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INTRODUCTION 

On well-known method of approximating the annihilator of a finitely 
generated torsion module M over a commutative ring R is by means of fitting 
ideals. If 

R”m,Rn-+M-0 

is a free presentation of M, the first fitting ideal F,(M) is the ideal generated by 
the n x n minors of a matrix for ‘p. Writing ann M for the annihilator of M, 
we have 

F,(M) Z ann M, 

and in fact the two ideals always have the same radical. If, more generally, we 
define the Kth fitting idealF,(M) to be the ideal of (n - K + 1) x (n - K + 1) 
minors of F, we have 

k 

F,(M) C ann A M, c*> 

where A k denotes the kth exterior power, and again the two ideals have the same 
radical. 

In this paper we are concerned with inequalities of this type, particularly those 
involving the annihilators of exterior and symmetric powers of M and anni- 
hilators of the cokernels of exterior and symmetric powers of y, and in the 
question of when these inequalities can be replaced by equalities. 

Recall that an ideal 1 in a noetherian ring R is said to have grade g (Bourbaki: 
depth,R = g) if I contains an R-sequence of length g, and that a module is said 
to have grade g if its ann&&ztor has grade g. (Thus, the grade of an ideal I C R is 
really the grade of R/I.) It is known [2] that the grade of the ideal of I x 1 minors 
of an m x 11 matrix cannot be greater than (nz - I + I)(n - I f I), and thus if 
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232 BUCHSBAUM AND EISENBUD 

M is a module having n generators with m relations, grade Fk(M) < R(m -n + k). 
Since ann M has the same radical as F,(M), we have 

grade ann M < m - n + 1. 

Our main theorem (Theorem 3.2) states that if this grade is achieved, then the 
annihilators of M and a number of related modules are equal to F,(M). Writing 
S, for the 9th symmetric power functor, we can state a special case of Theorem 
3.2 as follows: 

THEOREM. Let R be a noetherian ring, and let 

R”--%R”----+M----+O 

be a free presentation of an R-module M, with m > n. Suppose that grade M = 
m-n+l. Then 

ann M = F,(M). 

More generally, 

ann S,.(M) = ann (coker i v) = ann(coker(S,cp)) = F,(M) 

foreveryp,qandrwithl <pandl <q<n,andl <r<m--n. 
If m = n and det y is a nonzero divisor, then 

ann M = (F,(M):F,(M)). 

From our inequalities for the fitting ideals, we obtain another case in which 
F,(M) is the annihilator of coker A* q~ for each q: namely, the case in which 
F,(M) contains a nonzero divisor modulo FI(&Z); this generalizes a theorem of 
Eisenreich [3, Appendix]. 

The proofs of our generalizations of the inequalities (*) and the theorem of 
Eisenreich just mentioned involve only very simple multilinear algebra (although 
we do use the fact that the elements ofF* act as derivations of degree -1 on the 
graded algebra A F); this is all done in Section 1. The proof of our main theorem, 
however, involves the particular structure of the free resolutions for coker (A” y) 
and coker(S,pl) constructed in [l]. These resolutions are built up from certain 
“multilinear functors” L$ which represent a common generalization of both 
exterior and symmetric powers. (J. Towber has pointed out to us that the L,Q 
are obtainable as certain irreducible representations of symmetric groups; 
though we give definitions of L,Q which are satisfactory only for free modules, 
the definition can be extended using his ideas.) Section 2 contains a 
description of the L,g and the resolutions L,Q(y) that we need for the proof of 
our main theorem; further details of the construction, plus a survey of the 
necessary multilinear algebra, can be found in [l]. 
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1. INEQUALITIES 0N ANNIHILATORS 

Let v: F + G be a map of free R-modules, with cokernel M. For any integers 
S, t 3 0, 9 induces a map 

by 

DEFINITION. I(s, t) = ann(coker ys,J. 
It is easy to see (using Lemma 1.1 and Theorem 1.2, part 2 below) that, if G 

has rank n, the ideals I(n - S, t) depend on M, s, and t, but not on the 
presentation chosen. Also, the ideall(n - q + 1, q - 1) is nothing but the ideal 
of(n-q+l)x(n-q++)minorsofv,andthus 

F,(M) = I(n - q + 1, q - 1). 

Moreover, the annihilator of AQ M is given by 

ann /, M = 1(1, q - 1); 

this follows from part a of the following well-known lemma. 

LEMMA 1.1. With the above notation, 

(a) i M = coker c,+,~-~ 

(b) image vs,t 2 image cps+l,t-l for all s, t. 

Proof. It follows from the right exactness of the exterior algebra functor that 

Thus part a follows from part b. Part b may be verified directly, or from the 
diagram 

N31 
1 

Da.*+1 
s+1 

@02\G 

1 
s+t+1 

- AG 

where the map m is the multiplication in the exterior algebra; the commutativity 
of the diagram follows from the associativity of the exterior algebra. [7 
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Thus the following result gives information about the relationships between 
the fitting ideals of M and the annihilators of the exterior powers of M: 

THEOREM 1.2. With notation as abwe, we have: 

(1) I(s, t) c I(s, t + 1). 

(2) Ifs + t < rank G, then 

I(s - 1, t) CI(S, t). 

(3) For any s’, t’, set t” = max(t, t’ - s). Then 

I(& t) I(S’, t’) c I(s + s’, 2”). 

As a first consequence we have: 

COROLLARY 1.3. Let M be module which can begenerated by n elements. Then 

jann i M)“-‘+’ C F,(M) C arm i M. 

This result can be improved under various circumstances, as in the following 
corollary, which is a generalization of the result of Eisenreich quoted in the 
introduction. 

COROLLARY 1.4. Let M be a jinitely generated module; then F,(M) C ann 
As M Z (Fg(M): F,+,(M)). In particular, if F8+1(M) contains a mxzzero diwisor 
module F,(M), then 

F,(M) = ann A M. 

Proof of Corollary 1.3. Recall that F,(M) = I(FZ - s + 1, s - l), and that 
As M = coker c,J~,+~ . The second inequality of the corollary now follows at 
once from part 2 of the theorem. For the first inequality, we take s1 = 1, S, = 
n - S, t, = t, = s - 1 in part 3 of the theorem, obtaining 

I(1, s - l)I(n - s, s - 1) CI(n - s + 1, s - 1). 

The result now follows by iteration. 

Proof of Corollary 1.4. For the first statement it is enough to show 
ann As M C F, . Taking S, = n - S, t, = s - 1, s2 = 1, ta = s in part 3 of 
the theorem, we obtain 

I(1, s - l)l(n -s, s) cI(n - s + 1, s - l), 
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or, 

ann i\M F,,,CF,; 
( 1 

so if F8+1 contains a nonzero divisor modulo F, , ann As M _C F, . 0 

Proof of Theorem 1.2. Part 1 follows from part 3, with s, = s, t, = t, ss = 0, 
t, = t + s + 1, and the observation that iI(0, ts) = R for any t, . Thus it suffices 
to prove parts 2 and 3. 

Part 2. Take g E A8+$-l G, r E I(s, t). We wish to show that rg is in the image 
of vs--l,t : A*-lF @ At G + As+*--l G. Since G is free of rank n and s + t < I, 
there is an element g’ E A s+t G and an element y E G* such that g = y(g’). But 
rg’ is in the image of Fs,t , so we may write 

with fi E i F, 

Applying y, we get 

Q? = YW) = Y (c A dft) A d), 

= c Y (A dfi) * Ef’ + c i dfi) A r(gi’)), (*) 
since y acts on A G as a derivation. 

But Y(A* dfd) = As-l do*), so the first term in (*) is in the image of 
q’s-l,t . The other term in (*) is clearly in the image of v’s,t--l . By Lemma 1.1, 

Image w-1 C Image p’s-l,t , 

so all of (*) is in Image Q+~,$ as desired. 

Part 3. Let u E I(s, , tl), v EI(s, , t2). Then if t = max(t, , t, - sl), and 
g E AQ+Q+~ G, we wish to show that uvg is in the image of v)81+8 ,t . By linearity we 
may assume that g is a product of elements of degree 1, and sfnce s1 + ss + t 2 

s2 + t, 9 we may write g = hk with degree h = s2 + t, . By hypothesis, vh = 
C A*e &J A hi , with fi E AQF, hi E Ate G, and hc is a product of elements of 
degree 1. Since the degree of h,k is s1 + s2 + t - s2 = s, + t > s, + tl , we 
may write hik = limi , where degree 4 = s1 + t, , and, again by the hypothesis, 

G = C 1 dfh) h hi I 

for some f ii E A’lF, lif E At1 G. 
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as required. q 

A theorem similar to Theorem 1.2 can be worked out for the symmetric 
algebra, although the results differ in that all the annihilators of symmetric 
powers of a module have the same radical. We need only the following easy case, 
which will be used in Section 3. 

PROPOSITION 1.5. For any R-module M, and any p > 1, 

ann S,,,(M) > ann S,(M). 

Proof. If G is a free module, and 

or:G-++M 

is an epimorphism, then we have epimorphisms 

G @ S,M -39 M @ S,M -++ S,,,M, 

where the last map is the multiplication map in s(M). The inequality on anni- 
hilators follows. 0 

2. SOME MULTILINEAR FUNCTORS AND GENERIC FKEE RESOLUTIONS 

In [l] we defined certain functors L,q on free R-modules, and used them to 
construct generic free resolutions. We now review the part of those results which 
we need for the proof of our main theorem. Details may be found in [l, Sects. 2, 
3, and 41. 

Suppose F is a finitely generated free R-module. Then the identity map 
1: F + F corresponds to an element 

CEF@F* = S,(F)@ ~F*~s(F)B /\F*, 

the tensor product of a symmetric algebra and an exterior algebra. Since A F is a 
A F*-module, multiplication by c induces, for every K, I, a map 
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DEFINITION. L,QF = ker S$ @ A@-1 F 2% S,,,F @ Aq-2 F. The 
naturality of this definition clearly makes L9QF a functor of F. To interpret this 
definition, the following two propositions from [l] will be all we need: 

PROPOSITION 2.1. (a) L,lF = S,F for all p > 0. 

(b) L,qF = AqFfmallq > 0. 

(c) If rankF = n, then 

LPnF E Z&F @ i F. 

All these isomorphisms are natural in F. 
If v: F--f G is a map of free modules, we can ask about the annihilators of the 

cokernels of L,*F: 

PROPOSITION 2.2. If coker ‘p = M, we have 

(ann M)*+*-l _C ann(coker L,*v) C ann M 

foreveryp,qwithl <p,l <q<n. 

Because SF and A F are (graded) commutative algebras, 3, which is multi- 
plication by c, is a map of SF @ A F*-modules. Thus LF = CDs,L,qF is an 
SF @ A F*-module. 

To any map v: F --+ G there corresponds an element c, E F* @ G C A F* @ 
S(G). If we now use the A F*-module structure on LF and the SG-module 
structure on (LG)* = C Hom,(L,aG, R), multiplication by c, induces a map 

d: L,‘F @ (L,‘G)* -+ L;?F @ (L;-,G)*. 

Also, the A F*-module structure on LF together with the ring homomorphism 
A G* - A F* induced by v* allows us to define a map 

4: L,IF @L,‘G* E L,IF @ A G* + L;-“F. 

Assuming now that rank F = m and rank G = n, we construct a complex: 

Recall that if R is a noetherian ring, an R-module M is said to be perfect of gradeg 
“;f ann M contains an R-sequence of length g, and the projective dimension of M 
is g. We have: 

48 I/47/2-2 
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THEOREM 2.3. Suppose that 

is a map offree R-modules, with rank F = m > rank G = n. Further, suppose that 
the ideal F,(coker p) of n x n minors of CP has grade m - n + 1. Then for each 
p, q with 1 < p, 1 < q < n, the complex L,g(rp) is exact, so that the projective 
dimension of coker(L,Q(cp)) is m - n + 1. 

Combining this with Proposition 2.2, we get 

COROLLARY 2.4. Under the hypothesis of Theorem 2.3, coker(L,qy) is a perfect 
module of grade m - n $ 1. 

3. THE MAIN THEOREM 

We now come to the main result of this paper: 

THEOREM 3.1. Suppose that R is a noetherian ring, and M is an R-module with 
presentation 

RmtRn----+M----+O, 

satisfying grade F,(M) = m - n + 1 (the maximum possible value). Then: 

(1) Ifm>nthenforaZlp,qwithl <q<n,l <p,wehave 

ann(coker L,*v) = I;;(M). 

(2) If 1 < p < m - n, then ann S,(coker y) = F,M. 

(3) If m = n, then 

ann (coker i y) = (F,(M): F,+,M). 

Here (FJM): F,+,(M)) denotes as usual the “residual quotient,” that is, 

(1. E R I yFv+dW C F,(W). 

Remark. Even under the hypothesis of Theorem 3.1, we may have ann 
S,-,+,(M) 2 ann M = F,(M). F or example, let R = k[x, y], and let v: R8 -+ R2 
be the map whose matrix is 

fp zzz xl ;; 
i 

0 
0 

. 
x2 1 



WHAT ANNIHILATES A MODULE ? 239 

Set M = coker up. We have ann M = F,(M) = (x1, xs)s, but ann S,(M) = 

(Xl 7 x2). For we can choose generators e, , e2 of M, with 

xlel = x2e2 = 0 

x,e, = -xle2 . 

But then xler2 = 0 = x,e,e, is clear, and 

as well. 
-v2 2 = -xlele2 = 0 

Proof of Theorem 3.1. We first dispose of part 3, which is elementary. In this 
caseF,(M) = (det v), and the hypothesis is simply that det y is a nonzerodivisor 
in R. We now prove that ann(coker A P cp) = ((det v): F,+,(M)) by proving the 
two inequalities separately: 

(a) ann(coker AP v) Z ((det p): F,+,(M)). Let r E ann(coker AD q). Then 
multiplication by r is homotopic to 0 on the complex 

Thus there is a map a as pictured above such that a(AP 91) = (Ar v) a = r * 1, 
where 1 is the identity map on An R”. 

Now using the canonical isomorphism a: AP Rn -+ An-9 Rn*, we may factor 
(det 9’) * 1 as follows: 

Thus 
(det ‘p) * 1 

(i) r * 1(0l-1 An--p v* a) = Q A* px-1 An+ tp*o~ = a(det ~JI * 1). 

Since the entries of a matrix for 01-l An-f’ DULY generate the ideal F,+r(M), the 
entries of the left-hand side of (i)generate rF,+,(M). But the entries of the right- 
hand side of (i) are clearly in the ideal (det v). This shows that t E ((det cp): F,,,). 

(b) (det(v): F,+,(M)) C ann(coker A” cp). 

Suppose rF,+,(M) C (det F). Then factorization 

i i 

(det q) * 1 



240 BUCHSBAUM AND EISENBUD 

shows that a map a: AP Rn + AT Rn can be constructed to make the following 
diagram commute: 

(det F) . 1 
! I 

;i R:h I 

t 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

ai 
I 
I 
I 
I 
I 
I 
I 

;i Rn 

But since det p, is a nonzero divisor, 01-l An-p q*a is a monomorphism, so 

commutes, which shows that r annihilates coker A p q~. This concludes the proof 
of the third part of the theorem. 

To prove parts 1 and 2 of the theorem, we will employ the following simple 
idea: 

LEMMA 3.2. Suppose M is a perfect module of grade g. Then 
ann M = ann ExtO(M, R). * 

Proof. Clearly ann M C ann Extg(M, R). But since M has grade g, 
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Extk(M, R) = 0 for 0 < k < g, so the dual of a free resolution for M will be a 
free resolution for Extg(M, R), and we have 

Extg(Extg(M, R), R) = M. 

Thus ann Extg(M, R) C ann M as well. 0 

By Theorem 2.1, we may apply this lemma to the modules coker(L,*y) which 
are perfect of grade m - n + 1 under the hypothesis of our theorem. The module 
Ext+a+l(coker L,%p, RR) is the cokernel of the dual of the last differential in the 
free resolution of coker L,%p. If 9: R m = F -+ R* = G, then this dual map is 

(ii) 

Applying the definitions of the various modules involved and of the map, we 
obtain a commutative diagram 

where m: L$I%+-‘~ G @ F -+LkzQ$’ G is induced by v: F + G and the module 
structure map Li:qn+Jl G @ G + LLlqntl G. But this m is clearly d$--R+1 in case 
p = 1, that is, in the resolution of coker(L,pp) = coker(hq y). Thus 

Ext”++l(coker L,%p, R) = S,-,F* @ Ext*-n+l (coker A a, R), 

which has the same annihilators as coker AQ v, by the lemma. We are thus 
reduced to the case p = 1. Of course F,(M) is by definition ann(coker An v), and 
by part 2 of Theorem 1.2, 

ann M = arm (coker i v) 3_ ann (coker i y) > ... 2 ann (coker i V) 

= F,(M). 

Thus it suffices to show that ann MC F,(M). Using ii and iii, and the identifi- 
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cations of L,Q given in Section 2, and the duality in the exterior algebra, we 
compute: 

Ext+n+l(M, R) 

= coker(Lz-,-,G @ Ly-lF* --+ L&G @ L,“‘F*) 

= coker 
i 
i G @ S,-,-,G @ mir F* -+ i G @ S+,,-,-,G @I i F*> 

= coker(S,-,-,G 0 F m. S,-,-,G) 

= S,-,-I(coker v), 

while 

Ext (coker i 9, Rj 

= coker(Lk-,-,G @ Lye’F* -+ Lf.,,.+,G @ L,“F”) 

= coker(S,-,-,G @F -+ S,,-,G) 

= S,-,(coker 9). 

Thus 

(iv) ann M = ann S,-,-,(M) 

F,(M) = ann S,,-,(M). 

But by Proposition 1.5, 

ann S,-,-,(M) C ann S,-,(M), 

which gives the required inequality, proving part one of the theorem. 
For part 2 of the theorem, note that by Proposition I .5, 

ann M = ann(S,M) 1 ann(S,M) 3 ... 3 ann S,-,(M). 

But by iv, and part 1 of Theorem 3.1, ann M = ann S,_,(M), so all the ideals in 
this sequence are actually equal. q 
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