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THE STRUCTURE OF SERIAL RINGS

DAVID EISENBUD AND PHILLIP GRIFFITH

A serial ring (generalized uniserial in the terminology
of Nakayama) is one whose left and right free modules are
direct sums of modules with unique finite composition series
(uniserial modules.) This paper presents a module-theoretic
discussion of the structure of serial rings, and some one-
sided characterizations of certain kinds of serial rings. As an
application of the structure theory, an easy proof is given of
A. W. Goldie's characterization of serial rings with trivial
singular ideal.

In an earlier paper [8], we considered some occurrences and
applications of serial rings in other areas of ring theory. In addi-
tion, we gave a short conceptual proof of Nakayama's Theorem [19,
Th. 17], which states that any module over a serial ring is a direct
sum of uniserial modules. This generalizes the theorem that every
module over an artinian principal ideal ring is a direct sum of
uniserial modules [13, §15] as well as the corresponding theorem
for semi-simple artinian rings.

Of course, semi-simple artinian rings may be characterized by
saying only that each of their left modules is a direct sum of simple
modules. Fuller [10, 5.4] has supplied the analogous result for
serial rings. In § 1 of this paper, we provide a method (Theorem
1.2) for deducing that a left artinian ring, under rather strong
assumptions on its category of left modules, is also right artinian.
Applying this method, we easily obtain Fuller's one-sided characteri-
zation of serial rings in a style quite different from his.

Section 2 is concerned with various characterizations of artinian
principal ideal rings. Among these, a one-sided characterization is
given (Theorem 2.1 (4)). An interesting sidelight of this section is
a module-theoretic proof of the classical structure theorem for
principal ideal rings (Corollary 2.2. For a classical proof, see [13,
§15]).

In § 3, we present a structure theorem for serial rings (Theorem
3.1). A considerable part of this theorem is a restatement of results
Murase [16, 17, 18] and of Amdal-Ringdal [1, 2]. In part, our
theorem shows that a serial ring A has a ring decomposition A =
Ao x AL x A2 x A3 such that

(0) 40 is semi-simple, and At has no semi-simple factor for
i > 0.

(1) AL is an artinian principal ideal ring.
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(2) A2 is a product of rings each of which is Morita equivalent
to a factor ring of a full ring of upper triangular matrix rings
over a division ring.

(3) ^43/(Rad Azf is QF and A5 has no homogeneous protective
modules (see the definition of homogeneous in § 2).

As an application of the structure theory, we give in § 4 a new
proof of a theorem of Goldie [11, Th. 8.11].

Throughout this paper, rings have identities and all modules
will be unital. If A is a ring, Rad A is its Jacobson radical. A
principal indecomposable A-module is an indecomposable direct sum-
mand of A. If M is an ^.-module, then soc M denotes the sum
of all simple submodules of M and λ(Λf) denotes the length of a
composition series of M (if one exists). We observe that, if A is
left artinian and if M is a uniserial left A-module, with ΛΓ=RadA,
then Mz) NMi) N2Mz) Z) NkM = 0 is the form of a unique com-
position series for M. We recall that a QF (Quasi-Frobenius) ring
is an artinian ring which is right and left self injective. A ring A
is said to be semiprimary if Rad A is nilpotent and A/Rad A is semi-
simple artinian. Finally, our homological notation follows that of
MacLane [15].

1* Going from left to right* In this section we set forth
conditions on the category of left modules over a left artinian ring
which force the ring to be right artinian. The tool we will use
for this purpose is the stable duality functor of Auslander and
Bridger [4], whose definition we sketch below. We are grateful to
M. Auslander for his suggestion that this functor was the appro-
priate tool. Its use has resulted in a considerable simplification of
our original proofs.

Let M be a finitely presented module over any ring A, and let

p >Q—»M b e exact, with P and Q finitely generated projec-

tives. Let D(M) = Coker (Q* -^U P*) where —* = HomA (—, A). If

Pλ > Qι —» M is another such sequence, then there are finitely
generated protective modules F and G such that F 0 D{M) ~
G 0 D^M), where D^M) = Coker (φ*). Thus D(M) is unique up to
stable equivalence. Note that if M is a left module, D{M) is a
right module. Thus D{D(M)) is a left module, and M is stably
isomorphic to D(D(M)).

LEMMA 1.1. Let A be a semiprimary ring, X an indecom-
posable right direct summand of A. Let T be a submodule of X,
and suppose T has finite length. Then End^(X/Γ) is a local ring.
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Proof. Note that the conclusion is easy for T = 0.

Let N = Rad A. Since XN is the unique maximal submodule of
X, we may assume T c XN. Since X is a principal right ideal,

{ε e End^ (X/T) | Im (ε) s XiV/T}

is an ideal of ΈnάA(X/T). We will show that this is the unique
maximal ideal, by showing that if ε: X/T—> X/T is such that
I m ε g XN/T, then ε is an isomorphism.

Such an ε is an epimorphism because XN is the unique maximal
submodule of X. Let π: X—* X/T be the canonical projection. Then
both π and επ are epimorphisms onto X/T, so by SchanueΓs Lemma,

TφX~ Ker επ © X .

End^(X) is local, so by [21, Th. 2.6], Γ s K e r ε r. Thus Ker επ has
the same (finite) length as T. But T S Ker επ as submodules of X:
hence T = Ker S7Γ. Thus ε is a monomorphism.

THEOREM 1.2. Suppose A is a left artίnian ring with only
finitely many nonisomorphic finitely generated indecomposable left
modules. Then the same statements hold when "left" is replaced by
"right".

Proof. We first show that A is right artinian. A is in any
case semiprimary, so by a theorem of Eilenberg [7], every projective
right A-module is a direct sum of principal indecomposable right
A-modules. If A is not right artinian, we may find a principal
indecomposable right ^.-module X and an infinite increasing sequence
of submodules

SL §Ξ S2 gi CΞ X ,

such that each Si has finite length. Since X has a local endo-
morphism ring, SchanueΓs lemma and [21, Th. 2.6] show that
X/Si £ X/Sj for i Φ j .

Let E7Ί, , Un be representatives of the finitely generated in-
decomposable nonprojective left A-modules. For each i we may
write D(X/Si)= Vi 0 Projective, where V{ is a direct sum of certain
Ufa. D(Vi) is of course a direct sum of D(Uj)% and we have

( * ) X/Si 0 Projective ~ D{ F<) 0 Projective .

By Lemma 1.1, the left hand side of (*) is a direct sum of indecom-
posable modules with local endomorphism rings. Using [21, Lemma
2.9 and Th. 2.6] repeatedly, we see that there is an index j = j(i)
such that Uj is a summand of Vi9 and X/Si is a summand of D{U5).
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By [21, Th. 2.6], the complement of X/Si in the right hand side of
(*) is projective, so we may write

X/Si 0 Projective = D(Uj{i)) 0 Projective .

Since there are finitely many Z7, s and infinitely many S/s, there are
indices i, V such that i Φ if but j(i) = j(ί'). For these indices we
have

X/Si 0 Projective = X/S^ 0 Projective .

Both sides of this equation are sums of indecomposable modules
with local endomorphism rings, so by the Krull-Schmidt Theorem,
X/Si ~ X/Sif, a contradiction. Hence A is right artinian, and in
particular, the Krull-Schmidt Theorem holds in the category of
finitely generated right A-modules.

It is now easily seen that for any finitely generated right or
left A-module Λf, M and D(M) have the same number of nonprojec-
tive indecomposable summands. Also, two finitely generated A-
modules without projective summands are isomorphic if and only if
they are stably isomorphic. The conclusion of Theorem 1.2 now
follows easily (A has the same number of finitely generated indecom-
posable modules on the right as on the left).

As mentioned in the introduction, the following result was first
proved by Fuller [10, 5.4].

THEOREM 1.3. Let A be a ring each of whose finitely generated
left modules is a direct sum of uniserίal modules. Then A is serial,
and thus every left or right A-module is a direct sum of uniserial
modules.

REMARK. This theorem shows that the generalized left uniserial
rings of Griffith [12] are the same as serial rings.

Proof of 1.3. A must be left artinian, so Theorem 1.2 shows
that A is right artinian. If Mis any finitely generated right module,
then D{M) is a direct sum of uniserial left modules. On the other
hand, if U is a uniserial left module, then there is an exact sequence
X—> Y-^JJ with X and Y principal indecomposable A-modules. Thus
D(U) = Coker (Y* —> X*) is a homomorphic image of X*, which is
a principal indecomposable right A-module. Thus D{D{M)) is a
direct sum of homomorphic images of principal indecomposable right
A-modules, and it follows by the Krull-Schmidt Theorem that the
same is true of M. By Nakayama [20, Th. 3], A is a serial ring.
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2* Artinian principal ideal rings* We will say that a module
of finite length is homogeneous if its composition factors are all
isomorphic to one another.

THEOREM 2.1. Let A be a ring with radical N. Then the
following are equivalent.

(1) A is an artinian principal ideal ring.
(2) A is serial and every ideal of A is a principal left ideal.
(3) Every left A-module is a direct sum of homogeneous

uniserial modules.
(4) A is serial and, as a left A-module, is the direct sum of

homogeneous uniserial modules.

REMARK. Since (1) is left-right symmetric, each of (2), (3), and
(4) is equivalent to the corresponding statement about right modules.

Proof. (1) => (2): It suffices to prove A serial. For this it is
enough to show that if X is an indecomposable summand of A, then
soc (X/NkX) is simple for every k, or equivalently, that λ(soc (A/Nk))^
X(A/N). Of course, the preimage in A of soc (A/Nk) is principal, so
soc (A/Nk) is cyclic as an A/ΛΓ-module. The required inequality
follows readily.

(2) => (3): Let A = Π X% &s left A-modules, where each Xι is
indecomposable. To prove that every indecomposable left A-module
is homogeneous, it now suffices to prove that the modules Xt are
all homogeneous. By assumption, soc (A) — ϋ soc X{ is principal.
Since it has the same length as A/N, we must have A/N ~ soc A.
Choose a simple A-module S and set J — {j | soc Xj = S}, T =
Jljej soc Xj. T is an ideal of A, and A/T is also an artinian principal
ideal ring, so again we have that (A/Γ)/Rad (A/T) = soc (A/T).
Counting the number of simple summands on each side of this
equation which are isomorphic to S, we see that, for each j e J such
that λ(Xi) ^ 2, soc (Xy/soc Xj) = S ~ soc Xj. Continuing in this
manner (or using the periodicity theorem [8, 2.3]), we see that each
Xj is homogeneous. Since S was arbitrary, it follows that every Xζ

is homogeneous.
(3) => (4): This follows from Theorem 1.3.
(4) ==> (1): If X and Y are homogeneous uniserial projective

modules, then Hom^ (X, Y) Φ 0 if and only if X = Y. Of course,
we may assume that A is indecomposable, and we see at once that
A is a direct sum of isomorphic indecomposable left modules; A —
Π?=i -Xi Hence A is isomorphic to the ring of n x n matrices over
the local serial ring End^ (Xt) (See [8, Corollary 2.2]). Thus the
category of A-modules is equivalent to the category of End^ (-3Γ,-)-
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modules, so every indecomposable right or left A-module is homo-
geneous.

By symmetry, it suffices to prove that any left ideal L is
principal. This is equivalent to showing that L/NL is a cyclic A/N-
module. But L/NL is a direct summand of soc (A/NL), so it is
enough to show that soc (A/NL) is a cyclic A/iV-module. But A/NL
is a direct sum of homogeneous uniserial modules. Hence, soc (A/NL) =
A/NH&AA/NL which is cyclic as an A/iV-module, since A/NL is
cyclic as an A-module.

We showed at the beginning of the proof of (4) => (1) that an
indecomposable serial ring, each of whose indecomposable modules is
homogeneous, is a full matrix ring over a local serial ring. Moreover,
a local serial ring is trivially seen to be a principal ideal ring. Com-
bining these remarks with Theorem 2.1, we obtain the classical
result [13, §15].

COROLLARY 2.2. A ring is an artίnίan principal ideal ring if
and only if it is a product of full matrix rings over local artinian
principal ideal rings.

In [9, Remark, p. 249], Fuller has proven that a ring A is an
artinian principal ideal ring if and only if it and each of its factor
rings are QF. Our proof of Proposition 2.3 is very similar to the
proof of Fuller's Theorem, except that we use the periodicity
theorem [8, 2.3] to complete the argument.

PROPOSITION 2.3. A ring A is an artinian principal ideal ring
if and only if A is serial and QF, and for every minimal ideal T
of A, A/T is QF.

Proof. =>: This is immediate from Corollary 2.2.
<=: By Theorem 2.1, it suffices to show that, if A = Π X{ is a,

direct sum decomposition of A into indecomposable modules, then the
Xi are homogeneous. Recall that a QF ring contains a simple module
of each isomorphism type. If A is semi-simple, there is nothing
to prove. Otherwise, let S be a simple A-module which is not
injective, and set Y= IIS Ocx-s^ Note that soc Y= T is a minimal
two sided ideal contained in Rad A. Thus S is an A/T-modxύe.
Since A/T is QF, S must appear in soc (A/T) ^ soc(Y/T)@soc(A/Y).
Since by construction S is not a submodule of A/Y, S must be a
submodule of Y/T. A is QF, so soc X ^ soc X, implies that X ~ Xo .
Hence soc (Y/T) is homogeneous and thus is a direct sum of copies
of S. However,
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soc (Y/T) s Π soc (X /soc Xt) .

Using the periodicity theorem [8, 2.3] we see that each Xt gΞ Y is
homogeneous. Since S was an arbitrary noninjective simple module,
every X{ is homogeneous.

3* The structure of serial rings* In this section we present
a description, in module-theoretic terms, of the structure of serial
rings. The parts of the theorem dealing with artinian principal
ideal rings were established in § 2. The remainder of the theorem
is equivalent to various results of Murase [16, 17, 18] and Chase
[5, 6]. Since Murase did not formulate his work in module-theoretic
terms, it has seemed worthwhile to include some restatements. We
have also included a sketch of a module-theoretic proof of one of
his theorems on triangular matrix rings (Theorem 3.2).

THEOREM 3.1. Let A be a serial ring. Then A = AoxAtxA2xA3

(ring direct sum) such that
(0) Ao is semi-simple, and Aι has no semi-simple factor for

i > 0.
(1) Every indecomposable Armodule is homogeneous; equiva-

lently,
(1') A, is QF, and if I is a minimal ideal of A, then A/I is

QF; equivalently,
(1") Aι is an artinian principal ideal ring.
( 2 ) gl. dim A2/(Rad A2)

2 < oo equivalently,
(2') Every homomorphic image of A2 has finite global dimen-

sion; equivalently,
(2") A2 is a product of rings each of which is Morita-equivalent

to a factor ring of a full ring of upper triangular matrix rings
over a division ring.

(3) -A3/(Rad A3)
2 is QF and A3 has no homogeneous protective

modules.

Proof. The equivalences (1) =̂> (1') *=> (1") were established in § 2.
The equivalences (2) <=> (2') is due to Chase [5] (Chase's theorem
appears in this paper as Theorem 3.4). The equivalence (2') <=> (2")
is due to Murase [17, Ths. 17 and 18]; we sketch a new proof of it
in Theorem 3.2.

The splitting of a serial ring which we will now indicate is
essentially that given by Murase in [16, 17]. Specifically, his type
one includes Ao and A2, Aγ is of the first kind in the second category,
and A3 is of the second kind in the second category.

Murase's proof that an indecomposable serial ring is one of the
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above kinds relies on a study of Kuppisch series (see [14]) for serial
rings. We will give an alternate description.

Let RadA = N, and let A = JJieI Xi be a decomposition of A
into a direct sum of indecomposable protective left modules. Set:

Io = {iel\ Xι is simple and injective}
Ix = {% G I1 Xi is homogeneous but not simple}
J2 = {ί e 11 i % Io and hd^^XJNX^ < co}
/3 = {ie/|ig/oUiiU/2}.

It is easy to verify that I is the disjoint union of Io, Iίf /2, and Iz.
Set Aj = II z . X{. The A3 may be seen to be ideals of A, and are
thus ring direct summands of A.

It is immediate that AQ is semi-simple and that every indecom-
posable ^-module is homogeneous. If Rad A2 — N2, then each of
the finitely many simple AJN^-moάules has finite homological dimen-
sion. By a theorem of Auslander [3, Proposition 10], gl. dim. (A/N2)
is the supremum of these homological dimensions and is therefore
finite.

Finally, AB/Ni has no simple projectives; hence every indecom-
posable summand of AJN£ has the same length and is therefore
injective. Thus AJN2 is QF. This completes the proof of (1), (2),
and (3).

We will now present a new proof of the implication (2) => (2").
It is easy to see that if A is a serial ring with radical N such

that gl. dim. (A/N2) < co, then A must have a simple projective. It
then follows that if A is indecomposable, A is, in the terminology
of Murase [16], of the first category. Murase proves [17, Ths. 17, 18]:

THEOREM 3.2. Let A be a serial ring with radical N. Then
gl. dim. (A/N2) < co if and only if A is the direct product of rings,
each of which is Morita equivalent to a factor ring of a full ring
of upper triangular matrices over a division ring.

We will sketch a module-theoretic proof of this result.
First we state a familiar lemma describing the homomorphic

images of upper triangular matrix rings. Let Ωn = {(i,j) \ l ^ ί , j^n}.
The points of Ωn are to be thought of as the elements of an n x n
matrix, (i, j) being the intersection of the i-th. row and the j-th
column. A subset ΛczΩn will be called a staircase set of rank n if

(1) (iyj)eΛ implies j ^ i + 2 (i.e., A contains no elements on
or below the diagonal just above the main diagonal).
and

(2) (i, j) e A implies (k, l)e A whenever k <£ i and I ̂  j .
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For example, the entries which lie in the shaded region of the
matrix in Figure 1 form a staircase set:

main diagonal

FIGURE 1.

LEMMA 3.3. Let Tn(D) be the ring of n x n upper triangular
matrices with entries in the division ring D. There is a one-to-
one correspondence between staircase sets of rank n and ideals I of
Tn(D) such that Tn(D)/I is indecomposable. This correspondence is
given by

A *—> {(aiS) e Tn{D) | aiS = 0 for (i, j)$Λ} = I.

Thus any indecomposable homomorphic image of Tn(D) may be
regarded as the set of upper triangular matrices with zeros in all
the entries in some staircase set, multiplication being the usual
matrix multiplication, followed by a replacement of any nonzero
entries within the staircase set by zeros. Note in particular that if
A is an indecomposable homomorphic image of Tn(D), and en is the
matrix with 1 in the place (n, n) and zeros elsewhere, then enA is
the only simple indecomposable right summand of A.

In proving Theorem 3.2, we will make use of the following
theorem of Chase [5, Th. 4.1].

THEOREM 3.4. Let A be a semiprimary ring with radical N.
The following are equivalent:

( 1 ) gl. dim. (A/N2) < oo,

( 2 ) gl. dim. (A/I) < co for all ideals I of A.

( 3 ) There exists a full set of primitive idempotents en *',ek

of A such that βiNβj = 0 for all j ^ i.

A ring of the sort described in Chase's Theorem is called a
generalized triangular matrix ring.

To prove Theorem 3.2, it thus suffices to show that an indecom-
posable serial generalized triangular matrix ring A is Morita equiva-
lent to a homomorphic image of a full ring of triangular matrices
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over a division ring. (The converse of this is an easy verification.)
By passing to a Morita equivalent, we may assume that if A —
Π?=i Aei9 where the e{ are primitive idempotents, then Ae{ £ Aeό for
i Φ j . By Theorem 3.4 we have, for N — Rad A, the equations

βiAβj = 0 for every j < i

βiNβi — 0 for every i .

We will do an induction on the number of primitive orthogonal
idempotents of A. For n = 1, A is a division ring, and the theorem
is obvious (A is a 1 x 1 triangular matrix ring).

Suppose n > 1. Set e ~ en and j = 1 — e. By Chase's Theorem,
we have

ί
Ί re/A/, mefAe, deeAe

\0 d)\
with the "usual" matrix multiplication. Of course eAe is a division
ring. Since A is assumed indecomposable, M •= fAe Φ 0. Set D —
eAe, S = /A/, / - Rad S. Then

Rad A = iV =
j m

0

f / ϊ m\
N2 =

j e J, m e ilf

-Id
Thus N/N2 = JIJ2@MIJM as A-A-bimodules. Since A is serial and
has only one more idempotent than S, M/JM must be simple as a
left S and as a right βAe-module. In particular, M is indecomposable
as a left S-module. Since A is indecomposable, this shows that S is
indecomposable as a ring. But S is a factor ring of A. Thus S is
an indecomposable serial generalized triangular matrix ring with
only n — 1 orthogonal primitive idempotents. Hence by induction, S
is a factor ring of an (n — 1) x (n — 1) triangular matrix ring over
a division ring Dr. Since M/JM is a simple left S-module, it is a
one dimensional left D'-module. As it is also a one dimensional
right D-module, we have D = End^ (M/JM) = Π (where endo-
morphisms are written on the right).

We will next prove that M is a homomorphic image Sen_lf say
M = Sen^1/Jken_ί. This will finish the proof; for let A be the stair-
case set of rank n — 1 corresponding to 5, as in the discussion
following Lemma 3.3. Take Λf = A U {(i, w) \j ^ w — A}. It is easily
seen that A' is a staircase set of rank n, and that A is the homo-
morphic image of Tn(D) corresponding to A'.

Since A and S are serial, we have:
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XA(N/N>) = XS(J/J>) + 1

XA(N/N2) = the number of e{ such that XA(e{A) ^ 2

XS(J/J2) = the number of ei9 i ^ n — 1, such that Xs(eiS) ^ 2 .

Now XA(enA) = 1 trivially, so there is i ^n — 1 such that XA{eιA) ^ 2
and λ5(β<S) - 1.

By the remark following Lemma 2.6, i = n — 1. Hence en_xN —
en_tM Φ 0. This shows en^Nen Φ 0, so there is a homomorphism of
left S-modules 0 Φ <p: Sen-t —»M. But M is indecomposable, and
hence is uniserial as an S-module, so M is the homomorphic image
of some Sek. Clearly Sen_JJen^ is isomorphic to a composition factor
of My and is not isomorphic to any composition factor of Sek for
k Φ n — 1. Hence M is a homomorphic image of Sen^. This con-
cludes the proof of Theorem 3.2.

4* Serial rings with zero singular ideal* Let A be a ring.
In [li], Goldie defines Z(A), the singular ideal of A, as the set of
elements of A whose left annihilators are essential left ideals. He
proves [11, Th. 8.11].

THEOREM 4.1. Let A be an indecomposable serial ring. Then
Z(A) — 0 if and only if A is Morita equivalent to a full ring of
upper triangular matrices over a division ring.

As an application of the structure theorem, we will give a new
proof of this result. But first we recall some immediate consequences
of the definition of Z(A).

If A is artinian, then a left ideal of A is essential if and only
if it contains the left socle, say soc(A) = S. Thus Z(A) = right
ann. (S) = Hom4 (A/S, A). If A = U Xi9 where the X* are indecom-
posable left A-modules, then we see that Z(A) — 0 if and only if
Hornet (X /̂soc (JSQ, X5) — 0 for every i and j . In particular, the
vanishing of the singular ideal of an artinian ring is invariant under
Morita equivalence.

Proof of Theorem 4.1. Suppose that A is indecomposable and
serial, and Z(A) — 0. We will show, in the language of Theorem 3.1
and Lemma 3.3, that either A = Ao, or A = A2 and the associated
staircase set is empty. This will clearly suffice to prove 4.1.

If A = A, then A/soc (A) = Rad A; so Z(A) Φ 0.
Suppose A = A3. Then no indecomposable summand of A is

simple, and by Kuppisch [14, Satz 5] we may arrange a decomposi-
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tion A = Πf=1 Xi of A into indecomposable modules in such a way that
there are epimorphisms φ{\ X{ -» (Rad A)X<+1 for ί> n, and φ»: Xn-*>
(RadAjX^ By a length argument, not all of these epimorphisms
can be monomorphisms; hence for some ί, soc (Xi) £ Ker ^ . Thus
Z(A) ^ 0.

To prove Goldie's Theorem, we only need show that if A = A2 =
Tn(D)/I and Z(A) = 0, then 1=0; that is, the staircase set A associated
to I is empty (see § 3). Suppose this were not so, and choose
(i, j) e A with minimal j . Let ek be the idempotent of A represented
by the matrix with a 1 in the place (ft, k) and zeros elsewhere.
Then \(Aej_ι) = j — 1. Of course, there is an epimorphism φ: Aβj^-**
Rad (A)e3: But 0 Φ λ(Rad (A)ed) ̂ j-ί-1. Thus soc (Ae^) S Ker φ,
so Hom^ (Aβ^/soc (Ae^), Ae3) Φ 0.

Added in proof. In [22], Skorjakov defines a module to be chained
if its submodules are linearly ordered, and proves a theorem stronger
than our Theorem 1.3: if A is a ring such that every left A-module
is a direct sum of chained modules, then A is serial. His methods are
quite different from those of section one of this paper.
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