northcott 
complex associated to the l • l minors of the r + l -  1 by I matrix 

X1 X2 " "  X r - 1  Xr " '"  

�9 . .  X 1 X 2 . . .  X r _  1 X r /  

or more intrinsically, by the complexes in [B-E]. The resolutions of our paper can 
be seen as deformations of this last. 

The resolution described below was originally obtained by the third author, in 
the setting of an explicit versal deformation of k[xl, . . . ,x,]/(xl , . . . ,x,)2; he used 
the techniques of the generalized preparation theorem to give a direct proof of 
exactness. The current version of the results was subsequently obtained jointly. 

1. The "Universal" Resolution of Scheja and Storch 

As in the introduction, let R be a (commutative) ring, and let E be a finitely 
generated projective R-module. Let S = S(E) = ~ SkE be the symmetric algebra of 

0 < k  

E over R; for any R-module M, we write ~7/for the S-module S| 
For each k, there is a "diagonal" map A :AkE~A k- 1E| defined by 

k 

A(e 1 ̂  . . .^ek)= ~ (-1)~-1el ^ . . . ^ ~ ^ . . . ^ e k Q e  i, 
i=1  

where the presence of ~ means that e~ has been left out. 
Given any S-module N, there is a "multiplication" map m : E Q R N ~ N ,  and we 

may define for each k a map 

d s : AkE|  ~- 1E| 

as the composite 

AXE| a|174174 I~m Ak_IE| 

From the fact that e~ejn)= ej&ein) for all i,j and all n~ N, it follows at once that 
d2=0. 



Projective Resolutions of Cohen-Macaulay Algebras 87 

Theorem 1.1 (Scheja-Storch). Let N be an S-module which is finitely oenerated and 
projective as an R-module. For each k, define 

6 : AkE| k- 1E| 

as 

6 = ds| 1 - 1 |  N : S |174174  k- 1E|  

We have 6 2 =0, and (assumino that A "+ ~E=O) the complex 

, . . .  a , E |  ,S| KIq :O.__.Ar~| ~ - 

is a projective resolution of  the S-module N. 
I f  R is local with maximal ideal m and EN C raN, then K N is minimal in the sense 

that it gives a minimal resolution of  N as an St~.slr)-module. 

Proof [Sch-St, pp. 87-88]. Consider the "enveloping algebra" S = S |  
=S(E@E), and write E for ~| The "diagonal" map E~EO)E ,  given by 
e~(e,  - e ) ,  induces a map E ~ S ,  from which we may form the Koszul complex 

Ks : 0--'ArE-  

which is an S2projective resolution of S as an S-module under the natural 
augmentation S-* S. 

Regarding S as an S-module by multiplication in the second component, one 
sees that 

K N = I ( s Q s N .  

Since 1( s is split exact as a complex of S-modules, this is exact, and gives a 
resolution of N as an S-module, as required. 

The minimality statement follows at once because, under the given hypothesis, 
6| S1E)=O. [] 

Example 1.1. Let S = k[y x . . . . .  Yr + 2] be a polynomial ring over a field k, and let F be 
any finitely generated S-module of dimension d. By the Noether normalization 
theorem, we may choose new variables x~ . . . . .  x,, t~ . . . .  , t a so that S = k [ x t  . . . . .  x ,  
t~ . . . . .  td] and F is a finitely generated R = k[tt  . . . .  , t~]-module. 

If now F is a Cohen-Macaulay module - that is with depth~y~ ..... y,§ - 
then by the Auslander-Buchsbaum-Serre theorems F will be free over R, and 
Theorem 1.1 will apply. The resolution will be minimal [after localizing at 
(Y ~ . . . .  , Yr + 2)= m, say] if and only if the minimal number of generators of F., as an 
Sin-module is equal to the rank of F over R. 

Example 1.2 (the generic case). Let R be a polynomial ring over Z in nr 2 variables, 

which we think of as forming n r by r matrices X~, modulo the r2(~)quadrat ic  

relations making these matrices commute. If F is a free R-module of rankr, we may 
make F into an S = R[x  t . . . . .  x,]-module by letting x~ act as X~. The theory above 
applies to give a resolution of this module. 
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2. Some Projective Modules and Complexes 

In this section we recall from [B-E] the construction of the modules which play a 
role in the resolutions written down in the next section. For  a treatment in the 
natural full generality of Schur functors, see [Las], [A-B-W], and the works cited 
there, and for a slightly different construction, see [Tow]. 

Let E be a module over a ring R. As before, we write A :A k§ 1E~AkE| for 
the diagonal map of the exterior algebra, m:E| 1E---,SzE for the multipli- 
cation in the symmetric algebra, and we define d e as the composite 

l |  k 
Ak+IE| E a| ~AkE|174 ,A E| 

(All tensor products in this section are taken over R.) 

Definition. L~E = coker(A ~+ 1E| l_ 2 E d~ AkE| 1E). 
It is obvious from the definition that LkE = AkE and LkE = 0  whenever AgE =0. 

Proposition 2.1. Suppose that E is projective, and k+ l>0.  
1) The complex 

(*)k+l ... d~Ak+IE| d~>AkE| d~ ... 

is split exact. In particular, LkE is a projective R-module, L~ E ~  SIE, l> 1, and there 
is a natural exact sequence 

O~ L~E-~ A k- 1E| E ~ L~; ~ E ~O. 

2) Let F = E@Rf, f being linearly independent over R, and let ~ : F ~ E  be the 
projection. Defining the dotted arrows in the following diagram to be the indicated 
composites, the sequence of dotted arrows is exact: 

AkF| 

0 . . . . . . . . .  ,rk+ 1F . . . . . . . . .  ~AkE| 1F ......... ~L~E ........ ~0 
z ' l -  1 

A~E| IE / 

Remark. If, in part 1), E is actually free, then so is L~E. As in [B-E] (or, in a more 
general case [A-B-W]) one can show that if e 1 . . . .  ,e, is a basis for E, then L~E 
admits as basis the images of the elements 

ei, A ... A ei~ | ~ ~ AkE| 1E 

with i 1 < . . .  < is and il -~Jl <--.. -<--J~- 1. 

Proof [B-E]. 1) The identity map E ~ E  induces a map 

#. = S ( E ) |  E - ,  S(E) , 

and we may form the Koszul complex 

(**) 



Projective Resolutions of Cohen-Macaulay Algebras 89 

which is exact except at S(E), where it has homology R. It is easy to see that (**) is 
the direct sum, over all k + l__> 0, of the sequences (*)k+t- Further the sequence (*)o is 
0 ~ R - , 0 ,  accounting for the homology of (**), and thus (*)k+t for k + / > 0  is exact 
as claimed. 

Now for any given k, l, we have an exact sequence 

O~LkE~A k- 1E| k_ 1E~O. 

If E is projective, then all A~E| are projective, so the sequence splits, and LkE 
is projective too. 

The exactness of (*)~ for l >  1 includes in particular the exactness of 

AZE| 2E---~.E| aE--,,SIE ~O, 

whence L]E~ SzE. (*)k+l-1 further yields short exact sequences 

O~ L~+ ~ E ~ AkE| xE ~ L~E ~O, 

concluding the proof  of part 1). 
2) Write C for the cokernel of the map 

Ak + 1F | St_ 2F (Akn)~ Ak E | St_ 1F. 

It suffices to show that in the commutative diagram 

dF 

Ak+IF| F .L I_ IF  " ,A F| 

1 " -_. (Akn)| i 

A i+ 1FQSI-2 F ~ak~)oa~ ~ AkE| -1F 

l(Ak+tn)| ~ 1 | 1~) 

Ak +IE| E d~ , AkE| _IE 

,, C 
I i i 
§ 

,, L~E 

the lower square induces an isomorphism C----~LkE and the upper square induces 
k+ l F k a monomorphism Lt_ 1 ----~A E| l_ iF. 

The first of these facts follows from the exactness of the rows and columns in 
the commutative diagram 

AkE| 2F 

(fA - - ) ~ 1 ~ / / ~  I 1 | 

A k+ IF| ~AkE| 1F 

1 1 
A k+ tE(~SI_2E ~AkE| 1E 

1 1 
0 0, 

, ,  C tO 
I 
I 

,LkE ,0 
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where we have written f .  - and f ^ - for multiplication by f in the symmetric and 
exterior algebras, respectively. 

The second fact follows from the exactness of the row and column in the 
following commutative diagram, together with the fact that f . -  is a mono- 
morphism: 

hk_ 1 l@(f.--) k-1 E| ,A E@SlF 

(fA--)| (Ak- tn)| [ 

0 'Lk+lFl-1 'AkF| d~ ,Ak_IF| 

A k~E~) S , _ i F 

1 
0 

This concludes the proof of Proposition 2.1. [] 

3. Resolving an Algebra 

For the moment, let S be a ring and G a projective S-module, of rankr+ 1, say. 
Given a map r there is for each l>= 1 an induced map 

Stq~ : StG-+ S , 

given by 

(S~r (gig2... g,) = r r ~(gt) �9 

One finds in [B-El a complex of projective S-modules 

pl(q~) :O__.+L~+I G d,~ ,..._._> L2G... d,~ ,SIG ' Sidp ,S, 

whose homology is annihilated by the image of SiC, defined as follows: 
For each k>2, we define die k ~-1 :L~G~Lz G as the map induced by the 

commutative diagram 

Ak+IG•sSI_2G a,| AkG~sSI_2G 

.1 t 
A G~sSt_IG a,| a~O ~Ak-IGisSz 1G 

l 
LiG ........ " Lk i l G 

0 0 
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where do:A s+ 1G~ASG is the differential of the Koszul complex associated to the 
map G~S. [Note that Pl(~b) is just the Koszul complex.] Here we identify L~G 
with StG. 

If E is a projective R-module, S = S(E), G= S| and if ~b :G~S denotes the 
multiplication map, then Pz(~b) becomes a projective resolution of the ideal 

SkE C S ; more generally, if the image of G in S contains a regular sequence of 
l<k 
length r + 1, then Pl(~b) yields a resolution for the/th power of the ideal generated 
by this sequence. 

The proof that the homology of P~(tk) is annihilated by the image of Stq~ is a 
rather easy induction on 1 from the well-known case l=  1 (see l-B-E], where Pl(~b) is 
called L~(~b), for more details). 

With this out of the way, we now suppose that A_~ ~, SkE. We put 
k<=t-1 

F=SoEOS~E=RfO)E and S=S(E). Note that as an R-module A may be 
naturally identified with Sz_~F. Thus the Scheja-Storch resolution of A as an 
S-module may be written 

KA : ...__.~ Ak~@RSt_  I F '~ , Ak-  I ~@RSI_I  F...~... 

On the other hand, the natural map F =SoE•S1E ~S(E)= S induces a map 

dp :[z=S| 

(whose image is all of S), and we may form the complex 

___~Lk+l/~ d,-l* -k i/~__... Pt-  l(~b) : . . .  1-1 'L l -  " 

which is exact, since its homology is annihilated by all of S. 

Lemma 3.1. For each 1>2 and k >__ 1, the diagram 

l - I  

~"L+~' I l ~"'~- ' 
Ak~| ~ ,Ak-I~| 

is anti-commutative. 

Proof. The proof is a computation, which we outline. From the definitions we see 
that one must check the anti-commutativity of a diagram of the form 

Ak+IF~aSI_2F d,| ~ AkP~RSz_2F 

(Ak~x)odF [ [S| k- ln)odF) 

AkE| ~ ,Ak-I~| ' 

where we have written n for the projection F~E with kernel Rf. 
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Let  CeSt_2F a n d  e l ,  ...,ek+leE. A n  e lement  o f  Ak+IF| F is a l inear  
c o m b i n a t i o n  o f  e lements  of  the  form 

o r  

e I A . . .  A e k +  1 | 1 7 4  

f Ae 1A . . . A e k N ~ = f  A e j |  

Define e I _ i : = ( - 1)i - 1 e I A . . .  A ~ ^ ... A e k + 1, a n d  in a s imi lar  way  e a _ i a n d  et _ i - j. 
E x a m i n i n g  the first case, we see tha t  

[ S |  k-  ln) o dv] [dr174 1] (ei| = ~ ei|174 
i # j  

while  

5[(Aklr) o dr] (ex| = ~ ei| 1_j_i| + ~., e~_i_ j |  
i , j  i , j  

Since eiej=eje i a n d  e ~ _ i _ j =  - e ~ _ j _ i ,  the  last  t e rm is zero a n d  the first differs by  
sign f rom the t e rm above.  In  the  second  case, we get  the  fo l lowing two results" 

e j _  i |  0 )  - ~ e i |  J _ i| 
i i 

resp. 

ei | e.r _, | ( f  O) - ~ ea_ i | (el f O). 
i i 

Since f acts  as  the iden t i ty  e lement  in A, the  p r o o f  is finished. [ ]  
F r o m  L e m m a  3.1 a n d  P r o p o s i t i o n  2.1, 2), we see tha t  6 induces  a different ial  

: L t E ~ L  t 

W e  can now s ta te  ou r  m a i n  resu l t :  

Theorem 3.2. Let A be an algebra over the ring R, and suppose E C A is a projective 
submodule with the property that, for some l >-2, the natural map 

is an isomorphism. Let 

be given by 

~, SkE--* A 
k<=l- t 

~.4 : SIE~S = S(E) 

~A(e)=e-~, 

where ~ is the image of e under the map S(E)--*A_~ 

denote the extended map 

~A : StE--,S, 

~, SkE C S, and let ~,~ also 
k ~ l - 1  

where E = S |  
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k ~ k-1/~ I f  a A :L l E ~ L l is defined as above for k >_ 2, and if A ~ + 1E = O, then the complex 

r ~ O A  r 1 ~ 2 ~ O A  ~ d A  La, e :O--~LtE-----~L l - E---* ...-'-~L t E--- '*SIE ~S 

is a projective resolution of A as an S-module. 
Further, if R is local with maximal ideal m, then the above resolution is minimal 

(after localizing S at (m, E), say) if the product E .S  l_ ~ECA is contained in mA. 

Proof. Consider the short exact sequence of complexes 

~ t - 1 -  ' . . .  ' L  _1/~ ~'S/_IP I[ ----}S-----}0 

O---*A'E!S,_ ,F ~ , . . .  , E |  ...,S, 1Fll---* ---*0 

oA , . . .  , 0 

Considering the long exact sequence in homology associated with the parts of 
these complexes to the left of the vertical line, we see that there is an exact sequence 

O---}L~E oA ,. . .  oA , L I E  "~;" ,S---}A---~O, 

where we have written "da" for the connecting homomorphism. Identifying L~/~ 
with SIE, and tracing through the diagram to identify the connecting homomor- 
phism, we get the desired result. 

The minimality statement is verified by noting that under the map 

AkE| IF--r LkE, 

the submodule AkE@St_ 1E is mapped onto LkE, and under the given hypothesis 
for minimality, 6|  is zero on AkEt~SI_IE. [] 

Example 3.1 (the generic algebra). Let 

R =Z[a~j]/I,  

where I is the ideal of relations that make the product law 

ele ~ = ~ a~jeQ, 0 < i,j ~ r, 
~ = 0  

into a commutative and associative algebra structure on F = R  "+~ with unit 
element Co; i.e. : I is generated by the elements 

k k k ~ ~ (a~aZke_ Q , ai j -- a~ji, aio -- t~ i , ak jaiQ) . 
Q = O  

Let E C F  be the free submodule spanned by e t, ...,e,. The above construction 
provides a minimal resolution of F as an S(E)-module. 

If we reduce modulo the ideal generated by all ai k for which i =~ 0 and j 4: 0, we 
obtain the algebra 

f f = S ( f f ~ ) / ~  Sk/~ = Z[x 1, . . . ,x ,]/(xt ,  ..., x,) 2 , 
/2~k 
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and Lv, E reduces to P2(~) where ~ denotes the multiplication map f f~ |  S 
= S(E) = Z [ x t , . . . , x , ] .  

Example 3.2 (the case of an augmented algebra). Suppose that the R-algebra A is 
projective and finitely generated as an R-module and that A contains an ideal E 
with A / E ~  R as algebras. Then, of course, A ~- R O E  as R-modules. But E 2 C E, so 
E has an S(E)-module structure as well as A. In this case, the resolution of 
Theorem 3.2 is somewhat simpler, and may be defined by giving the short exact 
sequence of complexes : 

0 0 

0 ' ArE 

0 , A ' E |  , A ' - X E |  E , . . .  

t -  
O , L,2E , L2 1~ , . . .  

l 1 
0 0 

augmented as above. 

) . , .  

0 

l 
, A2~ 

1 
, E |  E , 

1 
, 

l 
0 

Example 3.3. Suppose A is an affine ring; that is, A is of the form k[Xl, ..., x , ] / I ,  
with k a field. By the Noether normalization theorem, A will be, after a change of 
variables, a finitely generated module over its subring R = k [ x  1 . . . . .  xa], where 
d=d imA.  The ring A is Cohen-Macaulay if and only if it is free as an R-module. 

Supposing that this is the case, we may write A = R @ E  (as R-modules) and 
apply Theorem 3.2 to get a resolution of A as a k[Xl, ...,xa, e l , . . . ,  er]-module. 

One may further obtain a resolution of A over S ' = k [ x  1, . . . ,x  n, el . . . . .  er] by 
tensoring LA, e with the Koszul complex over S' of a regular sequence of the form 
x i -p~(x  1 . . . .  , x a, e 1 . . . .  , e,), i = d + 1 . . . . .  n, where pi is a polynomial in the indicated 
variables with the same image in A as xv Since one can also go from a resolution 
for A over k[x l ,  . . . , x , ]  to a resolution for A over S' by tensoring with a suitable 
Koszul complex, this yields some informations about resolutions over 
k[x  1 . . . . .  x ,] .  

4. Applications to Singularities 

Let k be an infinite field, k{yl, "",Yn} the formal power series ring on k, and let A 
be a factor-ring k{yx , . . . ,  y , } / I  of dimension d and multiplicity m. Suppose that A is 
Cohen-Macaulay and that there exists a number 1>2 such that I C(yl . . . .  ,y,)'. 
Then 

( ( n - d ) + l - 1 ) .  
m > - \  n - d  
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If m is equal to the smallest possible value, one can find new coordinates u~ . . . .  , u d, 
x 1 .. . .  , x ,  r = n - d ,  such that A is free over R=k{u  1 . . . .  ,ua} and 

A/(ul, ..., ua)A = k{x I .. . .  , x,}/(xl, ...,x,) t. 

(For more details, see e.g. [Sal, Chap. 2].) 
Under  this assumption, let E be the free R-module on a basis e, . . . . .  e ,  and let 

S( E)-, A 

be given by sending ei to the residue class of x~ in A. Then 

SkE---~ A 
k<=l-1 

is bijective, since it is an isomorphism modulo u 1 . . . . .  u a. Hence, Theorem 3.2 
applies to give a finite free resolution for A as an R[e~ . . . . .  er]-module, where e i acts 
as x i on A. Localizing at (u~ . . . .  ,ua, x 1, . . . ,x,)  and completing with respect to the 
maximal ideal yields a minimal finite free resolution for A as k{ul, . . . ,u  d, 
x x, "", x, } -module. 

Example 4.1. If A is the local ring of a two-dimensional rational singularity Cover 
an algebraically closed field k) of embedding dimension n and multiplicity m, then 
the equation 

m = n - 1  

is satisfied (see [Art]). Since, by assumption, A is normal and l=  2, our  theory 
applies. Moreover, if the map S 2 E ~ A  is explicitly given, i.e. if the equations of A 
are written in the form 

x,x,= ~ a~xQ+a ~ l<-i , j<r,  
Q=I 

with a~je k{ul, u2} satisfying the relations of Example 3.1, and if one uses special 
bases for the free k{ut, u:}-modules LkE (see the remark after Proposit ion 2.1), 
it is possible to write down the minimal free resolution for A by concrete matrices. 
(For a homological construction of such resolutions, see [Wahl]). 

Example 4.2. Suppose k = C, and consider the two-dimensional normal singularity 
given by the equations 

x x2=u x3 x2xs=(u +u )x  

XIX 3 ~ U2X 2 

which is a fourfold branched covering of Speck{u 1, u2} with branch locus 

+ 
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i.e. four lines intersecting transversely in one point. Blowing up the origin in 
Speck{ul, u2}, we get a Cartesian diagram 

Y , Spec A 

l 1 
X ~ Spec R. 

An easy computation shows that two of the four singularities of Y lying over the 
intersection of the strict transforms of those four lines with the blown up origin 
P t  CX are isomorphic to 

and two are isomorphic to 

X 2 =O-2T X 2 = 0  -3 X 2 = 0 - 3  T 

XIX 2 = f i x  3 X2X 3 =G2X1 

X I X 3 ~ X 2 ~  

X 2 = O  "2 X2 = 0-3T X2 =0 -3T  

X1X 2 = f ix  3 X2X 3 = 0-2TXI 

X1X 3 = f ix  2 . 

These singularities are of the type described at the beginning of this section, but 
none is normal. It is easily seen that the first one is irreducible with regular 
normalization, and the second one is reducible with normalization consisting of 
two singularities of type z 2 - az = 0. Hence, by desingularizing the normalization ~" 
of Y, we get the following configuration of curves 

--2 --2 - 2  - 2  

where the vertical lines represent nonsingular rational curves with selfintersection 
number - 2 .  The horizontal curve C is a twofold cover of P1, branched at two 
points, and therefore it is isomorphic t o p  r By standard methods its selfintersec- 
tion number can be computed with the aid of the divisor of a meromorphic 
function. If one takes for instance the pullback of the function ul, the divisor looks 
as indicated in the following diagram (numbers denoting multiplicities): 

and we get: 

i1 i1 1 1 i 

2 12 

i.e. 

0=(ul) .C=2(C.C)+1+1+1+ I + 2, 

C 2~-" - - 3  . 
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Hence  the or ig ina l  s ingula r i ty  is r a t i o n a l  with dua l  g r a p h  

- 2  

-3! 
- 2  @ . ." - 2  

97 

- 2  

( F o r  a n o t h e r  t r e a tmen t  of  this s ingular i ty ,  see [-Wahl, P r o p o s i t i o n  4.14].) 

A m i n i m a l  free r e so lu t ion  of  A over  S = k{ul, u2, xl ,  x2, x3} m a y  be desc r ibed  in 
the  fo l lowing fo rm:  

where  the  
matr ices"  

o ~  ~ ~ , ~ , , ~  , ~  ~' ,~--,A=~/t--,O, 

homomorphisms ~1,~2,83 a re  given, respect ively,  by  the fo l lowing 

(x~-ulu~,~x~-u~x~,xl~ ~ ~ ~ - (~+u~)~: ,  -- / ' /2X2 ' X2 - -  Ul (Ul  + / ' / 2 ) '  XzX3 
X 2 - -  U2(/./2 if" U22)), 

f -x=  -x~ o o o - ( ~ I + ~ )  o 0 
2 2 

x 1 u 2 - x  3 u 1 + u  2 x 2 0 0 0 

ul xl  x2 0 0 x2 x 3 u~+u~ 

0 0 u z - x  3 - x ~  u z 0 0 

0 0 0 x 2 u~ - x ~  u 2 x 3 

0 0 - u~  0 0 0 - x l  - x 2 j  

" ~  u~+u~ o "~ 

-x~ o u~+u~ 

x 1 x 2 0 ., 

0 - x  1 - u  2 

u 2 x s 0 

0 - x  2 - x  3 

- u  1 0 x 2 

0 - - u  1 m x  I 
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