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A module is called uniseriat if it has a unique composition series of finite 
length. A ring (always with 1) is called serial if its right and left free modules 
are direct sums of uniserial modules. 

Nakayama, who called these rings generalized uniserial rings, proved 
[21, Theorem 171 that every finitely generated module over a serial ring is a 
direct sum of uniserial modules. In section one we give a short conceptual 
proof of this result, strengthening it to arbitrary modules (Theorem 1.2). 
As a byproduct of the proof, we obtain a condition for a projective module 
over a serial ring to be injective (Theorem 1.4). 

More can be said about the structure of modules over a serial ring. In 
section two we show that the endomorphism ring of a projective module over 
a serial ring is a local serial ring (Corollary 2.2), and that the composition 
series of any uniserial module over a serial ring is periodic in a strong sense 
(Theorem 2.3). The section concludes with the theorem that any two simple 
modules over an indecomposable serial ring have the same endomorphism 
ring (Theorem 2.4). 

Serial rings occur naturally in several contexts. It has long been known 
that every proper factor ring of a (commutative) Dedekind domain is an 
artinian principal ideal ring. (Commutative or not, any artinian principal 
ideal ring is serial.) Although it is also true that factor rings of Dedekind 
prime rings are artinian principal ideal rings [23, Theorem 3.51, this fails for 
hereditary noetherian prime rings in general (see [8, Sec. 41). However, 
we prove in section three that any artinian factor ring of an hereditary ring 
with a flat injective envelope is serial (Theorem 3.1). In particular, every 
proper factor ring of an hereditary noetherian prime ring is serial. 

Are Dedekind prime rings precisely the hereditary noetherian prime rings 
whose factor rings are principal ideal rings ? The answer is “yes” under mild 
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additional hypotheses (Theorem 3.3). The general question remains open, 
though Faith [IO] and Levy [16] have completely characterized commutative 
rings whose proper factor rings are artinian principal ideal rings, and Zaks 
[26] has some noncommutative results. 

In section four we show that for a finite dimensional algebra, the serial 
property is stable under changes of base field. More precisely, if A is a finite 
dimensional algebra such that A/Rad A is separable, then A is serial if 
and only if it becomes serial when tensored with any algebraically closed 
field. 

Serial algebras occur as the group algebras in characteristic p of certain 
finite groups. This class of groups includes, by a result of Srinivasan [24, 
Theorem 31, all p-solvable groups with cyclic sylow p-subgroups. Janusz 
[14, Corollary 7.51 gives a necessary and sufficient condition for a group 
algebra to be serial over a splitting field of characteristic p. The theorem 
we prove in section four has the consequence that Janusz’s condition deter- 
mines all serial group algebras. 

Since the literature on serial rings is rather widely scattered, we have 
tried to make our bibliography complete enough so that it and the biblio- 
graphies of the papers listed would form a relatively complete guide. 

For the reader’s convenience, we have collected some miscellaneous 
notation and terminology which we will use throughout this paper. 

If a ring A has (Jacobson) radical N, then the Loewy length of an A- 
module M is the smallest integer K, if one exists, such that NkM = 0. Note 
that M is uniserial if and only if M 3 NM 3 N2M *** is a composition series 
for M. 

For any module M, sot M denotes the sum of the simple submodules 
of M. If A is semiprimary, then a direct summand of the free left A-module 
of rank one is called a dominant left summand of A if it has maximal Loewy 
length. 

An indecomposable ring is one which is not the (two-sided) direct sum of 
ideals. A local ring is one in which the nonunits form an ideal. We will always 
abbreviate quasi-Frobenius to QF. 

For unexplained terminology concerning homomorphisms and modules, 
see MacLane [17]. 

The reader should be warned that we have thought of endomorphisms 
as acting opposite ring elements whenever this was necessary to prevent the 
appearance of opposite rings. With this exception, “module” is generally 
understood as “left module”. 

Note. An example due to J. C. Robson shows that an hereditary noetherian 
prime ring whose proper factor rings are all artinian principal ideal rings 
need not be Dedekind. 
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1. NAKAYAMA’S THEOREM REVISITED 

Lemma 1.1 gives a characterization of rings whose left modules are direct 
sums of uniserial modules, and prepares the way for our proof of Nakayama’s 
Theorem (Theorem 1.2) which is the basic result on serial rings. Theorem 1.4 
completes the proof by telling which projective modules over a serial ring 
are injective. 

PROPOSITION 1.1. Let A be a left artinian ring with radical N. Then every 
left A-module is a direct sum of uniserial A-modules if and only if the dominant 
left summands of AIN” are AINk-injective for every k. 

Proof. +: The hypothesis remains valid for any homomorphic image 
of A, so it suffices to show that every dominant left summand X of A is 
injective. Since the injective envelope of X must be uniserial (and therefore 
a homomorphic image of an indecomposable summand of A), this is clear 
by the maximality of the length of X. 

=G : We first prove that every indecomposable left summand X of A is 
uniserial. This will follow if Nk-lX/NkX is simple or zero for every k. 
If N”-lX/N”X f 0, then X/NkX is a dominant indecomposable summand 
of A/N” and thus is an indecomposable A/N”-injective. Consequently 
soc(X/N”X) is simple, so N”-lX/N”X _C soc(X/NkX) is also simple. 

Next we show that every nonzero left A-module has a uniserial summand. 
Since A is a sum of uniserial modules, every left module M is generated by 
its uniserial submodules. Suppose XC M is a uniserial submodule of 
maximal length; say the length of X is k. Necessarily, NkM = 0, so the 
inclusion X + M is a map of A/N”-modules. Since X is isomorphic to a 
dominant summand of AINk, X is A/N”-injective. Thus X is a summand 
of M. 

What we have just proved shows that every finitely generated left A-module 
is a direct sum of uniserial modules. To obtain the general case, we use the 
notion of purity: details may be found in [17, pp. 367-3751 and in [25]. 
A submodule B of the left A-module C is called pure if for every right 
A-module D, the induced map D Qa B --+ D OR C is a monomorphism. 
If B is a pure submodule of C and C/B is finitely presented, then 
C E B @ (C/B). 

Returning to the proof at hand, we note that since direct summands are 
always pure, and since the filtered union of pure submodules is again a pure 
submodule, we may choose, in any A-module M, a maximal pure submodule 
of the form u Xi = M’, where the Xi are uniserial modules. If M/M’ f 0, 
it has a uniserial direct summand X. Let P be the preimage of X in M; M’ is 
easily seen to be a pure submodule of P, so P s M’ @ X, a direct sum of 
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uniserial modules. However, P is a pure submodule of M, contradicting the 
maximality of M’. Thus M’ = M is a direct sum of uniserial modules. // 

In [12, Theorem 3.61, Fuller proves that a condition similar to that of 
Lemma 1.1 is equivalent to the condition that A be serial. However his proof 
of this involves a quotation of Nakayama’s Theorem. 

THEOREM 1.2 (Nakayama, [21, Thm. 171). Let A be a se&E ring. Then 
every A-module is a direct sum of uniserial modules. 

Proof. Let N = Rad A. Since A/Nk is serial for every k, it suffices, 
by Lemma 1.1, to prove that the dominant summands of A are injective. 
The next theorem does this and more. To prove it, we will make use of the 
following simple result of Auslander [3, Prop. lo]: 

LEMMA 1.3. Let A be an artinian ring, and let X be an A-module. Suppose 
Ext,l (S, X) = 0 for every simple module S. Then X is injective. 11 

THEOREM 1.4. Let A be a serial ring with radical N, and let X be an 
indecomposable summand of A. X is injective if and only ;f, for every inde- 
composable summand Y of A, X + NY. 

Proof. 3: This is clear, since Y is assumed indecomposable. 
G : By Lemma 1.3, it is enough to show that Ext,r (Y/NY, X) = 0 for 

every indecomposable summand Y of A, or, equivalently, that every map 
y:NY-+Xextendstoamap Y-+X. 

Consider the diagram 

NY& “1 Y-A 

where i, j, and ja are the natural inclusions, and n1 and 7ra the projections. 
We wish to construct 01 making the left-hand triangle commute. 

Since NY is uniserial, we can find a primitive idempotent e of A such that 
there is an epimorphism Ae ++ NY. This induces a monomorphism 

Hom,(NY, A) >+ Hom,(Ae, A) g eA, 

and eA is uniserial as a right A-module, since it is an indecomposable right 
summand of A. Consequently, one of j+ and jsp), viewed as elements of eA, 
is a multiple of the other. 

Suppose ;sv is a multiple of jIi, so that we can find an a : A -+ A such 
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that jav = aj,i. Setting a = x,ajl , we see that oli = n,aj,i = v2 jzp, = y, 
as required. 

If on the other hand, jli = bj,v, for b : A -+ A, we set /3 = n,bj, . As 
before, /3~ = rrlbjzy = r1 j,i = i, so the diagram 

NYi- Y 

v 
a 

v 
X commutes. 

We need only show that /3 is an isomorphism. For then, setting a! = p-l, we 
see that oli = v as required. 

Certainly, Im(/I) 1 NY. If Im(P) = NY, then l,, = &J, so that NY is a 
summand of X. Since X is indecomposable, NY z X, contradicting our 
hypothesis. Hence Imp 3 NY, and thus B is an epimorphism. Since Y is 
projective and X is indecomposable, /I is an isomorphism, as required. This 
concludes the proof. // 

2. SIMPLE AND UNISERIAL MODULES OVER SERIAL RINGS 

We first examine the structure of a uniserial module over a serial ring A 
more closely. Any uniserial A-module is a homomorphic image of an indecom- 
posable summand of A, so it is enough to study the projective uniserial 
modules. 

LEMMA 2.1. Let A be an arbitrary ring. Suppose that X is a uniserial left 
A-module and P a projective left A-module. Then Hom,(P, X) is a uniserial 
right End,(P)-module. Its End(P)-submodules correspond to the submodules 
of X which are homomorphic images of P. 

Proof. Suppose ‘p, 4 : P --f X. It suffices to show that one of them is an 
End, P-multiple of the other. Now one of Im(v) and Im(#) contains the other, 
say Im(p) 2 Im($). By the projectivity of P, there is 01 : P + P making the 
diagram 

P 
/ 

“/’ 
J lb 

P 7 Im(v) commutative. 

Thus ~‘o1 = #, proving the lemma. // 

COROLLARY 2.2. Let A be a serial ring, and let X be an indecomposable 
projective A-module. Then End(X) is a local serial ring. 
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Proof. By Lemma 2.1, End(X) is uniserial as a right module over itself. 
Let N = Rad(A), and let k be the Loewy length of X. By Theorem 1.4, X 
is injective over A/N”. The dual of Lemma 2.1 shows that End(X) is also 
uniserial as a left module over itself. 

THEOREM 2.3 (Periodicity Theorem). Let A be a serial ring with radical 
N, and let X be any uniserial left A-module. Let the sequence of composition 
factors of X be X,, = XjNX, X, = NX/N2X,... . Suppose X, z X0 , and let 
h # 0 be the smallest such integer. Then X, E X, rf and only if/ zz m(mod h). 
If there is no h such that X, E X,, , then X, g X,,, implies 8 = m. 

Proof. Since X is the homomorphic image of a uniserial projective 
module, we may assume X is projective. Thus if X0 e X, , the map 
X -+ X,, s X, = NhX/Nh+rX lifts to a map X + NhX which sends NGX 
onto Ne+hX, inducing X, z Xl,, for every 8 3 0. 

To finish the proof of the theorem, it now suffices to prove that if X, and 
X, are composition factors of X/NhX, then Xt s X, implies / = m. That 
is, it suffices to prove the last statement of the theorem. Thus we assume 
X, $ Xs for any 8 f 0, so End,(X) is a division ring. 

Because X is projective and indecomposable, we may write X z Ae, 
where e is a primitive idempotent of A. Suppose X8 g X, f 0 and let f 
be a primitive idempotent of A such that Af/Nf z X, . Then 

Hom,(Af, Ae) z fAe E Hom,(eA, fA) 

as fAf - eAe bimodules. By Lemma 2.1, fAe is a uniserial fAf module and 
a uniserial eAe module. Since the elements of eAe act as fAf-homomorphisms 
on fAe and vice versa, every one-sided submodule of fAe is two-sided. Thus 
fAe has the same length as a right and as a left module. Since fAe is uniserial 
and eAe z End(X) is a division ring, this length must be one. Using Lemma 
2.1 again, we see that only one submodule of Ae is a homomorphic image of 
Af. This submodule must be NGX and N”X. Hence / = m. 11 

Remark. It is possible to give a slightly faster proof of Theorem 2.3 as 
follows: Use Theorem 1.4 to reduce to the case where X is both projective 
and injective. Then use Corollary 2.2, Lemma 2.1, and the categorical dual 
of Lemma 2.1 to finish the proof. 

Though an indecomposable serial ring may have many isomorphism 
classes of simple modules, the next theorem shows that its simple modules 
must all have the same endomorphism ring. We will exploit this fact in the 
proof of Theorem 4.1. 

THEOREM 2.4. Let A be an indecomposable serial ring, and let S and T be 
simple A-modules. Then End,(S) g End,(T). 
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We will prove this as a consequence of: 

LEMMA 2.5. Let SC& T be simple modules over any ring, and suppose 
S >+ X ++ T is exact but not split, with X projective and injective. Then 
End(S) g End(X) s End(T). 

Proof. We prove only the first isomorphism, the proof of the second 
being dual. Of course, it suffices to show that any v E End(S) extends uniquely 
to a 9)’ E End(X), since then the map v H y’ is patently an isomorphism of 
rings. By the injectivity of X, p may be extended to an element of 
End(X); suppose v’ and v” are two extensions. Then (y’ - v”) S = 0, so 
Im(p’ - p”) C sot X = S. Thus v’ - v” factors as in the following 
commutative diagram: 

X m’--m” l X 

-1 t 
Ts X/S -+s . 

Since T C$ S, we must have v’ - p” = 0. I/ 

Proof of Theorem 2.4. Set Rad A = N, and let (X, ,..., X,} be a set of 
representatives of the isomorphism classes of indecomposable projective 
A-modules. By [15, Theorem 51 we may assume that the X, are arranged 
so that for i = 2,..., n, X,-JNX,-, z NX,/N2X, . Using Theorem 1.4, we 
see that for z = 2,..., n, Xi/N2Xi is projective and injective as an A/N2- 
module. Any isomorphism XJNX, g XJNX, would lift to an isomorphism 
Xi z Xj by the A-projectivity of Xi . Thus for i # j, XJNX, C& XJNX, . 
We can now apply Lemma 2.5 to the exact sequences 

X,~,~NX,~, >--+ XiIN2Xi --++ XJNX, , 

for i = 2 ,..., n, and this finishes the proof. /I 

Remarks. 1) Theorem 2.4 says, in effect, that if A is an indecomposable 
serial ring, then A/Rad A is a product of full matrix rings over the same 
division ring. 

2) In [l, section 21, Amdal and Ringdal state without proof that if 
S and T are simple modules over a serial ring, and if Exti(S, T) # 0, then 
Extl(S, T) is one dimensional over End(S) and over End(T). The proof of 
Lemma 2.5 may be construed as proving this fact, from which it trivially 
follows that End(S) and End(T) are isomorphic. The application of 
Kuppisch’s Theorem in our proof of Theorem 2.4 simply shows that one can 
go from one simple module to all the others in this way. 
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3) Of course an indecomposable serial ring may have many non- 
isomorphic simple modules. In fact, all its simple modules are isomorphic 
if and only if it is an artinian principal ideal ring; see, for example, [7], 

3. FACTOR RINGS OF HEREDITARY RINGS 

THEOREM 3.1. Let R be a left hereditary ring with a $at injective envelope. 
Then every left artinian factor ring of R is serial. 

In [9, Theorem 3.31 it was shown, by a direct assault, that factor rings of 
an hereditary noetherian prime ring with enough invertible ideals are all 
serial, Using Theorem 3.1, we can strengthen this result to include all 
hereditary noetherian prime rings. 

COROLLARY 3.2. Every proper factor ring of an hereditary noetherian 
prime ring is serial. 

Proof. By [8, Theorem 1.31, every factor ring of an hereditary noetherian 
prime ring R is artinian. Moreover, the injective envelope of R as a left 
R-module is easily seen to be the quotient ring Q of R. Since R is a right 
order in Q, we have Q = ha regular in R Ra-l. Since the l& is filtered, 
Q is flat as a left R-module. I/ 

Proof of Theorem 3.1. Let A = R/I be left artinian. Since any statement 
we prove about A will apply equally to each factor ring of A, it suffices, by 
Lemma 1.1 and [12, Theorem 5.41, to prove that any dominant left summand 
of A is injective. 

Let E be the left R-injective envelope of R. We start by calculating the 
left A-injective envelope of A in terms of E. Since R is left hereditary, E/I is 
R-injective. Let F = {x E E / Ix CI}. Clearly F is a left R-submodule of E 
and is therefore flat. Set F/I = E’ and observe that E’ is a left A-module 
containing A. E’ is an injective A-module since E’ z Hom,(A, E/Z) s 
{ix E E/I 1 IX = O}. 

On the other hand, we claim that E’ is a projective A-module. By [3, 
Corollary 81 it suffices to show that E’ is a flat A-module. Note that I = IF 
since 1 E F; hence E’ = F/IF g A 8s F. But F is a flat R-module, and 
therefore E’ is a flat A-module. 

Since E’ is injective and projective, we may write E’ = u Xi , where the 
X, are injective indecomposable left summands of A. Let X be a dominant 
left summand of A. We will show that X is isomorphic to one of the Xi . 
For every i, we have a map vi : X -+ Xi given by 
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Since X >+ A >--+ E’ is a monomorphism, we can choose an i so that 
Ker vl’ $ sot X, and thus Loewy length(Im vi) = Loewy length(X). Since 
X is dominant, Loewy length(Xi) < Loewy length(X), so q+ is necessarily 
onto. Since Xi is projective, ~~ splits. Since X is indecomposable, qi is an 
isomorphism. 

We have now shown that every dominant left summand of A (or, a fortiori, 
of any factor ring of A) is injective. Thus A is serial. // 

Recall that an hereditary noetherian prime ring R is said to have enough 
invertible ideals if every ideal of R contains an invertible ideal. (For this and 
other notions concerning hereditary noetherian prime rings, see [9].) 

PROPOSITION 3.3. Let R be an hereditary noetherian prime ring with 
enough invertible ideals, and suppose that every factor ring of R is an artinian 
principal ideal ring. Then R is a Dedekind prime ring. 

Proof. Suppose A is not Dedekind, that is, suppose R has an idempotent 
maximal ideal I. Take J maximal among the invertible ideals contained in I; 
then J f I/, and by [9, Theorem 2.61, J/1J = Rad(R/IJ). Set A = R/IJ, 
N = J/IJ. By hypothesis A is an artinian principal ideal ring, so A is QF 
[22, Lemma 21. Since J is invertible, the left annihilator of J/IJ is 
I/IJ = sot A. We have 

where the ei and fj are primitive idempotents of A such that the length of 
e,A is 1 and the length of fjA is 2. Since N # 0, the set of fi’s is not empty. 
But I/IJ = (I/IJ)” implies that some e,A g fjN, which contradicts the fact 
that A is QF. I/ 

4. A STABILITY PROPERTY OF SERIAL ALGEBRAS 

For results and definitions concerning splitting fields and separable 
algebras, see [6, Ch. 10, and 41. 

THEOREM 4.1. Let A be a finite dimensional algebra over the field k, and let 
K be any algebraically closedjeld containing k. Suppose AIRad A is separable 
over k. Then A is serial if and only if K ol, A is serial. 

To prove 4.1 we will use the characterization of serial rings stated in 
[I, section 21: 

CRITERION 4.2. An artinian ring A is serial if and only if it satisfies the 
following condition and its dual: For every simple A-module S there is (up to 
isomorphism) at most one simple A module T such that Ext,l(S, T) f 0. 
For such a T, Ext,l(S, T) is one-dimensional over End,(S). 
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Proof of Theorem 4.1. a: Suppose that A is serial; of course we may 
assume that A is indecomposable. Let the endomorphism ring of a simple 
A-module be D (by Theorem 2.4, D is independent of the choice of simple 
module.) Suppose [D : Center(D)] = n2, [Center(D) : k] = p. 

Let S be any simple A-module. Since A/Rad A is separable, K @ S is 
semisimple, and we may write K @ S = n * J& Si , where the Si are 
pairwise nonisomorphic simple K @ A modules. Moreover, every simple 
K @ A module is isomorphic to a module of the form Si for some simple 
A-module S. Of course if T is a simple A-module with T $ S, then Si $ Tj 
for any i, j. 

We proceed to verify the conditions of Criterion 4.2 for K @ A. Suppose 
Ext&(& , Tj) f 0 and Ext& (Si , U,) f 0 for S, T, U simple A- 
modules. Since 

K @ Ext,r(S, T) = Ext&(K @ S, K @ T), (“1 

it follows that Ext,l(S, T) f 0 and Ext,l(S, U) f 0, whence T z U by the 
criterion, applied to A. 

By virtue of (*) and the fact that A is serial, Ext&,,(K @ S, K @ T) is 
free of rank one over 

K @ End, S = End,&K @ S) = fi Ikfn(EndKOA(Si)) 
i=l 

= fj Wz(K>, 
i=l 

where JfQ(Endeoa(Si)) is the n x n matrix ring over EndKoa(Si). 
Splitting this free module into summands corresponding to the matrix 

rings in the product, we see that 

LI Ext&&& , K 0 T) = 2 . fi Ex&dSi > Td 
n copies j=l 

is free of rank one over M=(K), and thus has K-dimension n2. This shows that 
Ext&(& , Tj) is nonzero for exactly one value of j, and is one dimensional 
over K for that value, as required. 

Since the dual argument yields the dual result, we have shown that 
Criterion 4.2 is satisfied for K @ A, so K @ A is serial. 

-z : Now suppose K @ A is serial. Fix a simple A-module S. As in the 
first part of the proof, we may write K @ S = n * &, Si , where the Si are 
pairwise nonisomorphic simple K @I A-modules. 

Now suppose U and T are simple A-modules with both Ext,l(S, T) + 0 
and Ext,l(S, U) f 0. Both Ext&,,(K @ S, K @ T) and Ex&,,(K @ S, 
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K @ U) are free over End,&K @ S) = J& M,(End,&&)), and thus 
for each Si , Ext&(& , K @ 7’) and Ext&&& , K @ U) are nonzero. 
Since K @ A is serial, K @ T and K @ U must have a simple factor in 
common, so Us T. 

We now need only show Ext,l(S, T) is one dimensional over End,(S). 
Writing K @ T = m * jjy=r Tj , where the Ti are pairwise nonisomorphic 
simple K @ A-modules, we see that this amounts to showing that for each i, 
the free MJEndKoa(Si)) = AIn(module 

JJ Ext&, 
( 
Si , m . fj Tj] = mn - fi Extkoa(Si , Tj) (**) 

n copies 3=1 3=1 

has rank one. Since K @A is serial, we see from Criterion 4.2 that 
J& ExtkgA(Si, Tj) is one dimensional over End,,,(&) = K. Thus the 
module in (**) has dimension mn over K. Since it is free over M%(K), we 
must have n2 j mn, that is, n / m. Using the dual part of the Criterion 4.2, 
and arguing on T rather than S, we see that m 1 n. Thus m = n. 

Since the module in (**) is free over M,(K) and has K-dimension n2 = mn, 
it must be free of rank one over M,K. This shows that Ext,l(S, T) is 
one dimensional over End,(S). A dual argument now establishes the dual 
part of the criterion for A, so A is serial. // 
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