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A GENERALIZED PRINCIPAL IDEAL THEOREM

DAVID EISENBUD* AND E. GRAHAM EVANS, JR.*

KrulΓs principal ideal theorm [Krull] states that q elements in the
maximal ideal of a local noetherian ring generate an ideal whose minimal
components are all of height at most q. Writing R for the ring, we
may consider the q elements, x19 , xq say, as coordinates of an element
xeRq. It is an easy observation that every homomorphism Rq —> R
carries x to an element of the ideal generated by xi9 ,xq. Write Rq*
for HonΓβ (Rq

9 R) and set

jββ (a) = [ψ{χ) i φ e Horn (Rq

9 R)}

We may re-express KrulΓs theorem as saying that, if J is the maximal
ideal of R, and x e JRq

9 then the minimal components of Rq\x) have
height at most q. In fact by localizing at an arbitrary minimal prime
of Rq*(x)9 we see that it is enough merely to say that the height of
Rq*(x)—that is, the minimum of the heights of the primes containing
Rq*—is at most q.

In this paper we will generalize this re-statement of KrulΓs theorem
—in the case in which R has Cohen-Macaulay modules—by replacing Rq

with an arbitrary finitely generated module of rank q (see Section 1 for
definitions). (Hochster has proved [H] that every local ring which con-
tains a field does in fact have Cohen-Macaulay modules (as does any
Cohen-Macaulay ring). He further conjectures that every local ring has
them.)

Special cases of KrulΓs theorem (for polynomial rings) were known
already to Kronecker [Kron, p. 80], and in this setting the theorem was
generalized by Macaulay in 1916 ([Mac], §§47-53) to ideals of minors
of matrices (a minor is the determinant of a submatrix): He showed
that, if φ is an s X t matrix over R, with s < t, say, and if the ideal
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of s x s minors of φ is contained in /, then all the minimal primes of
that ideal have height at most t — s + 1 (KrulΓs theorem is the case
5 = 1, t = q). This was extended to general commutative rings by
Northcott [N], and to lower order minors by Eagon [Ea]. Writing Ik(φ)
for the ideal generated by the k X k minors of ψ, Eagon's theorem says
that if Ik(φ)czJ, then the height of Ik(φ) is at most (s — k + l)(t — k + 1).
(A very elegant proof of this is given in [E — N, section 6].)

Our generalization of KrulΓs theorem contains these generalizations,
and allows us to prove somewhat more; for example, we show that if
the entries of the matrix φ are contained in /, and if the height of Ik(φ)
is (s — k + X)(t — k + 1), the largest possible, then for every submatrix
ψ of φ, the ideal Ik(ψ) is also, in a certain sense, as large as possible.
In particular, no k x k minor of φ is zero.

A generalization of KrulΓs theorem in a different direction from
ours is contained in intersection theory. Serre's Intersection Theorem
[S, V, Theorem 3] says that if R is a regular local ring, and if Iλ and
I2 are ideals of R, then

height (I, + I2)< height lλ + height I2 .

KrulΓs theorem, and the theorems of Macaulay, Northcott, and Eagon
follow easily; Serre's theorem is equivalent to the statement that if R
—>S is a map of noetherian rings, with R regular, and if / is a prime
ideal of R, then height IS<height/, so the heights of ideals generated
by n elements, or ideals of minors, are bounded by the heights of the
"generic examples" of these sorts of ideals, which are easy to compute
directly. Similarly, Peskine-Szpiro's "Intersection Conjecture" (proved
in many cases in [P — S], and generalized to the case of rings with
Cohen-Macaulay modules in [H]) bounds the height of Iλ + I2, in a way
depending on the protective dimension of R/Il9 without assuming that
R is regular.

Our generalization of the Principal Ideal Theorem yields another
"intersection theorem" of this sort. One version of our theorem, Corol-
lary 1.2, says that if R is a local ring (with Cohen-Macaulay modules),
and if <p: M ->R is an element of JM*, then

height φ(M) < rank M .

Thus if we define the r-height of an ideal / by
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r-height / = min rank M ,
φβJM*

we have height / < r-heignt /. But it is easy to see that r-height is sub-

additive : r-height (Λ + /2) < r-height lλ + r-height /2, since if φ1: Mx — »

Ix and φ2: M2 —*• /2, with ψt e JMf, then φλ + ψ2: M1 Θ M2 —*• Iλ + I2 is

in J(M1 φ M2)*, and rank Mλ®M2< rank Mx + rank M2. Thus, by Corol-

lary 1.2 we have

height Iι + I2< r-height Iλ + r-height I2 .

It now makes sense to ask for which ideals / is r-height/ = height/?

Of course, this is so if / is generated by an R sequence, and it is not

too difficult to show that the equality holds for ideals of protective

dimension 1. In fact, we know of no examples of ideals of finite pro-

jective dimension for which r-height Φ height. If there were none—even

just for regular local rings—we would recover Serre's theorem.

We owe a debt of gratitude to David A. Buchsbaum, with whom

we first conjectured the results of this paper (we were motivated by a

desire to prove Corollary 2.4). We also profitted from discussions with

Phillip A. Griffith and Melvin Hochster in particular, the use of Cohen-

Macaulay modules was Hochster's suggestion.

§ 1 . The generalized principal ideal theorem

Throughout this section, R will denote a noetherian local ring.

We begin by recalling some definitions.

The dimension of R is maximum of the lengths of chains of prime

ideals of R. The height of a prime ideal P of R is the dimension of

RP. The height of an arbitrary proper ideal / of R is the minimum

of the heights of prime ideals containing /.

If the dimension of R is n, then a system of parameters for R is

a set of n elements which generate an ideal of height n. It is not dif-

ficult to see that any ideal of height h contains h elements of some

system of parameters.

If N is an /2-module, then x19 , xn e R are said to be an N-sequence

if

1) xi+1 is a nonzerodivisor on N/(x19 ,a?<)JV for 0 < i < n

and

2) (x19-'-,xn)N*N.
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We will say that R has Cohen-Macaulay modules if for every system
of parameters {x19 , xn) of R, there exists an i?-module N (possibly
not finitely generated) such that x19 , xn is an 2V-sequence. Hochster
has shown [H] that if R contains a field, then R does indeed have Cohen-
Macaulay modules, and has conjectured that all local rings have them.

If M is an i?-module and x e M is an element, we write M* = Hom^CM, R)
for the dual module, and define the order ideal of x by

Finally, the rank of a finitely generated β-module M, is the maximum
of the numbers

ά\mRp/PRp MPjPMp ,

where P ranges over the minimal primes of R.
Note that this is the usual definition of rank in the case R is a

domain, but differs slightly from it in the general case (the "usual"
rank is defined as the minimum instead of the maximum).

We are now ready to state our main result:

THEOREM 1.1. Let R be a local ring with maximal ideal J, and
suppose that R has Cohen-Macaulay modules. Let M be a finitely gen-
erated R-module, and let x e JM be an element. Then

rankM > height M*(x) .

The theorem could easily be deduced from either of the following
two results, which we will prove as corollaries:

COROLLARY 1.2. With the hypotheses of the Theorem, suppose that
φeJM*. Then

rank M > height φ(M) .

The next result allows one to conclude that an element of a module
is part of a minimal system of generators from certain information
about the localizations of the module at non-maximal primes:

COROLLARY 1.3. With the hypotheses of the Theorem, suppose that
rankM<dimiϊ . // an element yeM is such that for every non-
maximal prime P,y e MP generates a free summand of MP, then y is
part of a minimal system of generators of M.
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Remarks: 1) Therem A of [E - E] (or a theorem of [B - M])

shows that if rank M > dim R and MP is free for all non-maximal primes

P, then it is possible to find an element yeJM—that is, an element

which is not part of a minimal system of generators of M—which gen-

erates a free summand of MP for each P, so the bound rank M < dim R

is best possible.

2) To see that the hypothesis of Corollary 1.3 cannot be weakened

to require only that yeMP is part of a minimal system of generators

for each non-maximal P, let k be a field, and consider the ring

R = k[s, t, u, v] .

Let Jlf = ( β , { ) 0 β 0 β ; this is a module of rank 3. Then y = (us +

vt, s,t) eM is clearly part of a minimal system of generators of MP

unless P = (s,t,u,v).

3) To obtain a theorem which is valid without the existence of

Cohen-Macaulay modules we could have redefined the rank by taking

the maximum of dimBp/PBp MP/PMP over all the associated primes of 0.

The proof we will give for the theorem then shows that this possibly

larger rank for M bounds the depth of the ideal M*(x), or even its

depth with respect to a finitely generated module N. Corollary 1.2, and

some of the results on determinantal ideals given later on could also be

treated in this way.

Proof of Theorem 1.1. We first reduce to the case in which R is

an integral domain. There is clearly a minimal prime P of R such that

height M*(x) = heightΛ/P (M*(x) + P)/P .

Since homomorphisms M —> R induce homomorphisms

M (x) R/P = M/PM -> R/P ,

we have (M*(x) + P)/P £ (M/PM)*(x). Because of the way rankM was

defined, we have

p M/PM < rank M .

Thus, if we knew the theorem for the domain R/P, we would have

rank M > rankΛ/P (M/PM) > he ight^ (M/PM)*(x)

(M*(x) + P)/P = height M*(x) .
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Henceforward, we will assume that R is an integral domain.

We will next reduce to the case in which

height (M*(x)) = dim R .

Suppose that heightM*(x) = k < dimB, and that xu ,xn is a system

of parameters for R of which the first h are in M*(x). Let xf e M 0 Rn~h

= M' be the element (x, xh+1, , #TO). Clearly x' e JM', M'*{x') 2 (^,

• , &n), and rank M' = rank ilί + w — ft. Thus if

rank W > height M'*(#') = w ,

then rank M > h = height ilί*O), and we may suppose that M*(#) already

has height n.

Now let α̂  eM* be such that x1 = ax{x)9 ,xn = an(x) is a system

of parameters for R in M*(#), and let / be the ideal generated by the

xt. Define a map a: M -> Rn by m «-> (diίm), ,αw(m)). Suppose that

Vi, - ',Vm generated the maximal ideal / of R. Since x e JM, there is

a map b: iϋm -> M sending the vector (yί9 , ym) to x.

Define / : Rn* —• βm* as the composite

Rn* — f > Rm*

1) a*\ jb*

M*

This / fits into a commutative diagram

Ύ v
Rm*—>R

where x and y are given by the matrices (xly -,xn) and (ylf —,y<m)

respectively. This diagram can be extended in the usual way to a com-

parison map of the Koszul complexes of / and J:

n 2 γ
jζ(J\ Λ Λ τ>n* , Λ f>n* f>n* y T> T? IT Π

In I 2 I

τι + 1 n 2 y



PRINCIPAL IDEAL THEOREM 47

Suppose that, contrary to the theorem, rank M = r < n. Then we
n

claim /\ / = 0. Writing RiQ) for the quotient field of R, we note that
n

because R is a domain and /\ / is a map of free β-modules, it suffices
n n n

to check that (/\ /) ( 0 ) = (f\ /) (8> i?0 = 0. But this is the same as /\Λ(0) (/(0))

= 0, and the commutative diagram 1) shows that /\5 ( 0 ) (/(0)) factors

through Λi*(o) (Λίfo)) = ΛB(.) (MfQ)). Since M(0) is an r-dimensional Rm-
n

vectorspace, and r < n, this module is clearly 0, and f\ f = 0 as claimed.
n

It now suffices to show that /\ f Φ 0 to establish the theorem. To
n

do this we will examine the maps induced by f\ f on cohomology, using

the following rather well-known lemma to shift the problem to a calcu-

lation of Ext.

LEMMA 1.4. Let R be a noetherian ring, I c R an ideal, and K(I)

the Koszul complex of J. There is a family of natural transformations

from the cohomology of K(I) to Ext (#//,-) :

a\: HKΈLom (K(I), -)) > Ext* (R/I, -)

such that

1) If Id ΐ\ then a commutes with the maps Ext (R/Γ, -) —> Ext (R/I, -)

induced by the projection R/I -> R/Γ and the maps induced on cohomo-

logy by any extension K(I) —> K(Γ) of the inclusion I —> /', and

2) If N is an R-module, and I contains an N-sequence of length n,

then

a\IItN: H*(Hom (K(I), N)) > Ext* (R/I, N)

is an isomorphism for i <n.

Sketch of proof of Lemma 1.4. a may be defined as the map on

cohomology induced by any comparison map from the Koszul complex

to a protective resolution of R/L The homotopy-uniqueness of such a

map yields the naturality, and part 1). Part 2) can be proved by in-

duction on i, using the fact that both Ext (#//,-) and the cohomology

of K(I) are connected sequences of functors. (See [B — R] for a similar

proof which is given in detail).

In order to apply the lemma, we choose an .β-module N such that
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xl9 , xn is an iV-sequence. Since (x19 - - ,xn) = I a J, Ext7* (R/I,N) ^
Hom (R/I, N/IN), and Ext72 (R/ J, N) ^ Hom (R/ J, N/IN), both isomor-
phisms being natural. From this and Lemma 1.4, we obtain a com-
mutative diagram

), N)) [-^4-] #"(Hom (K(I), N))
ill ill

Ext" (R/ J, N) > Ext" (R/I, N)
III ill

Hom (R/J, N/IN) > Hom (R/I, N/IN) ,

n n

where [/\ /] denotes the map induced by /\ / on cohomology, and the
map Hom (R/J, N/IN) -* Hom (R/I, N/IN) is induced by the natural pro-
jection R/I —» R/J. Since the map from R/I to R/J is an epimorphism,
the induced map on Hom is a monomorphism, and it suffices to show
that

Rom(R/J,N/IN) =£0 .

Since / = (xί9 ,xn),N/IN Φ 0, and since x19 ,xn is a system of pa-
rameters, Jk c / for some k. It follows that N/IN does contain nonzero
elements annihilated by J, so Hom (R/J, N/IN) Φ 0. Thus rank M >
height M*(x), as claimed.

Proof of Corollary 1.2. As in the proof of the theorem, one reduces
to the case in which R is a domain. It follows that M9M*> and M**
all have the same rank. Since ψ(M) c M**(<p), the Corallary follows
from the Theorem, applied to the element φeM*.

Proof of Corollary 1.3. Since the formation of M*(y) commutes
with localization, we see that M*(y) is not contained in any prime ideal
of R except / thus height M*(y) = dim R. By the Theorem, if y e JM,
we could conclude rank M > dim R, SL contradiction.

§ 2 . Determinantal ideals

Throughout this section R will denote a local ring with maximal
ideal /, and ψ will denote a n s x ί matrix with elements in R. We will
assume throughout that R has Cohen-Macaulay modules (see note 3 after
Theorem 1.1 for a suggestion of a generalization that works without
this hypothesis).
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If k is an integer, we write Ik(φ) for the ideal of k x k minors of

φ.

THEOREM 2.1. With notation as above, suppose that Ik(φ) = 0, and
let φr be the s X it + 1) matrix obtained from φ by adjoining a column
with entries in J. Then

height Ik(φ') < s - k + 1 .

We will postpone the proof until later.

EXAMPLE 2.2. To see that the condition on the elements of the
added column is necessary, consider the ring R = k[[x, y]], and the
matrices

0\ /0 0 1

\χ y) \χ y o,

Here s = 2 = t, and with k = 2 we have /ft(0 = 0, but /2(^0 = (x, y) has
height 2 > s — fc + l = l.

The next Corollary is the now-classical formula for the heights of
determinantal ideals.

COROLLARY 2.3 (Eagon-Macaulay-Northcott). With notation as above,

< (s — k + l)(t — k + 1) .

Proof of Corollary 2.3. We induct on s and t. Localizing, we may
assume ht Ik(φ) = dim R.

If some element of φ is a unit, we may make a "change of basis"
until φ has the form

1

0
•

.0

0

ψ'

where ψf is an (s — 1) x (t — 1) matrix. Clearly /ft(p) = h-iiφ'), and we
are done by induction. Thus we may assume that all the elements of
φ belong to J.

Next, by completing R and factoring out a minimal prime ideal,
we may assume that R is an integral domain with saturated chain con-
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dition—that is, for every prime P of R, height P + dim R/P = dim JR.
Finally, consider an s x (t — 1) submatrix ψ of φ. By induction,

height Ik(ψ) < (s — k + l)(t — k). Let P be a prime containing Ik(ψ)
with the same height. By Theorem 2.1, dim R/P = height^ (Ik(φ) + P)/P
< s — k + 1. By the saturated chain condition,

height Ikφ = dim R

= height P + dimβ/P

< (s - k + l)(ί - fc) + (5 - k + 1)

= (s - k + l)(t - & + 1) ,

as claimed.

Remark. This proof, with its reliance on Cohen-Macaulay modules
and the saturated chain condition, is not to be taken too seriously there
is an elementary and beautiful proof of the same fact in [E — N, section
6]. We include it because it seems amusing to note that Theorem 1.1
"contains" the other "generalized principal ideal theorem."

Our next result is a sort of rigidity formula, of the type that says
that any subset of an β-sequence is an .β-sequence.

Since we are working with height such statements are slightly
treacherous; it is not true for example that if n elements generate an
ideal of height n9 then any subset of k elements generates an ideal of

height k. For example let R = k^x'v' ^ , where k is a field. Then
(x, V) Π (z)

the ideal (x, y + z) has height 2, but (x) has height 0.
To avoid this sort of difficulty, we work instead with dimension;

it is true that if

dim R/(xl9 , xn) = (dim R) — n ,

then dim R/(x19 •.•,#*) = (dim R) — k, for any k. Of course if one sticks
to the case of an equidimensional ring with saturated chain condition—
not a very drastic restriction—one recovers statements about height.
Also, the reader will note that if ht/ = n, then dim R/I < (dim R) — n
in any case. Our main result of this type is:

COROLLARY 2.4. Suppose as before that φ is an s xt matrix with
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coefficients in J, and let ψ be a submatrix of size u x v, say. If, for
some k,

dim (R/h(φ)) < (dim R) - (s - k + l)(t - k + 1) ,

then

dim (R/Ik(ψ)) < (dim R) - (u - k + ΐ)(v - k + 1) .

Remark. Example 2.2 shows again that the hypothesis that the
hypothesis that the coefficients of φ are in J is essential.

COROLLARY 2.5. If φ is an s x t matrix with coefficients in J and
for some k

height Ik(φ) = (s- k + ΐ)(t - k + 1) ,

then no k X k minor of φ is 0.

Corollary 2.5 is an immediate consequence of Corollary 2.4.

Remark. The following conjecture, if true, would allow one to
strengthen the conclusion of Corollaries 2.4 and 2.5 to statements about
ideals of minors of any size >k.

CONJECTURE 2.6. If φ is an s x t matrix (not necessarily with co-
efficients in the maximal ideal of R) such that Ik+i(φ') — 0, then htlk(φ)
< s + t — 2k + 1.

Proof of Corollary 2.4. We will prove the corollary in the case u
= s, v = t — 1 an iterated use of this (and the version interchanging
u and v) produces the general result.

Let R be the completion of R. For any ideal / of R, dim R/I =
dim R/IR. Since

dimR/Ik(ψ) = dim R/Ik(ψ)R ,

there exists a minimal prime ideal P of R containing Ik(ψ) such that
dim^/P = dim R/Ik(ψ), and since

dim R/P + Ik{φ) < άimRlhiψ) = dim R/Ik(φ) ,

we may assume R — R/P.
In particular, we may assume that R is an integral domain with

saturated chain condition, and Ik(ψ) = 0. Under these circumstances
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dim R/Ik(ψ) = dim R = dim R/Ik(φ) + height Ik(φ) ,

so the Corollary follows from Theorem 2.1.

Proof of Theorem 2.1. As usual, we may assume that R is a domain,
and k > 1. Because of the Laplace expansion of k x k minors of ψ
involving the last column along the last column, we may assume h^iφ)
Φθ.

We now regard φ as a map Rι -> Rs, and we set M — coker φ. Be-
cause Ijc^iiφ) Φ 0 and Ik(<p) = 0, we have rank M = s — k + 1. Let 25 be
the image in M of the new column x of φ', regarded as an element of
Rs. Since xeJRs, we have xeJM. By Theorem 1.1, height M*(x) < s
— k + 1. We will show that any prime containing M*(x) must contain
J*(ψ ), from which height 7*(ψ) < height M*(£) follows.

Suppose, then, that a prime ideal P fails to contain Ik(ψ). Localiz-
ing at P, we have

Rp = IJC(Ψ)P — Ik-\(φ)p

0 = /»(0 P = /*+1(ψ)P .

Since ψ, thought of as a map # i + 1 -> R\ has cokernel M/Rx it fol-
lows by an easy argument from *) that MP and (M/Rx)P are both free,
of ranks s — k + 1 and s — k, respectively (see, for example, [B — E,
lemma 1]). Thus x generates a free summand of MP, so M*(x)P =
(MP)*(2B) = RP. That is, M*(£) (X P, as required.

Remark. It is also easy to exhibit the maps M —> β which take 3B
fc-l

to the k x k minors of ψ containing the last column. For, if a e /\ i?ί+

A - l

(8) /\ Rs corresponds under the isomorphism

*Λ R** ® Λ1 Rs = H o m i ί (A Rt> k/\ β s )
fc-l

to the map /\ φ, then the map "multiplication by a"

ma: Rs >k/\ R1*® \ R S : X I — > α Λ a ;

satisfies maφ = 0 since /\ φ = 0, and thus induces a map

mα: M > */\ i?ί# ®}\R8.

The various coordinate projections to # of mα(^) = ma(x) give the re-
quired k X k minors of ψ.
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