
Math. Ann. 256, 453-463 (1981) 
A m  
�9 Springer-Verlag 1981 

On the Normal Bundles of Smooth Rational Space Curves 

D. Eisenbud 1 and A. Van de Ven 2 

1 Department of Mathematics, Brandeis University, Waltham, MA 02254, USA 
2 Mathematisch Instituut, Wassenaarseweg 80, Leiden, The Netherlands 

I. Introduction 

in this note we consider smooth rational curves C of  degree n in three- 
dimensional projective space IP 3 (over a closed field of characteristic 0). To 
avoid trivial exceptions we shall always assume that n ~ 4  (this does not hold 
however for certain auxiliary curves we shall consider). Let N = N c  be the 
normal  bundle of  C in IP 3. Since degel(IP3)=4,  and d e g c l ( l P 0 = 2 ,  we have 
that d e g c l ( N ) = 4 n - 2 .  By a well-known theorem of Grothendieck the bundle 
N is a direct sum of two line bundles. Hence N ~ - O c ( 2 n - l - a ) G O c ( 2 n - 1  
+a)  for some non-negative a=a(C), which is uniquely determined by C. The 
question we would like to answer is an obvious one: which values of a occur? 
We shall show (Theorem 4 below) that a value a occurs if and only if 0_< a <-n 
- - 4 .  

Since for every smooth space curve the normal bundle is generated by 
global sections we have in any case that Nc~-Oc(ml)GOc(m2), with ml, m z >=0, 
therefore Hi(C, N)=O. It follows [K, p. 150] that C represents a smooth  point  
on the Chow variety Ch(3, 1, n) of effective cycles of dimension 1 and degree n 
in IP 3. Since the set of all smooth rational curves with a fixed degree is 
obviously connected, we see that the smooth C's represent a smooth, irreduc- 
ible, 4n-dimensional  (Zariski-)open subset S of Ch(3, 1, n). 

In a for thcoming paper [ E - V ]  we shall prove the following 

Theorem. Let S be the smooth, irreducible 4n-dimensional (Zariski-) open subset 
of Ch(3, 1, n), which parametrises the smooth rational space curves of degree n in 
IP 3. Then there exists a stratification of S by non-empty, locally-closed subsets Si, 

n--4 ) 
O<i<_n-4 (i.e. S= ~) S i and Si+lcSi  , such that N c ~ - O c ( 2 n - l - i ) O O c ( 2 n  

\ i=0 
- 1 + i )  /f and only if the point representing C is contained in S i. For l <_i<_n 
-4 ,  the set S~ is irreducible of dimension 4 n - 2 i +  1. 

In particular this implies that for a general curve C the normal bundle N c 
is balanced, that is, N c ~- 0c(2 n - 1) (9 0c(2 n -  1) (see also [Ha, Corol lary 3]). 
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After proving Theorem 4 in Sect. I I I  we turn in Sect. IV to some special 
topics. If  C is a smooth rational curve of degree n, then we prove that C lies 
on a smooth quadric if and only if the tangent bundle of IP3, restricted to C is 
isomorphic to O c ( 2 n - 2 ) O O c ( n + l ) O O c ( n + l  ). On the other hand, if C lies 
on a smooth quadric, the normal bundle of C is isomorphic to O c ( 2 n - 1  ) 
@ O c ( 2 n - 1 ) ,  the same as if C were a general rational curve. (This last fact was 
also noted by Harris [-Ha] as a corollary of a more general result. It will also 
appear, with a different proof, in the paper [Hu]  of Hulek.) 

After a first draft of this paper was written, we obtained a preprint of the 
paper [ G - S ]  by Ghione and Sacchiero, in which the normal bundles of curves 
with at most ordinary singularities are studied. Ghione and Sacchiero prove a 
theorem similar to our Theorem 4, except that they allow curves with ordinary 
singularities and correspondingly must weaken the bound on a to 0 < a  < n - 3 .  
Since they show that curves with a = n - 3  lie on quadric cones, they also get 
the bound 0 < a < n - 4  for smooth curves. By contrast, their proof, by example, 
for the existence of singular curves with all possible values of a, does not, as 
far as we see, give a systematic production of smooth curves of the given types. 
The main part  of our paper is to give a method for systematically constructing 
such smooth examples. 

II. Some Preliminaries 

1. Some Classical Formulae Jbr Space Curves 

Let D be a curve in IP 3, which is not contained in a plane, let /5 be the 
normalisation of D, and h : / 9 ~ D  the canonical projection. Given any point 
pe / ) ,  there exist affine coordinates (4~,{2,43) in a neighborhood of h(p) 
=(0,0,0),  such that the branch of D, determined by p has a formal param- 
etrisation 

41 = t~~ + 1 + (terms of higher order) 

42 ~- tl~ l ,  (p)+ 2 + (terms of higher order) 

43 = tt~ 3 +( terms of higher order) 

in a neighborhood of h(p) (l o, 11, 12~0 ). The numbers 10, ll, and 12 are inde- 
pendent of the parametrisation thus chosen. We put 10(D)= ~ lo(p) and ll(D) 

peD 
= ~_~ ll(p). Then there are (compare [P, 3.2]) classical formulae for the degree 

peO 
deg(FD) of the tangent (developable) surface F D of D (that is the surface formed 
by the tangent lines to D) as well as for the class r(D) of D (the number  of 
osculation planes, passing through a general point of IP3): 

deg (Fo) = 2 deg (D) + 2/ /(D) - 2 - I o (D) 

r(D) = 3 (deg O + 2/7 (O) - 2) - 21 o (D) - I, (O). 

Here /7(D)  denotes the geometric genus of D (the genus of/9). 
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2. Rational Curves with Certain Io, 11 

Let A ..... be a smooth rational curve of degree d in IP d, d > 4. We denote by F 
the tangent surface of A . . . .  and by G the osculation variety of A ...... (the union 
of the osculating two-planes). We have F o G .  If P is a (d-4)-dimensional  
linear subspace of IP d with Pc~A ..... =~ ,  then A . . . .  projects from P to a 
rational curve A, of degree d, which spans the IP 3 of all IP d_ 3's passing through 
P. The following elementary facts can be verified immediately" 

(i) if Pc~G (and hence Pc~F)=O, then A is a rational curve with to(A) 
=lt(A)=O; 

(ii) if P c ~ F = r  and Pc~G consists of one point x, which is smooth on G, 
such that P and the tangent space to G at x are independent, then lo(A)=0, 
11 (A) = 1 ; 

(iii) if Pc~G consists of one point x, contained in F, such that x is smooth 
on F, and such that P and the tangent space to F at x are independent, then 
10(A)= 1, l l (A)=0.  

Since lo(A)=ll(A)=O also holds for a smooth cubic in IP 3, we have 

Proposition 1. (i) For every d>=3 there are rational curves A of degree d, 
spanning IP3, with lo(A ) = 11(A) = 0; 

(ii) for every d > 4 there are rational curves A of degree d, spanning IP 3, with 
lo(A)=0, I~(A)= 1, and also with 10(A)= 1, I~(A)=0. 

3. A Property of Very Ample Divisors on a Surface 

Proposition 2. Let X be a smooth surface, Y a smooth variety and f :  X-+Y a 
finite map, which maps X birationally onto its image. I f  D is a very ample 
divisor on X, and EelD[ sufficiently general, then f (E)  is smooth (and f i e  an 
isomorphism). 

Proof We have to show the following: if EclDI is sufficiently general, then (i) 
f i E  is of maximal rank in every point of E and (ii) f i e  is one-to-one. 

As to (i) the divisor of E first of all has to avoid all points on X, where f 
has rank 0. This is easily possible since there is only a finite number of such 
points. Secondly, E must not be tangent to the kernel of d f  at any point of X 
where f has rank I. But the space of E's which is tangent to the kernel of d f i n  
one of these points has codimension 2 in [DI; and since the union of all these 
points consists of finitely many curves minus a finite number of points (where 
f has rank 0), we see that a general E is not tangent to any of the kernels 
mentioned before. 

To prove (ii), let Z be the closure of the set of points ze f (X) ,  for which 
f -  l(z) consists of at least two points. Since f is birational, Z is a proper subset 
of f (X) ,  and therefore consists of finitely many points and curves. A general E 
certainly does not meet the inverse image of the union of the points. Hence it 
is enough to show the following: given an irreducible curve F = f ( X ) ,  such that 
f :  f - I ( F ) - ~ F  is generically k-to-l, with k>2 ,  then the general curve E does 
not contain any two different points on the same fibre of f i r - I ( F ) .  But this is 
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clear, for the space of elements in IDI, containing two different points of such a 
fibre has codimension two at least. 

4. A Property of the Tangent Surface 

Proposition 3. Let C be a space curve (possibly singular), which is not contained 
in any plane. I f  F is the tangent surface of C, and P its desingularisation, then 
the projection from F onto F is a finite map. 

Proof Let C be the normalisation of C. We can extend the Gauss map, which 
is a priori defined in all but a finite number of points on C, to a regular map 
g: C ~ G ,  where G is the Grassmann variety of  lines in IP 3. Let E be the pull 
back on (~ of the IP~-bundle, associated to the universal subbundle on G. The 
surface E is contained in G• in a natural way, and the image of its 
projection into IP 3 is nothing but F, This projection is birational (in general 
two tangent lines to C don't  meet) and finite (the tangent lines to C can't all 
pass through a fixed point). Hence E = F  and the projection from E into IP 3 is 
the projection from P onto F. 

1II. Proof of the Main Result 

This section is dedicated to the proof  of 

Theorem 4. Given any integer n>:4, there exist smooth rational curves C of 
degree n in IP 3 with normal bundle isomorphic to O c ( 2 n - 1 - a ) @ O c ( 2 n - 1  +a) 
if and only if l a l < n - 4 .  

Proof Let C be a curve as mentioned in the theorem, and let N I = N  c be 
isomorphic to O c ( 2 n - l + a ) ,  with a_>0. Using the canonical projection from 
TrflC onto N we obtain from N 1 a subbundle V 1 of T~3[C. This bundle has 
r ank2  and deg(c~(V))=2n+a+l.  By a theorem of Nakano  IS, p. 265] there 
exists an exact sequence 

0--~0 C (~ 0~3 ( -- 1 ) ' -*g*  (U)---~ V 1 ~)  0~) 3 ( - -  l)"-)'O, 

where g: C~IP~'  is ~be Gauss map of V 1, and U the universal subbundle on 
IP~'. Hence d e g c l ( g * ( U ) ) = - n + l  +a ,  and g*(Or , (1 ) )=Oc(n-a-1  ). Since C is 
not a plane curve, g is not constant and we find already a < n - 2 .  If a = n - 2 ,  
then g(C) is a line, in other words, all tangents to C meet the same line, which 
is impossible. For, projecting C from a general point of  this line onto a plane 
would yield a plane curve, the tangents of which pass through a fixed point; 
this would mean that this projection is a line and C a plane curve. And in the 
case a = n - 3  the image g(C) would be either a line or a conic. The first case 
can be excluded in the same way as before. If g(C) is a conic, then all the 
tangents to C are contained in tangent planes to a quadratic cone Q. They 
can't  all pass through the vertex v, hence we can project from v (almost all of) 
these tangents onto a general plane H, and find that all projections are tangent 
to the conic of  intersection Qc~H. This implies that C~Q.  But on Q there are 
no smooth rational curves of degree __> 4. 
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Now let a6Z, with O<a<_n-4. We shall construct a smooth rational curve 
C of degree n (>4)  with a(C)=a. We distinguish between three cases: 

(1) n - a  = - l(3). By Proposition 1 there exists a rational curve A of degree d 
n - a + 5  

= ~ ,  spanning IP 3, with lo(A)=ll(A)=O. Let F be the tangent surface of 

A, let _F be its desingularisation and p: P ~ F  the projection. We know by II.4 
that P is a IPl-bundle over IP~. L e t / ]  be the curve of tangent points on F, i.e. 
the intersection of .~ with a fibre 1) consists of all those points, where p(~') is 
tangent to A. Since for a general I) the line p(V) is tangent to A in exactly one 
point, A is a section in P (hence A can be identified with the normalisation of 
A in an obvious way and our notation remains reasonably consistent). Then 
p*(Ov(1))=[A+2f/] for some 2~Z. Using the fact that d e g F = 2 d - 2  (see lI.1) 
we find 

(d. + 21~')2 = 2 d - 2  

74(3 + ;~9)=d, 

hence 42=2 and 2 = d - 2 .  Therefore P is either isomorphic to IP 1 x IP l or Z2*, 
and A + k f  / is very ample as soon as k > l .  So if we take k = n - d ,  we have that 
/i+k17" is very ample and ( f l+k~/ ) (~+(d-2) f / )=n.  In other words, a general 
curve C in IA+kl?J projects onto a curve C of degree n in IP 3. This curve is 
smooth by Proposition 2, for p is finite by Proposition 3. We also know that 
ptO: C--*C is an isomorphism, and we may furthermore assume that F is 
smooth in a general point of C. 

We define a map a" C ~ A  as follows: for any point ceC we set a(c) equal 
to the image in A of the point in A lying on the fiber of P through (Pl C)- 1 (c). 
Less formally, we may describe this map by saying that for general c the 
tangent line to A in a(c) meets C in c. 

Next we define f :  C~IP*  by setting f(c) equal to the osculating plane of A 
in a(C). By elementary differential geometry we see that for general c, f(c)  is 
the tangent plane to F at c; hence for any c, f(c) contains the tangent line to 
C at c. In this way, f defines a 2-sub-bundle 1/1 of T~,31C which contains T c as 
a sub-bundle. Using the Nakano sequence and the fact that r ( A ) = 3 d - 6  (by 
I[.1), we find that deg(c~(VO)=2n+a+l. Thus 1/1 projects onto a 1-dimen- 
sional subbundle of N with degree 2 n - 1  +a .  

(2) n-a--=0(3). In this case we proceed exactly in the same way as in case 

(1), starting from a curve A of degree d= n - a + 6  
3 

n - a + 7  
(3) n-a---2(3) .  Again we proceed as before, now taking d = ~  

We shall show in [ E - V ]  that the geometric situation described above is in 
fact typical; all curves in S~ can be obtained by the preceding construction, as 
divisors on developable surfaces or on cones over curves of suitable class. 

* This is true for every smooth rational curve, as follows from the Nakano sequence 
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IV. Some Special Results 

1. Curves on Quadrics 

From many points of view the simplest space curves are those that lie on a 
quadric surface. Since there are no smooth rational curves of degree > 4  on a 
quadratic cone, we restrict our attention to the smooth quadrics, which are 
isomorphic to IP 1 xIP1. The smooth rational curves of degree n on such a 
surface are the graphs of (n-1)- to-1  maps from IP 1 to 1PI; they lie in the 
divisor class n - 1 ,  1. Since they have infinitely many (n-1)-secants ,  whereas 
the general rational curve of degree 5 has only one quadrisecant, and the 
general rational curve of degree n > 6 has no (n-1)-secants  at all, they are very 
special. 

We shall show first that this specialness reflects itself in the restriction of 
the bundle T~, 3 to the curve: 

Proposition 5. A smooth rational space-curve C of degree n> 3 is contained in a 
smooth quadric if and only if Te3[C~-Oc(2n-2)|  l )OOc(n+ l ). 

Proof. If C is contained in a smooth quadric Q, then, by the adjunction 
formula, C is of type ( n -  1, 1). The pencil of lines on Q, which intersect C in 
one point, gives rise to 1-dimensional subbundle L of Te3[C, which has degree 
2 n - 2  by Nakano 's  theorem. Let Lp be the 1-subbundle of T~,I C, which comes 
from joining the points of C with a fixed point p c C  (in p itself you have to 
take the tangent line to C). Again by Nakano 's  theorem we have that 
deg(cl(Lp))=n+l. Given any point x e C  and a 2-dimensional subspace H of 
T~3(x ), we can find a bundle Lp, such that Lp(x)qzH. Thus a direct sum of 
bundles of the form Lp will map onto T~, [C. Therefore, given any decom- 
position Tr3lC~-Oc(aOOOc(az)@Oc(a3) , each of a l, a2, and a 3 must be at 
least n + 1. On the other hand the existence of L implies that at least one of the 
ai's is 2 n - 2  or more. Since a~+az+a3=4n,  this leaves us with only the 
possibility, TF31C~_Oc(2n-2)OOc(n+l)|  where the first summand 
is identical with L as soon as n > 4. 

Conversely, if Try1C contains a direct summand L~-Oc(2n -2  ), then L gives 
rise to a surface S by way of the Gauss map. The surface S has degree 1 or 2; 
since C is not contained in a plane, S is a quadric. Further, S can't  be a cone if 
n>4 ,  for there are no smooth rational curves of degree > 4  on a quadratic 
cone. Therefore, if d>4 ,  the curve C is contained in a quadric, such that the 
Gauss images of the fibres of L form one of the line systems on the quadric. 
Since every space cubic is contained in a smooth quadric, we have proved the 
proposit ion.  

On the other hand, the normal bundle of a space-curve on a smooth 
quadric is the same as that of the general curve: 

Proposition 6. A smooth rational space-curve C of degree n> 3 which is con- 
tained in a smooth quadric has normal bundle 

N c ~ - O ( 2 n - 1 ) ( ~ O ( 2 n -  l). 
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This result was first noted by Harris [Ha]. In [H], Hulek analyses the 
normal bundles of all smooth curves on quadrics in IP s, and in particular 
obtains a new proof of our result. 

We shall give a geometric proof, and then an algebraic proof, which makes 
the result a consequence of local duality. 

Proof of Proposition 6. Since every smooth rational curve of degree 4 has a 
balanced normal bundle (Theorem 4), we can assume that n > 5. 

Again, let L be the 1-subbundle of T~e31 C, given by the pencil of lines on the 
quadric Q, which intersect C in one point. Since such a line is never tangent to 
C, we obtain, by projecting L into N, a 1-subbundle E of N with deg(cl(E)) 
~ 2 n - 2 .  Consequently, either N is balanced, or N~-Oc(2n)| All 
we have to do is to exclude the second possibility. 

Suppose that N has a 1-subbundle M~-Oc(2n) (such a bundle is necessarily 
unique). Then N = E  G M ,  and the inverse image of M in T~3IC is a 2-bundle V 
with deg(cl(V))=2n+2. It follows from Proposition 5 that V~-Oc(n+!)GOc(n 
+1). So T~,3IC has a family {Lt}t~el of 1-subbundles isomorphic to Oc(n+l). 
By way of its Gauss map each of these surfaces yields an irreducible ruled 
surface W,. The degree of W t is either n - 1  or at most �89 In the second 
case W t has to be identical with Q, for if an irreducible surface of degree <�89 
- 1 )  and an irreducible quadric have a curve of degree n in common, they 
must coincide. But W~ can't be identical with Q, for in a general point ceC the 
line gL~(C) is not contained in Q. Therefore all surfaces W t are of degree n - 1 .  
They intersect Q in a divisor of type ( n -  1, n -  1), the support of which consists 
of at most two irreducible curves [a line gL,(C), which is not contained in Q, 
intersects Q in c and one other point]. Hence Q c~ w~ = C u(n-2)R,, where R, is 
a line on Q. In this way we obtain a 1-1-correspondence between the sub- 
bundles L t (or the surfaces IV,,) and the pencil of lines on Q, for which R, C = n 
- 1 .  We take t general, such that in particular R, and C meet transversally in n 
- 1  points. The Gauss map gLt gives a map f :  C~R,. This map can't be 
constant; otherwise W, would be a cone with vertex veR,, and there would 
always be a point x~CnR,, x+v, such that gL~(X)=R,, which is impossible (E 
and M have no fibre in common). So f is a map of degree n - 2 .  For every 
point yeC~Rt we have f ( y ) = y ,  otherwise gL,(Y) would again be R t. But we 
claim more, namely that gL,(Y) is tangent to C at y. This can be seen in the 
following way. For a general point xeC the plane through x and R t is 
certainly not the plane V(x), hence L,(x) is the intersection of these two planes. 
Therefore gL,(y) will be the intersection of the limit positions of these two 
planes if x approaches y, provided of course that these limit positions are 
different. The limit position of the first plane is the plane through R t and the 
tangent line to C at y. The second plane contains this tangent line, but 

certainly not R c Hence L~(y)= Tc(Y). 
Now take the other coordinate z on Q as a coordinate on both C and R,. 

Then f can be seen as a map from P~ (z) onto itself of degree n - 2 .  We may 
assume that f ( ~ ) + m .  An easy calculation shows that f ' ( y ) = 0  for every 

pj(z) where pl(z) and pz(z) are (inhomogeneous) poly- y~CnR,. Hence f = p ~ ,  
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nomials of degree n - 2  in z, without common roots. Let z 0 be a value of z, 
corresponding to a point of Rtc~C. We have pl(zo)-Zopz(zo)=O and also 
p'l(Zo)p2(Zo)-p'z(Zo)pl(zo)=O, hence p'l(Zo)-Zop'2(Zo)=O. But this means that 
this last equation, which is of degree at most n - 2  woutd have n - 1  different 
roots, since by assumption C and R, have n - 1  different points in common. 
This contradiction shows that our assumption, namely the existence of a 1- 
subbundle L of N with L~-Oc(2n) is impossible. Hence N c is always balanced 
if C c Q .  

The idea behind this proof  can be used to study the normal bundle of any 
smooth space curve. Let C be such a curve and L c N  c a 1-dimensional 
subbundle. Let V be the inverse image of L in T•3J C. If we take a general line 
R c I P  3 [such that R is not contained in any plane gv(X), xeC],  then V gives 
rise to a map f :  C ~ R  by taking for f ( x )  the point gv(x)eR. The degree of f 
can be expressed in terms of degcx(L ). This map has the following property:  if 
yeC,  such that the tangent line to C at y intersects R in z, then f ( y )=z .  
Moreover, the limiting position of the line through x and f (x )  if x approaches 
y is the tangent line to C at y. Thus the existence of special 1-subbundles of N 
leads to the existence of special correspondences. A certain converse also holds, 
though it should be stated with care. We hope to return to this point at 
another time. 

Sketch of an Algebraic Proof of Proposition 6. Suppose C is contained in the 
quadric X o X  2 - X 1 X  3 =0.  Realising C as the graph of an (n-1)- to-1  map, we 
may write it parametrically as 

]P1 o(s, t )--*(po, P l, P2, P3) @IP3, 

where each Pl is a form of degree n in 2 variables, and po=sP, p~ =sq, p2=tp, 
P3 =tq for some relatively prime forms p and q. 

In this situation the normal bundle of C is determined by the following 
commutative diagram with exact rows and columns: 

0 0 

Oc (n-l)) Oc 

(~,o t [ (eo,~,p~,p~l 
0 ~ , ( 1 )  - -  "~ , O~(n) 

(-:)J 
___, Tc=O(2)_  4~ , T~, ]C , N c ,0, 

0 0 
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where 

~ ~(Po, PI,P2, Pa) 
O(s, t) 

is the Jacobian matrix. 
Applying the functor F=~H~ Oc(v)), and writing S(k) for the free 

v 

~?[s, t]-module whose generator has degree - k ,  we may turn the computation 
of N into a problem on graded modules. One sees easily that F(~) is the map 

S( -n  - 1) Q S ( -  n - 1)GS(-2n:2)--*S4(-n) 

given by the matrix 

~q 

~q 
- - S  0 - -  

0t 
-(?p 

0 t 
0s 

- 0 p  
0 - =  - d /  

and a simple calculation then shows that 

F(d~): S ( - n -  I)O S ( - n - 1 )  | S ( -  2n+ 2)~S( -  2) 

is given by the matrix 

-~t Oq c~p 
where J = d e t  ~s  and the expression P~ss-q~s is formally divisible 

~ss -~  ~q ' 
by t. 

Changing coordinates we may assume p = t r  for some form r of degree n 
- 2 ,  and then the above matrix can be rewritten (p,q, Jo+J), where 

Jo = d e t  ~ r " 

We now note that J = ( 1 - n ) J o ;  since both J and Jo are multilinear in r and q, 
it suffices to check this for monomials, where it is evident. Thus the above 

matrix has the form 
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tl--n~ ! 

By the local duality theorem (see for example [G-H, 5.1]) J generates the 
unique minimal ideal of ~[s ,  t]/(p,q) and it follows that k e rF (q ~ )=S ( -2 n  + 1) 
O S ( - 2 n + I ) .  

Translating this into the language of bundles, we find 

N = Oc(2n- 1) �9 Oc(2n- 1) 
as required. 

2. Realising the Splitting of the Normal Bundle 

Let C be a smooth rational curve of degree 3. Fixing p~C, we can construct a 
2-bundle lip on C as follows. If x~C, x+p, then we take for Vp(x) the 2- 
dimensional linear subspace of TF3] C(x), determined by the well-defined plane 
through p and the tangent line to C at x; if x=p we use instead the osculation 
plane to C at p. The bundle Vp gives a 1-subbundle Lp c N--Nc/g,3, and N ~-Lp 
0)Lq if p4:q. In fact, N~-0c(5)00c(5) and the pencil of 1-subbundles of N, 
which are isomorphic to 0c(5 ) is exactly the pencil {Lp}, pc C. 

All this is easy to verify. 
We can identify the projective bundle P = Pc of N with the bundle attaching 

to each point x~C the projective line of planes, passing through the tangent 
line of C at x. Then a splitting of N consists of two sections in this bundle, 
which don't meet. In other words, a splitting consists of two fields of planes 
H1, H E along C, such that both Hl(X ) and H2(x ) always contain the tangent 
line to C at x, but Hl(X)~H2(x ) for all x~C. In this light the preceding 
construction for a cubic can be interpreted in the following way. We start by 
taking a fixed point pEC. If x+p we take for Hp(X) the tangent plane to the 
quadratic cone over C with vertex p; for x=p we take Hp(p)=limHp(x). If we 

x ~ p  

carry out this construction for two different points of C, we obtain a splitting 
of N. 

Given any 1-subbundle of N, in other words a section s in R then for k 
large enough there always exist surfaces S of degree k (containing C and 
singular in a finite number of points on C) such that the field of tangent planes 
to S along C (plus limiting positions) yields the section s. This is a consequence 
of the fact that the natural homomorphism 

F( C, J (k))--. r(  C, J (R )/ j2(k))=( C, N*(k)) 

is surjective for k_>_ k o (here J denotes the ideal sheaf of C). 
So given a smooth rational curve C we can always realise the splitting of 

N c using surfaces of sufficiently high degree. Is it possible to do so in a simple 
way, using surfaces of a degree as low as possible, as was done before with 
quadratic cones for a cubic? We don't know a general answer to this (admit- 
tedly not very precise) question, but we know an attractive answer in several 
special cases. As an example we treat the case of quartics. By the Main 
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Theorem the normal bundle is always isomorphic to 0c(7)| for such a 
curve C. 

Let C ..... be a smooth rational quartic in IP 4. We always can find a point 
celP4(cr . . . .  ) and linear embedding of IP 3 in IP4, such that the projection f 
from c onto IP 3 maps C . . . .  isomorphically onto C. Now C is contained in a 
smooth quadric as a curve of type (3, 1). The planes through c which meet 
C . . . .  in three points correspond by f to the lines on Q which meet C in three 
points. Let V be such a plane, meeting C . . . .  in three different points p,, P2, 
and P3. Since no three of the four points p~, P2, P3 and c are collinear, there 
exists a smooth conic K c V  passing through p~, P2, and P3, such that its 
tangents in Pl and P2 meet in c. 

We consider the uniquely determined linear correspondence between the 
points of K and those of C ...... for which Pl, P2, and P3 correspond to 
themselves. The union of the lines joining corresponding points (plus limit 
positions) is a scroll, i.e. a ruled surface of degree 3, isomorphic to IP 2 with one 
point blown up; one checks this most easily by showing that the degree of the 
surface is 3 and checking the possibilities. The lines on R determine a 1- 
subbundle of Tr41C ...... which is isomorphic to Oc(5) by Nakano's  theorem. 
Projecting from c we obtain a 1-subbundle of T~,,IC, which is tangent to C in 
at least two points, namely f(PO and f(P2). Further projection into N c gives a 
1-subbundle N~, of degree 7 or more. Since N c does not contain any 1- 
subbundles of degree 8 or more, we find that N 1 ~Oc(7). Its inverse image in 
T~,IC in a general point xeC can be obtained as f [tangent plane to R at 
f -  t(x)]. On the other hand, f(R) is the unique Steiner surface in IP 3, which has 
f (V)  as its double line and f(Pl), f(P2) as its pinch points [G-H, p. 629]. Thus 
the tangent planes along C of two of these Steiner surfaces give a splitting of 
N c. To obtain all 1-subbundles of N c, isomorphic to Oc(7) one has to consider 
some limit cases. 
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