This file contains all the corrections to the second printing that I knew of as of $9 / 7 / 98$. References are of the form $\mathbf{n} ; \mathbf{m}$. where n is a page number in the second printing, m a line number. Descriptive matter (that is, things not actually appearing in the text) is surrounded by double parentheses ((like this)).
-David Eisenbud
on title page, or somewhere else prominent
Insert:
Third corrected printing
22; 15.
Replace:
is an
by:
is a primitive
35; 8.
Delete:
reduced
36; -7.
After
category of
insert:
$\begin{array}{r}\text { reduced } \\ \hline 43 ;-13 .\end{array}$
Replace:
this is
by:
we make the convention that this is
52; 8-15.

Replace:
((the labels a-h))
by:
((the numbers 1-8))
52; -8.
Replace:
a and b
by:
1 and 2
52; -7.
Replace:
g and h
by:
7 and 8

52; -4.
Replace:
c, d and h
by:
3,4 and 8
57; -2.
Replace:
3.5
by:
I.3.6

$$
67 ; 9
$$

After
ideals
insert:
$\frac{P}{83 ; 1-2 .}$
Replace:
x
by:
$f($ (two occurences) $)$
90; -7.
Replace:
union
by:
finite union
111; 12.
Replace:
in press
by:
1995
118; -8.
Replace:
algebra
by:
algebraic
118; -5.
After
).
insert:
Assuming that X and Y are affine, so is Y^{\prime}, and its coordinate ring is the normalization of the image of $A(Y)$ in $A(X)$.

124; 4.
Replace:
Lemma
by:
Theorem

129; -14.
Replace:
Hartshome
by:
Hartshorne
130; fig 4.4.
Replace:
((the upside down U$)$)
by:

139; -10 .
Before
Let
insert:
((as a new part a.))
a. Show that the quotient field of $k[\Gamma]$ is $k[G(\Gamma)]$.

139; - 7.
Replace:
its quotient field
by:
$k\left[x_{1}, \ldots, x_{n}\right]$
139; -6.
Replace:
a.
by:
b.

140; 3.
Replace:
b.
by:
c.

140; 5-10.
Delete:
the whole of part d.
140; 12.
After
\{
insert:
$\frac{(}{149 ;-20 .}$
After
ideal
insert:
such

154; Figure 5.2, first line under the left-hand picture.
Replace:
in $\left(y^{2}\right.$
by:
$\frac{\operatorname{in}\left(y^{2}\right.}{159 ;-8 .}$
Replace:
$a \neq 0$
by:
$0 \neq a$
$187 ;-8$.
Replace:
equation
by:
expression
187 ;-2.
Replace:
5/32
by:
5/128
189; 5.
Replace:
e_{j}
by:

$\sum_{j \neq i} e_{j}$
$189 ; 6$.

After
$=0$
insert:
for each $j \neq i$
189; 6.
Replace:
$m=e_{j}\left(n^{\prime}\right)$
by:
$m=\sum_{j \neq i} e_{j}\left(n_{j}^{\prime}\right)$
189; 7.
Replace:
$n_{j} \in M$
by:
$n_{j}^{\prime} \in M$
189; 7.
Replace:

$$
e_{j}(m)=\ldots=m
$$

by:

$$
\sum_{j \neq i} e_{j}(m)=\sum_{j \neq i} e_{j}\left(\sum_{j \neq i} e_{j}\left(n_{j}^{\prime}\right)\right)=\sum_{j \neq i} e_{j}\left(n_{j}^{\prime}\right)=m
$$

189; 8.

Replace:

$e_{j}(M)$	
by:	
	$\sum_{j \neq i} e_{j}(M)$
	189; -18.

Delete:
$[x](($ three occurences $))$
189; -15.
After
(commutative)
insert:
local
189; -4.
Replace:
\bar{e}_{1}
by:
e_{1}
190; 18.
After
((end of line))
insert:
Also, the hypothesis "local" is unnecessary: see Proposition 7.10.
194; 4.
Replace:
$((\text { the first subscript }))_{j}$
by:
$((\text { the subscript }))_{n}$
195; 4.
Replace:
m
by:
((fraktur)) m
195; 15.
Replace:
$1+x$
by:
$1-x$
195; 17.
Replace:
$1+a$
by:
$1-a$

195; 19.
Replace:
$1-a+a^{2}-\ldots$
by:
$1+a+a^{2} \ldots$
195; 20.
Replace:
$1+a$
by:
$1-a$
195; 21.
Replace:
((the display))
by:
$(1-a)+(1-a) a+(1-a) a^{2} \ldots$
195; 22.
Replace:
$1+a^{i}$
by:
$1-a^{i}$
200; -15.
After
for each i
insert:
and taking convergent sequences to convergent sequences
201; 17.
Replace:
$)^{i+j}$
by:
$)^{i+j-1}$
203; 19.
Replace:
A1.3c
by:
A1.4c
204; 9.
Delete:
$\tilde{K} \subset$
$\mathbf{2 0 4} ; \mathbf{1 4}$.
Replace:
$\tilde{a} \in \ldots=\tilde{K}$
by:
$\tilde{a} \in R$

204; 16.
Replace:
$\tilde{K}=\varphi(K)$
by:
$\tilde{K} \subseteq \varphi(K)$
204; 19-20.
Replace:
((entire lines 19-20))
by:
so φ is a homomorphism and $\varphi(K)$ is a coefficient field containing \tilde{K}. The previous paragraph shows that $\varphi(K)=\tilde{K}$

204; -11.
Before
Since
insert:
We may assume that \bar{u}_{w}^{\prime} and \bar{r}_{w} are nonzero.
204; -10.
Replace:
k^{q}
by:

k
$217 ; 10$.

Replace:
1.15 c
by:
1.15b

227; -4.
Replace:
Equivalently. it
by:
Equivalently, it
230; 18.
Replace:
dimenion
by:
dimension
237; -18.
Delete:
and using Nakayama's lemma,
238; -11 - -10.
Replace:
parameter ideal
by:
ideal of finite colength on
241; Figure 10.4.
The X at the upper right should be Y; the Y at the lower right should be X

242; 4.
Replace:
$R_{P} / P R_{P}$
by:
R / P
242; 6-8.
Replace:
R_{P}
by:
$R(($ three occurences $))$
244; 3.
Replace:
the maximal ideal is generated by x
by:
the maximal ideal is generated by y
244; 4.
Replace:
$k[x]_{(x)}$
by:
$k[y]_{(y)}$
244; 5.
Replace:
$k(x)$
by:
$k(y)$
248; 20.
Replace:
dimensionsion
by:
dimension
253; -12.
Replace:
$a r=b s$
by:
$r^{n} \in(s)$
253; -12 - -11.
Replace:
a zerodivisor. . of s.
by:
nilpotent modulo (s) and is contained in the minimal primes of (s).
253; -11 - -11.
Replace:
this
by:
each

253; -10.
Replace:
associated
by:
minimal
254; -21
Delete:
the end of proof sign at the end of the line
254; -14.
Replace:
Continuing
by:
To complete
254; -14.
Delete:

next
$\mathbf{2 5 5} ; 2$.

Insert:
the end of proof sign at the end of the line
258; 17.
Replace:
R
by:
$R_{P}(($ two occurences $))$
258; 19.
Replace:
Since. . . $=0$
by:
Since $\operatorname{ker}\left(\varphi_{i}\right)_{P} \otimes R_{P} \varphi_{i}$ maps to $\left(\varphi_{i}\right)_{P} \operatorname{ker}\left(\varphi_{i}\right)_{P}=0$
260; 4.
After
$K(R)$
insert:
modulo the units of R
260; 10.
Replace:
so it
by:
. We have $R u=R v$ iff u and v differ by a unit of R, so we may identify the group of principal divisors, under multiplication, with the group $K(R)^{*} / R^{*}$. If I is any invertible divisor and $R u$ is a principal divisor, then $(R u) I=u I$. Thus it

276; -15 - -13.
Replace:
Suppose.... ((whole sentence))
by:
Suppose that $q \subset R$ is an ideal of finite colength on M. ((q should be fraktur $))$

276; -1.
Replace:
$M / x_{1}, M(($ part of the subscript in the middle $))$
by:
$M / x_{1} M(($ that is, delete the comma $))$
277; -14--13.
Replace:
parameter ideal
by:
ideal of finite colength on
277; -11.
Replace:
where. . . with
by:
where the polynomial F has
277; -11.
Replace:
whose degree is
by:
degree
278; 2.
Replace:
((comma at the end of the display))
by:

$(($ period $))$
$\mathbf{2 7 8} \boldsymbol{3}, \mathbf{4}$.

Replace:
((the entire two lines))
by:
The equality shows that F has positive leading term, while the inequality gives the desired degree bound.
282; 12.
Replace:
(n) ((second occurence only!!))
by:
(i)

287; -3.
Replace:
In fact, if
by:
If
288; 2.
Replace:
A
by:
R

289; -3.
Replace:
$x_{1}^{\prime}-a_{1} x_{e}^{\prime}, \ldots, x_{e-1}^{\prime}-a_{e-1} x_{e}^{\prime}(($ beginning of the displayed list $))$
by:
$x_{1}^{\prime \prime}, \ldots, x_{e-1}^{\prime \prime}$
291; -21.
After
a field
insert:
, R is generated by R_{0} over R_{1},
291; -10.
After
is a field
insert:
and $Q_{0}=0$
291; $\mathbf{- 7}$.
Delete:
$Q_{0} \oplus$
296; -3.
Replace:
Let
by:
If f is a unit the assertion is obvious. Otherwise, let
298; 2,3.
Replace:
L
by:
$L^{\prime}(($ two occurences $))$
301; 17.
Replace:
Theorem 13.7
by:
Theorem 13.17
303; 8,9,10.
Replace:
S_{I}
by:
$B_{I}(($ Three occurences $))$
303; -1.
Before
((the period))
insert:
with equality if R is universally catenary

308; 1-3.
Replace:
((the first paragraph))
by:
We will prove Theorem 4.1 as the special case $e=0$ of Corollary 14.9 to the much stronger Theorem 14.8. For a direct proof see Exercise 14.1.

308; after 3, as a new paragraph.
Insert:
In general, a morphism $\varphi: Y \rightarrow X$ of algebraic varieties is called projective if φ can be factored as $Y \rightarrow X \times \mathbf{P}^{n} \rightarrow X$ with the first map a closed embedding and the second map the projection. In these geometric terms, Theorem 14.1 says that a projective morphism is closed in the sense that it takes closed sets onto closed sets.

308; -21.
Replace:
kernal
by:
kernel
310; -3.
Replace:
Andre
by:
André

316; after line 10; just after theorem 14.8.

Insert:
Let us restate Theorem 14.8 (or rather its consequence for reduced affine algebras over an algebraically closed field) in geometric terms: Suppose that $R \rightarrow S$ corresponds to a morphism of varieties $\varphi: Y \rightarrow X$. Set $F_{e}=\left\{x \in X \mid \operatorname{dim} \varphi^{-1}(x) \geq e\right\}$ and let G_{e} be the set of all points of y so that the fiber $\varphi^{-1}(\varphi(y))$ has dimension $\geq e$ locally at y. That is, G_{e} is the union of the large components of the preimages of points of F_{e}. Theorem 14.8 says that G_{e} is defined by the ideal I_{e} and is thus closed. If the morphism φ is projective then F_{e} is defined by J_{e}, and is closed as well. Note that F_{e} is the image of G_{e}, so we could deduce part b of Theorem 14.8 from part a together with Theorem 14.1 -if it weren't that we will only prove Theorem 14.1 by using part b.

319; 2.

Replace:
principal
by:
principle
Replace:
((the boldace type))
by:
((roman type))
331; 13.
After
((end of line))
insert:
((an "end of proof" sign))

332; -18.
Replace:
with basis F
by:
F with basis
341; 4.
Replace:
irreducible
by:
irreductible
342; -19 - -18.
Delete:
refines the order by total degree and
342; -15.
Replace:
Equivalently, as the reader may check, a
by:
A
342; -15.
Replace:
is ((last word))
by:
may be
342; -14.
Delete:
either...same and
374; 14 (first line of Exercise 15.33).
Replace:
$x=$
by:
$X=$
411; 16.
Replace:
an algebra map
by:
a surjective algebra map
417; -13.
Replace:
Let
by:
Suppose that R contains a field of characteristic 0 , and let
417; -8.
After
field
insert:
of characteristic 0

430; 4.
Replace:
M
by:
$M \neq 0$
430; 5.
Replace:
some k
by:
some $k<n$
434; 12.
Replace:
mapping cylinder
by:
mapping cone
434; 19.
Replace:
mapping cylinder
by:
mapping cone
436; 3.
Replace:
x_{r}
by:

x_{n}
$436 ; 3$.

Replace:
\neq
by:
$\neq 0$
436; 4.
Replace:
x_{r}
by:

x_{n}
$436 ; 4$.

Replace:
17.4
by:
17.14
$\mathbf{4 3 7} ; \mathbf{8}$.

Replace:
$m \otimes 1-1 \otimes m$
by:
$m \otimes 1+1 \otimes m$

439; -3.
The two arrows labeled with β should point downwards.
439;-2.
Replace:
$K\left(x^{*}\right)$
by:
$K^{\prime}\left(x^{*}\right)$
$440 ; 5$.
Replace:

$$
H_{n-k}\left(K(x), \delta_{x^{*}}\right)
$$

by:
$\frac{H_{n-k}\left(K^{\prime}\left(x^{*}\right), \delta_{x^{*}}\right)}{443 ;-18}$
Replace:
$S /\left(x_{1}, \ldots, x_{r}\right)$
by:
$S /\left(y_{1}, \ldots, y_{r}\right)$
444; 3.
Replace:
e_{j}
by:
e_{J}
$\mathbf{4 4 6} \boldsymbol{9}$
Replace:
3.16
by:
13.16

448; 8.
The σ should be situated on the final arrow.
459; -3.
Delete:
Let R be a Cohen-Macaulay ring.
462; 13.
Replace:
11.12
by:
11.10

462; -16.
Replace:
S1'
by:
S1
466; -10.
Replace:
7.17
by:
7.7

468; 11.
Replace:
Fulton [1992]
by:
Fulton [1993]
471; 10.
Replace:
a domain iff $r \geq 3$
by:
a normal domain iff $r \geq 3$
471; 10.
Delete:
normal iff $r \geq 4$;
473.

Before
the first line of text ((as on p. 423))
insert:
In this chapter all the rings considered are assumed to be Noetherian
476; 2
Replace:
R-module
by:
module over a regular local ring of dimension n
477; 11.
Replace:
$P F_{n}$
by:
$P F_{n-1}$
477; 11.
Replace:
i
by:
$i \geq 0$
478; -11.
Replace:
Corollary 15.13
by:
Corollary 15.11
478; -10.
Replace:
Corollary 19.6
by:
Corollary 19.7

484; -9 - -8.
Replace:
It turns. . . remark.
by:
We begin with a simple observation:
487; 13.
Delete:
((the end of proof symbol at the end of the line))
487; -6.
Replace:
R_{P}
by:
$\frac{R\left[x^{-1}\right]_{P}}{487 ;-1 .}$
Insert:
((an end of proof symbol at the end of the line))
490; -18.
Replace:
$\operatorname{dim}_{k}\left(M_{d}\right)$
by:
$\operatorname{dim}_{k}\left(M_{d}\right) t^{d}$
492;3.
Before
the homogeneous
insert:
which is
492; - 7 .
Replace:
polynomial
by:
family of polynomials $c_{t}(M)$
492; -4.
Delete:
Chern and
492; -5-1.
Replace:
((the whole last paragraph))
by:
Knowing the Hilbert polynomial of a module M is equivalent to knowing the Chern polynomial $c_{t}(M)=$ $1+c_{1}(M) t+c_{2}(M) t^{2}+\ldots \bmod t^{n+1}$ and the rank of M. We sketch this equivalence: The Hirzebruch-Riemann-Roch formula allows one to deduce the Hilbert polynomial from the Chern classes and the rank as follows: First form the Chern character, which is a power series of the form $\operatorname{rank}(M)+c_{1}(M) t+\frac{1}{2}\left(c_{1}(M)^{2}-\right.$ $\left.2 c_{2}(M)\right) t^{2}+\ldots \bmod t^{n+1}$. The Hilbert polynomial $P_{M}(d)$ is equal, for large d, to the coefficient of t^{n} in the expression

$$
e^{n t}\left(\frac{t}{1-e^{-t}}\right) \operatorname{ch}(M)
$$

See Hartshorne [1977] Appendix A4, or Fulton [1984], especially chapter 15. Conversely, to compute the Chern polynomial from the Hilbert polynomial, consider first the special case $M=S_{j}:=S /\left(x_{1}, \ldots, x_{j}\right)$. From the Koszul complex resolving M and properties i and ii above we see

Now any Hilbert polynomial can be written (uniquely) in the form $P_{M}=\sum_{j \geq 0} a_{j} P_{S_{j}}$. It follows that the Chern polynomial of M is $c_{t}(M)=\prod_{j \geq 0} a_{j} c_{t}\left(S_{j}\right)$. Of course the rank of M is a_{0}, completing the argument.
493.

Before
the first line of text ((as on p. 423))
insert:
In this chapter all the rings considered are assumed to be Noetherian

497; -15.

Delete:
((the end of proof symbol at the end of the line))
497; -4.
Replace:
$I_{j} \varphi=I_{j+p} \varphi$
by:
$I_{j} \varphi=I_{j+p} \psi$
502; -3.
Delete:
((the end of proof symbol at the end of the line))
506; -14.
After
is exact,
insert:
F_{2} is free,
506; -10.
Replace:
$I\left(\varphi_{2}\right)$
by:
$I_{n-1}\left(\varphi_{2}\right)$
$\mathbf{5 1 0} ; \mathbf{- 7}$
Replace:
$\operatorname{Ext}^{j}(M, R)_{n}$
by:
$\operatorname{Ext}^{j}(M, S)_{n}$
521; -12.
Replace:
((the entire line))
by:
$\operatorname{Ext}^{j}(M, S)_{k}=0$ for all $j \leq n-1$ and $k=-m-j-1$.

529; 14.
Replace:
By Proposition 9.2
by:
By hypothesis
529; -19.
Before
whose
insert:

φ
$530 ; 1$.

After
Zariski
insert:
Gorenstein rings were defined-in exactly the way done in this book! - in the artinian and graded cases by Macaulay in his last paper [1934] (his definition in the affine case differs slightly from the modern one).

530; 7.
After
attests.
insert:
There is also a well-developed noncommutative theory (Frobenius and quasi-Frobenius rings.)
530; -11.
Replace:
Proposition 21.2
by:
Corollary 21.3
531; 4.
After
x_{i}
insert:
and x_{i}^{-1}
531; 5.
Replace:
the S-module... T
by:
T with a sub- S-module of $K(S) / L$
531; 10.
After
generated
insert:
nonzero
531; -14.
Replace:
:=
by:
$=$

531; -10.

After
any
insert:
nonzero finitely generated
531; -2.
After
).
insert:
(Proof: One checks by linear algebra that these elements generate the part of the annihilator in degrees ≤ 2, even as a vector space. These elements generate all forms of degree ≥ 3.)

532; 11.
After
$x \in A$
insert:
that is also a nonzerodivisor on ω_{A}
532; -18.
Replace:
21.4 d
by:
21.5 d

533; -8.
After
condition.
insert:
Note that c implies that the annihilator of W is 0 , just as in the special case of Prop. 21.3
533; -3.
Replace:
by:
. $(($ after the Proposition number $))$
539; 14.
Replace:
x
by:
$x \in R$
543; -17.
Replace:
$M / x M$
by:

544; 13.
Replace:
x_{0}, x_{1}
by:
x_{1}, x_{2}

544; 18.
Replace:
Enzykolpädie
by:
Enzyklopädie
547; -6.
Replace:
A^{n}
by:
$\frac{A^{n+1}}{549 ;-7 .}$
After
such that
insert:
x is a nonzerodivisor on W and
550; first line of Exercise 21.1
After
$\left.y^{n}\right)$
insert:

,$n \geq 2$
$550 ;-5$.

Replace:
ω_{R}
by:
$\frac{R}{551 ; 1 .}$
After
and
insert:
with the notation introduced just after Proposition 21.5,

551; first two displays.

Replace:

$$
\sum_{i_{1}, \ldots, i_{r}}
$$

by:

$$
\sum_{i_{1}, \ldots, i_{r} \geq 0}
$$

((two occurences))

$$
554 ;-1 .
$$

Delete:
((this entire line))

556; -7.
Replace:
degree
by:
deg ((two occurences) $)$
559; 6.
Replace:
x_{1}
by:

x_{0}
$\mathbf{5 5 9} ; \mathbf{1 3 .}$

Replace:
$\sum d_{i}-r$
by:
$\sum d_{i}-r-1$
575; 8-12 and 13-19.
((These two paragraphs are both definitions, and should be set in italics, with a skip below the paragraph, just as with the first paragraph on this page.))

581; 13.
Before
module
insert:
of rank n
581; 15.
Replace:
λ^{d}
by:
λ^{n-d}
609; -20.
Replace:
corollary
by:
theorem
609; -7.
Replace:
Corollary
by:
Theorem
623; 10.
Replace:
a variety
by:
an affine variety

630; -17.
Replace:
both E
by:
both E^{\prime}
$630 ;-4$.
Replace:
b.*
by:
b.

631; 1.
Replace:
c.
by:

$$
\frac{c^{*}}{} \frac{645 ;-9 .}{}
$$

Delete:

$0 \rightarrow$
$652 ;-11$.

Replace:
$E^{1}(A, B)$
by:
$E_{R}^{1}(A, B)$
$652 ;-15$.
Replace:
$0: 0 \rightarrow A \rightarrow A \oplus B \rightarrow B \rightarrow 0$
by:
$0: 0 \rightarrow B \rightarrow A \oplus B \rightarrow A \rightarrow 0$
653; 10.
Replace:
A.
by:

B.
$654 ;-9$.

Replace:
A, B
by:
B, A
654; -7.
Replace:
A, B
by:
B, A

654; -6.
Replace:

Replace:
an injective
by:
a projective
654; -5.
Replace:
a projective
by:
an injective
655; 5.
Replace:
A
by:

C
$\mathbf{6 5 5} ; 7$.

Replace:
C
by:
A
$\mathbf{6 5 5} ; \mathbf{1 0}$.
Replace:
C
by:
A
$655 ; 10$.
Replace:
A
by:
C
$661 ;-7$.
Replace:
$F \rightarrow G$
by:
$G \rightarrow F$
669; 3,4.
Replace:
by: $\begin{aligned} & F \\ & \\ & A((\text { three occurences }))\end{aligned}$

669; 5.
Delete:
\bar{F}
$\mathbf{6 6 9} ; 8$.
Replace:
F
by:
A
$669 ; 10$.
Replace:
F
by:
$A(($ two occurences $))$
671; -3.
Replace:
We consider
by:
Let $A=\oplus_{p \in \mathbf{Z}} G^{p}$, and let $\alpha: A \rightarrow A$ be the map defined by the inclusions $G^{p+1} \subset G^{p}$. We consider
671; -2.
Replace:
$H(G)$
by:
$H(A)$
671; -2.
Replace:
$H(G / \alpha G)$
by:
$H(A / \alpha A)$
672; Figure A3.29.
Replace:
G
by:
$A(($ four occurences $))$
672; -9.
Replace:
horizontal
by:
vertical
After
$\left.G^{q}\right)^{p}$
insert:

$$
=\oplus_{i+j=q, j \geq p} F^{i, j}
$$

$674 ; 10$.
After
then in
insert:
$\left(G^{q+1}\right)^{p+r}$
674; 11.
((delete the display, and close up))
688; 11.
Replace:
$G \circ P \rightarrow L F \circ P \rightarrow F$
by:
$G \circ P \rightarrow L F \circ P \rightarrow P \circ K F$
694; -10.
Replace:
R-module
by:
S-module
694; -9.
Replace:
R
by:
S
694; -8. Replace two occurences of R by S. That is,
Replace:
$\operatorname{Hom}_{R}(---, E(R / P))$
by:
$\operatorname{Hom}_{S}(---, E(S / P))$
697; 5.
Replace:
collections
by:
collection
728; -9.
Delete:
(by Lemma 3.3)
728; -9.
Replace:
$\in R_{i}$
by:
$\in R$
743; 16.
Replace:
b.
by:
c.

746; 13-17.
Replace:
((the complete text of the hint for Exercise 20.20 by))
by:
It follows from local duality that if $S=k\left[x_{0}, \ldots, x_{n}\right]$ is the homogeneous coordinate ring of \mathbf{P}^{n}, then

$$
H^{j}\left(\mathbf{P}^{n} ; \mathcal{F}(m-j)\right)^{\vee} \cong \operatorname{Ext}^{n-j}(M, S)_{-n-1-(m-j)}
$$

for all j. This gives a. If M has depth ≥ 2 we have $\operatorname{Ext}^{n-j}(M, S)=0$ for $j \leq 0$ and statement b becomes a direct translation of Proposition 20.16 and Theorem 20.17.

746; -1.
((The dots in the right part of the diagram should run from SE to NW and should connect the two pieces of this part of the diagram, in analogy with what happens in the left part of the diagram.))

747; 15.
Replace:
Theorem 18.4
by:
Proposition 18.4
747; 18.
Replace:
((The displayed sequence))
by:

$$
0 \rightarrow \operatorname{Ext}_{R}^{d}\left(M^{\prime \prime}, R\right) \rightarrow \operatorname{Ext}_{R}^{d}(M, R) \rightarrow \operatorname{Ext}_{R}^{d}\left(M^{\prime}, R\right) \rightarrow 0
$$

751; -19.
Replace:
b.
by:

c.
$751 ;-14-\mathbf{- 1 1}$.

Replace:
For this value... Q is injective ((three sentences))
by:
The map α thus factors through the projection $I \rightarrow I / P^{d} I$, so by Artin-Rees it factors through the projection $I \rightarrow I /\left(P^{e} \cap I\right) \subset R / P^{e}$ for large e. Since $Q^{(e)}$ is injective over R / P^{e}, we can extend this to a $\operatorname{map} R / P^{e} \rightarrow Q^{(e)}$, and thus to a map $R \rightarrow Q$, proving that Q is injective.

758; 5.
Replace:
Théoremes
by:
Théorèmes
758; -19 - -18.
Replace:
((italics))
by:
((roman))

758; -18.
Replace:
Preprint.
by:
Inst. Hautes Études Sci. Publ. Math. 86 (1997) 67-114.
759; 9-13.
Replace:
entire reference
by:
Bayer, D., and M. Stillman (1982-1990) Macaulay: A system for computation in algebraic geometry and commutative algebra. Source and object code available for many computer platforms. See http://www.math.uiuc.edu/Macaulay2/ for a pointer to this and to the successor program Macaulay2 by D. Grayson and M. Stillman.

759; 22.
Replace:
Algébre
by:
Algèbre
759; 28.
Replace:
Algèbre
by:
Algèbre
759; -15.
Insert:
93 (1994) 211-229. ((at end of line))
760; 6.
Insert:
((as new reference)) Buchsbaum, D. A. (1969). Lectures on regular local rings. In Category theory, homology theory and their applications, I. Battelle Inst. Conf., Seattle, Washington., 1968, Vol. 1, 13-22. Springer Lect. Notes in Math. 86

760; -8.
Replace:
1944
by:
1943
761; -9.
Replace:
Schopf
by:
Schöpf
762; 6.
Replace:
in the
by:
is the

762; -13 - -12.
Replace:
(in press).
by:
Duke Math. J. 84 (1995) 1-45.
763; -18 - -14.
Replace:
the whole Gelfand-Manin reference
by:
Gelfand, S. and Y. I. Manin (1989-1996). Methods of homological algebra. Springer-Verlag, Berlin, 1996. English translation of the 1989 Russian original.

764; 24.
Replace:
Les foncteurs . . . continu ((the whole title))
by:
Catégories dérivées et foncteurs dérivés
764; -14.
Replace:
point
by:
points
766; 1.
Replace:
Der Frage
by:
Die Frage
766; 15.
Replace:
((boldface type))
by:
((roman))
767; -15.
Replace:
Time
by:
Times
767; -12.
Replace:
van
by:

von
$\mathbf{7 6 8} ; 11$.

Replace:
Birkhauser
by:
Birkhäuser

769 Insert as a new referece.

Insert:
Macaulay, F.S. Modern algebra and polynomial ideals, Proc. Cam. Phil. Soc. 30, pp. 27-64.
770; -14.
Replace:
van
by:
$\frac{\text { von }}{770 ;-12}$
Replace:
in press
by:
1996
771; 7.
Replace:
Rabinowitch
by:
Rabinowitsch
772;-12.
Replace:
Bemerking
by:
Bemerkung
772; -12.
Replace:
van
by:
von
$773 ;-18$.
Replace:
Uber
by:
Über
773; -16.
Replace:
Bezout
by:
Bézout
773; -2.
Replace:

\quad Its
by:
its

774; 4.
Replace:
1994
by:
1995
774; 5.
Replace:
(preprint)
by:
J. Algebraic Combin. 4 (1995) 253-269.

775; -16--15, second column.
Insert:
$\kappa(P)$, residue field, 60
776; -0, second column.
Insert:
$E(M)$, injective envelope, 628
785; 20, second column.
Replace:
18
by:
17
789; 10, second column.
Replace:
Kozul
by:
Koszul
790; 8 of second column.
After
M-sequence,
insert:
243,248,423ff,
793;-17 of first column.
Replace:
167
by:
308,316

