Corrections to the second printing of Commutative Algebra with a View Toward Algebraic Geometry

This file contains all the corrections to the second printing that I knew of as of 9/7/98. References are of the form **n;m.** where n is a page number in the second printing, m a line number. Descriptive matter (that is, things not actually appearing in the text) is surrounded by double parentheses ((like this)).

—David Eisenbud

on title page, or somewhere else prominent
Insert:
Third corrected printing
22; 15.
Replace:
is an
by:
is a primitive
35; 8.
Delete:
reduced
36; -7. After
category of
insert:
reduced
43; -13.
Replace:
this is
by:
we make the convention that this is
52; 8-15.
Replace:
((the labels a-h))
by:
((the numbers 1-8))
52; -8.
Replace:
a and b
by:
1 and 2
52; -7.
Replace:
g and h
by:
7 and 8

52; -4.
Replace:
c,d and h
by:
3,4 and 8
57; -2.
Replace:
3.5
by:
I.3.6
67; 9.
After
ideals
insert:
Р
83; 1–2.
Replace:
x
by:
f ((two occurences))
90; -7.
Replace:
union
by:
finite union
111; 12.
Replace:
in press
by:
1995
118; -8.
Replace:
algebra
by:
algebraic
118; -5.
After
).
insert:
Assuming that X and Y are affine, so is Y', and its coordinate ring is the normalization of the image of $A(Y)$ in $A(X)$.
$\frac{\frac{01A(7) m A(X)}{124; 4.}}{124; 4.}$
Replace:
Lemma
by:

Theorem

129; -14.
129; -14. Replace:
Hartshome
by:
Hartshorne
130; fig 4.4.
Replace:
((the upside down U))
by:
Before
Let
insert:
((as a new part a.))
a. Show that the quotient field of $k[\Gamma]$ is $k[G(\Gamma)]$.
139; -7.
Replace:
its quotient field
by:
$\frac{k[x_1, \dots, x_n]}{139; -6.}$
Replace:
a.
by:
b. 140; 3.
Replace:
b.
by:
с.
140; 5–10.
Delete:
the whole of part d.
140; 12.
After
{
insert:
(
149; -20.
After
ideal
insert:
such

Replace:
in (y^2)
by:
$\operatorname{in}(y^2$
159; -8.
Replace:
$a \neq 0$
by:
0 eq a
$\frac{0 \neq a}{187; -8.}$
Replace:
equation
by:
expression
187 ;-2.
Replace:
5/32
by:
5/128
189; 5.
Replace:
e_j
by:
$\frac{\sum_{j\neq i} e_j}{\mathbf{189; 6.}}$
189; 6.
After
= 0
insert:
for each $j \neq i$
189; 6.
Replace:
$m = e_j(n')$
by:
$m = \sum_{j eq i} e_j(n'_j)$
189; 7.
Replace:
$n_j \in M$
by:
$n'_j \in M$
189; 7.
Replace:
$e_j(m) = \ldots = m$
by:
$\sum_{j \neq i} e_j(m) = \sum_{j \neq i} e_j(\sum_{j \neq i} e_j(n'_j)) = \sum_{j \neq i} e_j(n'_j) = m$

154; Figure 5.2, first line under the left-hand picture. Replace:

189; 8. Replace: $e_j(M)$ by: $\sum_{j \neq i} e_j(M)$ 189; -18. Delete: $[x]$ ((three occurences)) 189; -15. After (commutative) insert: local 189; -4. Replace: \bar{e}_1 190; 18. After ((end of line))) insert: Also, the hypothesis "local" is unnecessary: see Proposition 7.10. 194; 4. Replace:
$\begin{array}{c} e_{j}(M) \\ \text{by:} \\ \hline & \sum_{j \neq i} e_{j}(M) \\ \hline \mathbf{189; -18.} \\ \hline \text{Delete:} \\ [x] ((three occurences)) \\ \hline \mathbf{189; -15.} \\ \text{After} \\ (commutative) \\ \text{insert:} \\ \hline \\ local \\ \hline \mathbf{189; -4.} \\ \text{Replace:} \\ \hline \\ \hline \\ e_{1} \\ \hline \\ \mathbf{190; 18.} \\ \text{After} \\ ((end of line)) \\ \text{insert:} \\ \hline \\ \text{Also, the hypothesis "local" is unnecessary: see Proposition 7.10.} \\ \hline \\ \hline \mathbf{194; 4.} \end{array}$
by: $\frac{\sum_{j \neq i} e_j(M)}{189; -18.}$ Delete: [x] ((three occurences)) 189; -15. After (commutative) insert: local 189; -4. Replace: \bar{e}_1 by: e_1 190; 18. After ((end of line)) insert: Also, the hypothesis "local" is unnecessary: see Proposition 7.10. 194; 4.
$\begin{array}{r llllllllllllllllllllllllllllllllllll$
$\begin{array}{r llllllllllllllllllllllllllllllllllll$
Delete: $\begin{bmatrix} x \end{bmatrix} ((three occurences)) \\ \hline 189; -15. \\ After \\ (commutative) \\ insert: \\ \hline local \\ \hline 189; -4. \\ Replace: \\ \hline e_1 \\ \hline 190; 18. \\ After \\ ((end of line)) \\ insert: \\ \hline Also, the hypothesis "local" is unnecessary: see Proposition 7.10. \\ \hline 194; 4. \\ \hline \end{tabular}$
189; -15. After (commutative) insert: local 189; -4. Replace: \bar{e}_1 by: e_1 190; 18. After ((end of line))) insert: Also, the hypothesis "local" is unnecessary: see Proposition 7.10. 194; 4.
After (commutative) insert: local 189; -4. Replace: \bar{e}_1 by: e_1 190; 18. After ((end of line)) insert: Also, the hypothesis "local" is unnecessary: see Proposition 7.10. 194; 4.
(commutative) insert: local $189; -4.$ Replace: \bar{e}_1 by: $\frac{e_1}{190; 18.}$ After ((end of line))) insert: Also, the hypothesis "local" is unnecessary: see Proposition 7.10. 194; 4.
insert: local 189; -4. Replace: \bar{e}_1 by: e_1 190; 18. After ((end of line))) insert: Also, the hypothesis "local" is unnecessary: see Proposition 7.10. 194; 4.
$\begin{array}{r} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ 189; -4. \end{array} \\ \end{array}{Replace:} \\ \hline e_1 \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \hline e_1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ 190; 18. \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ After \\ ((end of line)) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} \\ \end{array} \\
189; -4. Replace: \bar{e}_1 by: e_1 190; 18. After ((end of line))) insert: Also, the hypothesis "local" is unnecessary: see Proposition 7.10. 194; 4.
Replace: \bar{e}_1 by: e_1 190; 18. After ((end of line))) insert: Also, the hypothesis "local" is unnecessary: see Proposition 7.10. 194; 4.
$ \begin{array}{c} \bar{e}_1 \\ \\ \underline{e}_1 \\ \hline \mathbf{190; 18.} \\ \\ \text{After} \\ ((\text{end of line})) \\ \\ \\ \text{insert:} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
by: $ \frac{e_1}{190; 18.} $ After ((end of line)) insert: Also, the hypothesis "local" is unnecessary: see Proposition 7.10. 194; 4.
$\begin{array}{c} e_1 \\ \hline \mathbf{190; 18.} \\ \text{After} \\ ((\text{end of line})) \\ \text{insert:} \\ \hline \text{Also, the hypothesis "local" is unnecessary: see Proposition 7.10.} \\ \hline \mathbf{194; 4.} \end{array}$
190; 18. After ((end of line)) insert: Also, the hypothesis "local" is unnecessary: see Proposition 7.10. 194; 4.
After ((end of line)) insert: Also, the hypothesis "local" is unnecessary: see Proposition 7.10. 194; 4.
((end of line)) insert: Also, the hypothesis "local" is unnecessary: see Proposition 7.10. 194; 4.
insert: Also, the hypothesis "local" is unnecessary: see Proposition 7.10. 194; 4.
Also, the hypothesis "local" is unnecessary: see Proposition 7.10. 194; 4.
194; 4.
$((\text{the first subscript}))_j$
by:
$((\text{the subscript}))_n$
195; 4.
Replace:
m
by:
((fraktur)) m
195; 15.
Replace:
1+x
by:
1-x
195; 17.
Replace:
1 + a
by:
1-a

195; 19.
Replace:
$1-a+a^2-\ldots$
by:
$1 + a + a^2 \dots$
195; 20.
Replace:
1+a
by:
1-a
195; 21.
Replace:
((the display))
by:
$(1-a) + (1-a)a + (1-a)a^2 \dots$
195; 22.
Replace:
$1 + a^i$
by:
$\frac{1-a^i}{2}$
200; -15. After
for each i
insert:
and taking convergent sequences to convergent sequences
201; 17.
Replace:
$)^{i+j}$
by:
$)^{i+j-1}$
203; 19.
Replace:
A1.3c
by:
A1.4c
204; 9.
Delete:
$ ilde{K} \subset$
204; 14.
Replace:
$ ilde{a} \in \ldots = ilde{K}$
by: $\tilde{c} \in B$
$\tilde{a} \in R$

204; 16.
Replace:
$ ilde{K} = \varphi(K)$
by:
$\tilde{K} \subseteq \varphi(K)$
204; 19–20.
Replace:
((entire lines 19-20))
by:
so φ is a homomorphism and $\varphi(K)$ is a coefficient field containing \tilde{K} . The previous paragraph shows that $\varphi(K) = \tilde{K}$
204; -11.
Before
Since
insert:
We may assume that \bar{u}'_w and \bar{r}_w are nonzero.
204; -10.
Replace:
$k^{m{q}}$
by:
\underline{k}
217; 10.
Replace:
1.15c
by:
1.15b
227; -4.
Replace:
Equivalently. it
by:
Equivalently, it
230; 18.
Replace:
dimenion
by:
dimension
237; -18.
Delete:
and using Nakayama's lemma,
238; -1110.
Replace:
parameter ideal
by:
ideal of finite colength on
241; Figure 10.4.
The X at the upper right should be Y; the Y at the lower right should be X

The X at the upper right should be Y; the Y at the lower right should be X

242; 4.
Replace:
R_P/PR_P
by:
R/P
242; 6-8.
Replace:
R_P
by:
$R \; ((\text{three occurences}))$
244; 3.
Replace:
the maximal ideal is generated by x
by:
the maximal ideal is generated by y
244; 4.
Replace:
$k[x]_{(x)}$
by:
$k[y]_{(y)}$
244; 5.
Replace:
k(x)
by:
k(y)
248; 20.
Replace:
dimensionsion
by:
dimension
253; -12.
Replace:
ar = bs
by:
$r^n \in (s)$
253; -1211.
Replace:
a zerodivisor of s .
by:
nilpotent modulo (s) and is contained in the minimal primes of (s) .
253; -1111.
Replace:
this
by:
each

253; -10.
Replace:
associated
by:
minimal
254; -21
Delete:
the end of proof sign at the end of the line
254; -14.
Replace:
Continuing
by:
To complete
254; -14.
Delete:
next
255; 2.
Insert:
the end of proof sign at the end of the line
258; 17.
Replace:
R
by:
R_P ((two occurences))
258; 19.
Replace:
Since= 0
by:
Since $\ker(\varphi_i)_P \otimes R_P \varphi_i$ maps to $(\varphi_i)_P \ker(\varphi_i)_P = 0$
260; 4.
After
K(R)
insert:
modulo the units of R
260; 10.
Replace:
so it
by:
. We have $Ru = Rv$ iff u and v differ by a unit of R, so we may identify the group of principal divisors,
under multiplication, with the group $K(R)^*/R^*$. If I is any invertible divisor and Ru is a principal divisor,
then $(Ru)I = uI$. Thus it
276; -1513. Boplace:
Replace:
Suppose ((whole sentence))

by:

Suppose that $q \subset R$ is an ideal of finite colength on M. ((q should be fraktur))

2	76; -1.
Repla	
Λ	$M/x_1, M$ ((part of the subscript in the middle))
by:	
	M/x_1M ((that is, delete the comma))
2	777; -1413.
Repla	ce:
р	arameter ideal
by:	
ic	leal of finite colength on
2	77; -11.
Repla	ce:
W	vherewith
by:	
W	where the polynomial F has
2	77; -11.
Repla	ce:
W	vhose degree is
by:	
d	egree
2	78; 2.
Repla	ce:
()	(comma at the end of the display))
by:	
()	(period))
2	78; 3,4.
Repla	ce:
()	(the entire two lines))
by:	
Т	The equality shows that F has positive leading term, while the inequality gives the desired degree bound
2	82; 12.
Repla	
(1	n) ((second occurence only!!))
by:	
(1	i)
	87; -3.
Repla	
	n fact, if
by:	
If	
	88; 2.
Repla	
	1
by:	

R

289; -3. Replace: $x_1' - a_1 x_e', \dots, x_{e-1}' - a_{e-1} x_e'$ ((beginning of the displayed list)) by: x_1'', \dots, x_{e-1}'' **291; -21.** After a field insert: , R is generated by R_0 over R_1 , 291; -10. After is a field insert: and $Q_0 = 0$ 291; -7. Delete: $Q_0 \oplus$ 296; -3. Replace: Let by: If f is a unit the assertion is obvious. Otherwise, let 298; 2,3. Replace: Lby: L' ((two occurrences)) 301; 17. Replace: Theorem 13.7 by: Theorem 13.17 303; 8,9,10. Replace: S_I by: B_I ((Three occurences)) 303; -1. Before ((the period)) insert: with equality if R is universally catenary

308; 1–3.

Replace:

((the first paragraph))

by:

We will prove Theorem 4.1 as the special case e = 0 of Corollary 14.9 to the much stronger Theorem 14.8. For a direct proof see Exercise 14.1.

308; after 3, as a new paragraph.

Insert:

In general, a morphism $\varphi : Y \to X$ of algebraic varieties is called *projective* if φ can be factored as $Y \to X \times \mathbf{P}^n \to X$ with the first map a closed embedding and the second map the projection. In these geometric terms, Theorem 14.1 says that a projective morphism is *closed* in the sense that it takes closed sets onto closed sets.

308; -2	1.
Replace:	
kernal	
by:	
kernel	
310; -3	
Replace:	
Andre	
by:	
André	
316; at	ter line 10; just after theorem 14.8.
Insert:	

Let us restate Theorem 14.8 (or rather its consequence for reduced affine algebras over an algebraically closed field) in geometric terms: Suppose that $R \to S$ corresponds to a morphism of varieties $\varphi : Y \to X$. Set $F_e = \{x \in X \mid \dim \varphi^{-1}(x) \ge e\}$ and let G_e be the set of all points of y so that the fiber $\varphi^{-1}(\varphi(y))$ has dimension $\ge e$ locally at y. That is, G_e is the union of the large components of the preimages of points of F_e . Theorem 14.8 says that G_e is defined by the ideal I_e and is thus closed. If the morphism φ is projective then F_e is defined by J_e , and is closed as well. Note that F_e is the image of G_e , so we could deduce part b of Theorem 14.8 from part a together with Theorem 14.1—if it weren't that we will only prove Theorem 14.1 by using part b.

*	
319	; 2.
Replace:	
prin	cipal
by:	
prin	ciple
330	; -17.
Replace:	
((th	e boldace type))
by:	
((rot)	man type))
331	; 13.
After	
((en	nd of line))
insert:	
((an	n "end of proof" sign))

332; -18.

Replace:

with basis F

by:
F with basis
341; 4.
Replace:
irreducible
by:
irreductible
342; -19 – -18. Delete:
refines the order by total degree and
342; -15.
Replace:
Equivalently, as the reader may check, a
by:
Δ
A 342; -15.
Replace:
is ((last word))
by:
may be
342; -14.
Delete:
eithersame and
374; 14 (first line of Exercise 15.33).
Replace:
x =
by:
$\frac{X}{111}$
411; 16. Replace:
an algebra map
by:
a surjective algebra map
417; -13.
Replace:
Let
by:
Suppose that R contains a field of characteristic 0, and let
417; -8.
After
field
insert:
of characteristic 0

430; 4.
Replace:
M
by:
$M \neq 0$
430; 5.
Replace:
some k
by:
some $k < n$
434; 12.
Replace:
mapping cylinder
by:
mapping cone
434; 19.
Replace:
mapping cylinder
by:
mapping cone
436; 3.
Replace:
x_r
by:
x_n
436; 3.
Replace:
\neq
by:
$\neq 0$
436; 4.
Replace:
x_r
by:
x_n
436; 4.
Replace:
17.4
by:
17.14
437; 8. Replace:
$m \otimes 1 - 1 \otimes m$
by:
by: $m \otimes 1 + 1 \otimes m$
$H \cup 1 + 1 \otimes H 1$

439; -3.
The two arrows labeled with β should point downwards.
439; -2.
Replace:
$K(x^*)$
by:
$\frac{K'(x^*)}{440; 5.}$
Replace:
$H_{n-k}(K(x),\delta_{x^*})$
by:
$\frac{H_{n-k}(K'(x^*), \delta_{x^*})}{443; -18.}$
Replace:
$S/(x_1,\ldots,x_r)$
by:
$\frac{S/(y_1,\ldots,y_r)}{444; 3.}$
444; 3. Replace:
e_j
by:
$\frac{e_J}{446; 9.}$
Replace:
3.16
by:
13.16
448; 8.
The σ should be situated on the final arrow.
459; -3.
Delete:
$\frac{\text{Let } R \text{ be a Cohen-Macaulay ring.}}{462 \cdot 12}$
462; 13. Replace:
11.12
by:
11.10
462; -16.
Replace:
S1'
by:
S1
466; -10.
Replace:
7.17
by:
7.7

408; 11. Replace: Fulton [1903] 471; 10. Replace: a normal domain iff $r \ge 3$ 90; a normal domain iff $r \ge 3$ 471; 10. Delete: normal iff $r \ge 4$; 473. Before the first line of text ((as on p. 423))) insert: In this chapter all the rings considered are assumed to be Noetherian 476; 2 Replace: <i>R</i> -module by: module over a regular local ring of dimension n 477; 11. Replace: PF_n y: imodule over a regular local ring of dimension n 477; 11. Replace: $i \ge 0$ 477; 11. Replace: $i \ge 0$ 476; -1 Replace: $i \ge 0$ 477; 11. Replace: $i \ge 0$ 476; -10. Replace: Corollary 15.11 476; -10. Repl	
Futon [1992] by: Futon [1993] 471; 10. Replace: a normal domain iff $r \ge 3$ by: a normal iff $r \ge 4$: 471; 10. Delete: normal iff $r \ge 4$: 473. Before the first line of text ((as on p. 423)) insert: In this chapter all the rings considered are assumed to be Noetherian 476; 2 Replace: <i>R</i> -module by: module over a regular local ring of dimension n 477; 11. Replace: PF_n by: Pf_{n-1} $475; 11.$ Replace: i by: $i \ge 0$ $478; -11.$ Replace: $Corollary 15.13$ by: Corollary 15.11 $478; -10.$ Replace: $Corollary 19.6$ by:	468; 11. Boplace:
by: Fulton [1993] 471; 10. Replace: a domain iff $r \ge 3$ by: a normal domain iff $r \ge 3$ 471; 10. Delete: normal iff $r \ge 4$; 473. Before the first line of text ((as on p. 423)) insert: In this chapter all the rings considered are assumed to be Noetherian 476; 2 Replace: Replace: Remodule by: module over a regular local ring of dimension n 477; 11. Replace: PF_n by: PF_{n-1} 477; 11. Replace: i by: $i \ge 0$ 477; 11. Replace: i by: $i \ge 0$ 477; 11. Replace: i by: $i \ge 0$ 478; -11. Replace: Corollary 15.13 by: Corollary 19.6 by:	
$\begin{tabular}{ c c c c c } \hline Fulton [1993] & & & \\ \hline $471; 10. & \\ \hline $replace: $$ a domain iff $r $\geq 3 & \\ \hline $471; 10. & \\ \hline $10. & \hline $	
$\begin{array}{c} 471; 10.\\ \text{Replace:}\\ a \ \text{domain iff } r \geq 3\\ \text{by:}\\ \hline a \ \text{normal domain iff } r \geq 3\\ \hline 471; 10.\\ \text{Delete:}\\ \hline \text{normal iff } r \geq 4;\\ \hline \hline 473.\\ \text{Before}\\ \hline \text{the first line of text ((as on p. 423)))}\\ \hline \text{insert:}\\ \hline In \ this \ chapter \ all \ the \ rings \ considered \ are \ assumed \ to \ be \ Noetherian\\ \hline \hline 476; 2\\ \text{Replace:}\\ R-\text{module}\\ \hline by:\\ \hline \text{module over a regular local ring of dimension } n\\ \hline \hline 477; 11.\\ \text{Replace:}\\ PF_n\\ \hline by:\\ \hline PF_{n-1}\\ \hline 477; 11.\\ \text{Replace:}\\ i\\ \hline by:\\ \hline i \geq 0\\ \hline \hline 478; -11.\\ \text{Replace:}\\ \hline Corollary \ 15.13\\ \hline by:\\ \hline Corollary \ 15.11\\ \hline 478; -10.\\ \text{Replace:}\\ \hline Corollary \ 19.6\\ \hline by: \end{array}$	
$\label{eq:results} \begin{array}{l} \mbox{ a domain iff } r \geq 3 \\ \mbox{ by: } \\ \mbox{ a normal domain iff } r \geq 3 \\ \hline \mbox{ 471; 10. } \\ \mbox{ Delete: } \\ \mbox{ normal iff } r \geq 4; \\ \hline \mbox{ 473, } \\ \mbox{ 473, } \\ \mbox{ Before } \\ \mbox{ the first line of text ((as on p. 423)) } \\ \mbox{ insert: } \\ \mbox{ In this chapter all the rings considered are assumed to be Noetherian } \\ \hline \mbox{ 476; 2 } \\ \mbox{ Replace: } \\ \mbox{ R-module } \\ \mbox{ by: } \\ \mbox{ module over a regular local ring of dimension } n \\ \hline \mbox{ 477; 11. } \\ \mbox{ Replace: } \\ \mbox{ PF}_n \\ \mbox{ by: } \\ \mbox{ PF_{n-1} \\ \hline \mbox{ 477; 11. } \\ \mbox{ Replace: } \\ \mbox{ i } \\ \mbox{ by: } \\ \mbox{ PF_{n-1} \\ \hline \mbox{ 477; 11. } \\ \mbox{ Replace: } \\ \mbox{ i } \\ \mbox{ by: } \\ \mbox{ $i \geq 0$ \\ \hline \mbox{ 478; -11. } \\ \mbox{ Replace: } \\ \mbox{ Corollary 15.13 } \\ \mbox{ by: } \\ \mbox{ Corollary 15.11 \\ \hline \mbox{ 478; -10. } \\ \mbox{ Replace: } \\ \mbox{ Corollary 19.6 } \\ \mbox{ by: } \end{array}$	
a domain iff $r \ge 3$ by: a normal domain iff $r \ge 3$ 471 ; 10 . Delete: normal iff $r \ge 4$; 473 . Before the first line of text ((as on p. 423)) insert: In this chapter all the rings considered are assumed to be Noetherian 476 ; 2 Replace: <i>R</i> -module by: module over a regular local ring of dimension <i>n</i> 477 ; 11 . Replace: <i>pPf</i> _n by: <i>PF</i> _n ty: <i>i</i> ≥ 0 477 ; 11 . Replace: <i>i</i> by: <i>i</i> ≥ 0 477 ; 11 . Replace: <i>i</i> by: <i>i</i> ≥ 0 477 ; 11 . Replace: <i>i</i> by: <i>Corollary</i> 15.13 by: <i>Corollary</i> 15.11 478 ; -10 . Replace: <i>Corollary</i> 15.11 478 ; -10 . Replace: <i>Corollary</i> 15.11 478 ; -10 . Replace: <i>Corollary</i> 15.11 478 ; -10 . Replace: <i>Corollary</i> 15.11	
by: a normal domain iff $r \ge 3$ 471; 10. Delete: normal iff $r \ge 4$; 473. Before the first line of text ((as on p. 423)) insert: In this chapter all the rings considered are assumed to be Noetherian 476; 2 Replace: Remodule by: module over a regular local ring of dimension n 477; 11. Replace: PF_n by: PF_{n-1} 477; 11. Replace: <i>i</i> by: <i>i</i> ≥ 0 478; -11. Replace: Corollary 15.13 by: Corollary 15.11 478; -10. Replace: Corollary 19.6	
$\begin{tabular}{ c c c c c } \hline a normal iff $r \ge 3$ \\\hline \hline 471; 10. \\\hline \hline Delete: & & \\ normal iff $r \ge 4$; \\\hline \hline 473. \\\hline Before & \\ the first line of text ((as on p. 423))) \\\hline insert: & & \\ In this chapter all the rings considered are assumed to be Noetherian \\\hline \hline 476; 2 \\\hline Replace: & \\ R-module \\\hline by: & \\ \hline module over a regular local ring of dimension n \\\hline \hline 477; 11. \\\hline Replace: & \\ PF_n \\\hline by: & \\ \hline PF_{n-1} \\\hline \hline 477; 11. \\\hline Replace: & \\ i \\\hline by: & \\ \hline $477; 11. \\\hline Replace: & \\ i \\\hline by: & \\ \hline $477; 11. \\\hline Replace: & \\ i \\\hline by: & \\ \hline $478; -11. \\\hline Replace: & \\ $Corollary 15.13$ \\\hline by: & \\ \hline $Corollary 15.13$ \\\hline by: & \\ \hline $Corollary 15.16$ \\\hline $478; -10. \\\hline Replace: & \\ $Corollary 19.6$ \\\hline by: & \\ \hline \end{tabular}$	a domain iff $r \ge 3$
$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	by:
$\belete: $$ normal iff $r \ge 4$; $$ 473. $$ Before $$ the first line of text ((as on p. 423))$ insert: $$ In this chapter all the rings considered are assumed to be Noetherian $$ 476; 2$ $$ Area on the rings considered are assumed to be Noetherian $$ 476; 3$ $$ area on the rings considered are assumed to be Noetherian $$ 476; 3$ $$ area on the rings considered are assumed to be Noetherian $$ 476; 3$ $$ area on the rings considered are assumed to be Noetherian $$ $$ 476; 3$ $$ area on the rings considered are assumed to be Noetherian $$ $$ $$ $$ area on the rings considered are assumed to be Noetherian $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ area on the rings considered are assumed to be Noetherian $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	a normal domain iff $r \ge 3$
$\begin{array}{c} \mbox{normal iff } r \geq 4; \\ \hline \mbox{473.} \\ \hline \mbox{Before} & \\ \mbox{the first line of text ((as on p. 423))} & \\ \mbox{insert:} & \\ \hline \mbox{In this chapter all the rings considered are assumed to be Noetherian} & \\ \hline \mbox{Iff } 476; 2 & \\ \hline \mbox{Replace:} & \\ \hline \mbox{R-module} & \\ \mbox{by:} & \\ \hline \mbox{module over a regular local ring of dimension } n & \\ \hline \mbox{Iff } 477; 11. & \\ \hline \mbox{Replace:} & \\ \hline \mbox{P}F_n & \\ \hline \mbox{by:} & \\ \hline \mbox{P}F_n & \\ \hline \mbox{by:} & \\ \hline \mbox{Iff } 477; 11. & \\ \hline \mbox{Replace:} & i & \\ \hline \mbox{by:} & \\ \hline \mbox{Iff } i & \\ \hline \mbox{local ring of dimension } n & \\ \hline \mbox{Iff } i & \\ \hline \mbox{local ring of dimension } n & \\ \hline \mbox{Iff } i & \\ \hline \mbox{local ring of dimension } n & \\ \hline \mbox{Iff } 477; 11. & \\ \hline \mbox{Replace:} & i & \\ \hline \mbox{local ring of dimension } n & \\ \hline \mbox{Iff } i & \\ \hline \mbox{Iff } i & \\ \hline \mbox{local ring of dimension } n & \\ \hline \mbox{Iff } i & \\ \hline \mbox{local ring of dimension } n & \\ \hline \mbox{Iff } 11. & \\ \hline \mbox{Replace:} & \\ \hline \mbox{Corollary 15.13} & \\ \hline \mbox{by:} & \\ \hline \mbox{Corollary 15.11} & \\ \hline \mbox{Iff } 478; -10. & \\ \hline \mbox{Replace:} & \\ \hline \mbox{Corollary 19.6} & \\ \hline \mbox{by:} & \\ \hline \mbox{Iff } 10. & \\ \hline \mbox{Replace:} & \\ \hline \mbox{Corollary 19.6} & \\ \hline \mbox{by:} & \\ \hline \mbox{Iff } 10. & \\ \hline \mbox{Replace:} & \\ \hline \mbox{Corollary 19.6} & \\ \hline \mbox{by:} & \\ \hline \mbox{Iff } 10. & \\ \hline \mbox{Replace:} & \\ \hline \mbox{Corollary 19.6} & \\ \hline \mbox{Iff } 10. & \\ \hline \mbox{Replace:} & \\ \hline \mbox{Corollary 19.6} & \\ \hline \mbox{Iff } 10. & \\ \hline If$	
$\begin{tabular}{ c c c c c }\hline & 473.\\ \hline Before & \\ the first line of text ((as on p. 423)) & \\ insert: & \\ \hline & In this chapter all the rings considered are assumed to be Noetherian & \\ \hline & 476; 2 & \\ \hline & R-module & \\ \hline & by: & \\ \hline & & \\ \hline & & \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline & & &$	
$\begin{array}{l} \text{Before} \\ \text{the first line of text ((as on p. 423))} \\ \text{insert:} \\ \hline I this chapter all the rings considered are assumed to be Noetherian \\\hline $476; 2$ \\ \text{Replace:} \\ R-module \\ \text{by:} \\ \hline M-module over a regular local ring of dimension n \\\hline $477; 11. \\ \text{Replace:} \\ PF_n \\\hline $by: \\ \hline PF_{n-1} \\\hline $477; 11. \\ \text{Replace:} \\ i \\\hline $by: \\ \hline i \\\hline $by: \\ \hline i \\\hline $by: \\ \hline i \\\hline $af7; 11. \\ \text{Replace:} \\ i \\\hline $by: \\ \hline $af7; 11. \\ \text{Replace:} \\\hline $corollary 15.13$ \\\hline $by: \\ \hline $Corollary 15.11$ \\\hline $478; -10. \\ \\ \text{Replace:} \\ $Corollary 19.6$ \\\hline $by: \\ \hline $corollary 19.6$ \\\hline $by: \\ \hline $by: \\ \hline $af7; -10. \\$	normal iff $r \ge 4$;
the first line of text ((as on p. 423)) insert: In this chapter all the rings considered are assumed to be Noetherian 476; 2 Replace: R-module by: module over a regular local ring of dimension n 477; 11. Replace: PF_n by: PF_{n-1} 477; 11. Replace: i by: $i \ge 0$ 478; -11. Replace: Corollary 15.13 by: Corollary 15.11 478; -10. Replace: Corollary 19.6 by:	473.
insert: In this chapter all the rings considered are assumed to be Noetherian 476; 2 Replace: R-module by: module over a regular local ring of dimension n 477; 11. Replace: PF_n by: PF_{n-1} 477; 11. Replace: i by: $i \ge 0$ 478; -11. Replace: Corollary 15.13 by: Corollary 15.13 by: Corollary 15.11 478; -10. Replace: Corollary 19.6 by:	Before
$\begin{tabular}{ c c c c c c } \hline In this chapter all the rings considered are assumed to be Noetherian $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	the first line of text ((as on p. 423))
$\begin{tabular}{ c c c c c }\hline & & & & & & & & & & & & & & & & & & &$	insert:
Replace: R -moduleby:module over a regular local ring of dimension n $477; 11.$ Replace: PF_n by: $\frac{PF_{n-1}}{477; 11.}$ Replace: i by: $\frac{i \ge 0}{478; -11.}$ Replace:Corollary 15.13by:Corollary 15.11 $478; -10.$ Replace:Corollary 19.6by:	In this chapter all the rings considered are assumed to be Noetherian
$\begin{array}{c} R\text{-module} \\ \text{by:} & \\ \hline \text{module over a regular local ring of dimension } n \\ \hline \mathbf{477; 11.} \\ \text{Replace:} & \\ PF_n \\ \hline \mathbf{97; 11.} \\ \text{Replace:} & \\ i \\ \text{by:} & \\ \hline \mathbf{477; 11.} \\ \text{Replace:} & \\ i \\ \text{by:} & \\ \hline \mathbf{478; -11.} \\ \text{Replace:} & \\ \text{Corollary 15.13} \\ \text{by:} & \\ \hline \text{Corollary 15.11} \\ \hline \mathbf{478; -10.} \\ \text{Replace:} & \\ \text{Corollary 19.6} \\ \text{by:} & \\ \end{array}$	476; 2
by: module over a regular local ring of dimension n 477; 11. Replace: PF_n by: PF_{n-1} 477; 11. Replace: i by: $i \ge 0$ 478; -11. Replace: Corollary 15.13 by: Corollary 15.13 by: Corollary 15.11 478; -10. Replace: Corollary 19.6	Replace:
$\begin{tabular}{ c c c c c } \hline module over a regular local ring of dimension n \\ \hline 477; 11. \\ Replace: PF_{n-1} \\ \hline 477; 11. \\ Replace: i \\ \hline i \\ by: i ≥ 0 \\ \hline $478; -11. \\ Replace: $Corollary 15.13$ \\ by: $Corollary 15.13$ \\ by: $Corollary 15.11$ \\ \hline $478; -10. \\ Replace: $Corollary 19.6$ \\ by: $Corollary$	$R ext{-module}$
$\begin{tabular}{ c c c c c } \hline module over a regular local ring of dimension n \\ \hline 477; 11. \\ Replace: PF_{n-1} \\ \hline 477; 11. \\ Replace: i \\ \hline i \\ by: i ≥ 0 \\ \hline $478; -11. \\ Replace: $Corollary 15.13$ \\ by: $Corollary 15.13$ \\ by: $Corollary 15.11$ \\ \hline $478; -10. \\ Replace: $Corollary 19.6$ \\ by: $Corollary$	by:
$\begin{tabular}{ c c c c c }\hline & & & & & & & & & & & & & & & & & & &$	module over a regular local ring of dimension n
Replace: PF_n by: PF_{n-1} 477; 11. Replace: i by: $i \ge 0$ $478; -11.$ Replace: Corollary 15.13 by: $Corollary 15.11$ 478; -10. Replace: Corollary 19.6 $Corollary 19.6$	
$\begin{array}{c} PF_n \\ \\ \text{by:} \\ \hline PF_{n-1} \\ \hline 477; 11. \\ \\ \text{Replace:} \\ i \\ \\ \text{by:} \\ \hline i \geq 0 \\ \hline 478; -11. \\ \\ \\ \text{Replace:} \\ \\ \text{Corollary 15.13} \\ \\ \text{by:} \\ \hline \\ \frac{\text{Corollary 15.11}}{478; -10. \\ \\ \\ \\ \\ \text{Replace:} \\ \\ \\ \\ \text{Corollary 19.6} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
by: $\begin{array}{c} PF_{n-1} \\ \hline 477; 11. \\ \hline Replace: & & \\ i \\ \hline by: & & \\ \hline i \geq 0 \\ \hline 478; -11. \\ \hline Replace: & \\ \hline Corollary 15.13 \\ \hline by: & & \\ \hline Corollary 15.11 \\ \hline 478; -10. \\ \hline Replace: & \\ \hline Corollary 19.6 \\ \hline by: & & \\ \end{array}$	PF_n
$\begin{array}{c} PF_{n-1} \\ \hline \mbox{477; 11.} \\ \mbox{Replace:} & & \\ i \\ \mbox{by:} & \\ \hline \mbox{i } \geq 0 \\ \hline \mbox{478; -11.} \\ \mbox{Replace:} \\ \mbox{Corollary 15.13} \\ \mbox{by:} \\ \hline \mbox{Corollary 15.11} \\ \hline \mbox{478; -10.} \\ \mbox{Replace:} \\ \mbox{Corollary 19.6} \\ \mbox{by:} \\ \end{array}$	
477; 11. Replace: i by: $i \ge 0$ 478; -11. Replace: Corollary 15.13 by: Corollary 15.11 478; -10. Replace: Corollary 19.6 by:	
Replace: i by: $i \ge 0$ 478; -11.Replace:Corollary 15.13by:Corollary 15.11478; -10.Replace:Corollary 19.6by:	
i by: $i \ge 0$ 478; -11. Replace: Corollary 15.13 by: Corollary 15.11 478; -10. Replace: Corollary 19.6	
by: $i \ge 0$ 478; -11. Replace: Corollary 15.13 by: Corollary 15.11 478; -10. Replace: Corollary 19.6 by:	
$\frac{i \ge 0}{478; -11.}$ Replace: Corollary 15.13 by: Corollary 15.11 478; -10. Replace: Corollary 19.6 by:	
478; -11. Replace: Corollary 15.13 by: Corollary 15.11 478; -10. Replace: Corollary 19.6 by:	
Replace: Corollary 15.13 by: Corollary 15.11 478; -10. Replace: Corollary 19.6 by:	
Corollary 15.13 by: Corollary 15.11 478; -10. Replace: Corollary 19.6 by:	
by: <u>Corollary 15.11</u> 478; -10. Replace: Corollary 19.6 by:	-
Corollary 15.11 478; -10. Replace: Corollary 19.6 by:	
478; -10. Replace: Corollary 19.6 by:	
Replace: Corollary 19.6 by:	
Corollary 19.6 by:	
by:	
Corollary 19.7	
	Corollary 19.7

484; -98.
464; -9 – -8. Replace:
It turnsremark.
by:
We begin with a simple observation:
487; 13. Delete:
((the end of proof symbol at the end of the line))
487; -6.
467; -0. Replace:
R_P
by:
$R[x^{-1}]_P$
487; -1.
Insert:
((an end of proof symbol at the end of the line))
490; -18.
Replace:
$\dim_k(M_d)$
by:
$\dim_k(M_d)t^d$
492;3.
Before
the homogeneous
insert:
which is
492; -7.
Replace:
polynomial
by:
family of polynomials $c_t(M)$
492; -4.
Delete:
Chern and
492; -51.
Replace:

Replace:

((the whole last paragraph))

by:

Knowing the Hilbert polynomial of a module M is equivalent to knowing the Chern polynomial $c_t(M) = 1 + c_1(M)t + c_2(M)t^2 + \dots$ mod t^{n+1} and the rank of M. We sketch this equivalence: The Hirzebruch-Riemann-Roch formula allows one to deduce the Hilbert polynomial from the Chern classes and the rank as follows: First form the *Chern character*, which is a power series of the form $\operatorname{rank}(M) + c_1(M)t + \frac{1}{2}(c_1(M)^2 - 2c_2(M))t^2 + \dots$ mod t^{n+1} . The Hilbert polynomial $P_M(d)$ is equal, for large d, to the coefficient of t^n in the expression

$$e^{nt} \left(\frac{t}{1 - e^{-t}}\right) ch(M).$$

See Hartshorne [1977] Appendix A4, or Fulton [1984], especially chapter 15. Conversely, to compute the Chern polynomial from the Hilbert polynomial, consider first the special case $M = S_j := S/(x_1, \ldots, x_j)$. From the Koszul complex resolving M and properties i and ii above we see

$$c_t(S_j) = \frac{\prod_{i \text{ even}} (1-it)^{\binom{n-j}{i}}}{\prod_{i \text{ odd}} (1-it)^{\binom{n-j}{i}}} \mod t^{n+1}.$$

Now any Hilbert polynomial can be written (uniquely) in the form $P_M = \sum_{j\geq 0} a_j P_{S_j}$. It follows that the Chern polynomial of M is $c_t(M) = \prod_{j\geq 0} a_j c_t(S_j)$. Of course the rank of M is a_0 , completing the argument.

493. Before the first line of text ((as on p. 423)) insert: In this chapter all the rings considered are assumed to be Noetherian 497; -15. Delete: ((the end of proof symbol at the end of the line)) 497; -4. Replace: $I_j\varphi = I_{j+p}\varphi$ by: $I_j \varphi = I_{j+p} \psi$ **502; -3.** Delete: ((the end of proof symbol at the end of the line)) 506; -14. After is exact, insert: F_2 is free, 506; -10. Replace: $I(\varphi_2)$ by: $I_{n-1}(\varphi_2)$ **510; -7.** Replace: $\operatorname{Ext}^{j}(M,R)_{n}$ by: Ext $^{j}(M,S)_{n}$ 521; -12. Replace: ((the entire line)) by: $\operatorname{Ext}^{j}(M,S)_{k} = 0$ for all $j \leq n-1$ and k = -m - j - 1.

529; 14.

Replace:

By Proposition 9.2

By Proposition 9.2
by:
By hypothesis
529; -19.
Before
whose
insert:
arphi
530; 1.
After
Zariski
insert:
Gorenstein rings were defined—in exactly the way done in this book!—in the artinian and graded case by Macaulay in his last paper [1934] (his definition in the affine case differs slightly from the modern one).
530; 7.
After
attests.
insert:
There is also a well-developed noncommutative theory (Frobenius and quasi-Frobenius rings.)
530; -11.
Replace:
Proposition 21.2
by:
Corollary 21.3
531; 4.
After
x_i
insert:
and x_i^{-1}
531; 5.
Replace:
the S-module T
by:
T with a sub-S-module of $K(S)/L$
531; 10. After
generated incent.
insert:
<u>nonzero</u> 531; -14.
Replace:
:=
by:
=

531; -10.
After
any
insert:
nonzero finitely generated
531; -2.
After
).
insert:
(Proof: One checks by linear algebra that these elements generate the part of the annihilator in degrees
≤ 2 , even as a vector space. These elements generate all forms of degree ≥ 3 .)
532; 11.
After
$x \in A$
insert:
that is also a nonzerodivisor on ω_A
532; -18.
Replace:
21.4d
by:
21.5d
533; -8.
After
condition.
insert:
Note that c implies that the annihilator of W is 0, just as in the special case of Prop. 21.3
533; -3.
Replace:
••
by:
. ((after the Proposition number))
539; 14.
Replace:
x
by:
$x \in R$
543; -17.
Replace:
M/xM
by:
544; 13.
Replace:
x_0, x_1
by:
x_1, x_2

E 4 4. 10
544; 18. Replace:
Enzykolpädie
by:
Enzyklopädie
547; -6.
Replace:
A^n
by:
A^{n+1}
549; -7.
After
such that
insert:
x is a nonzerodivisor on W and
550; first line of Exercise 21.1
After
$y^n)$
insert:
$, n \geq 2$
550; -5.
Replace:
ω_R
by:
R
551; 1.
After
and
insert:
, with the notation introduced just after Proposition 21.5,
551; first two displays.
Replace:
\sum
$\sum_{i_1,,i_r}$
by:
\sum
$\sum_{i_1,,i_r\geq 0}$
((two occurences))
<u>554; -1.</u>
Delete:
((this entire line))
··· //

556; -7.

Replace:

degree

by:

deg ((two occurences))

559; 6.

Replace:

 x_1

by:

 x_0 559; 13.

Replace:

 $\sum d_i - r$

by:

 $\sum d_i - r - 1$

575; 8–12 and 13–19.

((These two paragraphs are both definitions, and should be set in italics, with a skip below the paragraph, just as with the first paragraph on this page.))

581; 13.		
Before		
module		
insert:		
of rank n		
581; 15.		
Replace:		
λ^d		
by:		
λ^{n-d}		
609; -20.		
Replace:		
corollary		
by:		
theorem		
609; -7.		
Replace:		
Corollary		
by:		
Theorem		
623; 10.		
Replace:		
a variety		
by:		
an affine variety		

630; -17.
Replace:
both E
by:
both E'
630; -4.
Replace:
b.*
by:
b.
631; 1.
Replace:
с.
by:
<u> </u>
645; -9. Delete:
$0 \rightarrow$
<u> </u>
Replace:
$E^1(A,B)$
by:
$E^1_R(A,B)$
652; -15.
Replace:
$0: \ 0 \to A \to A \oplus B \to B \to 0$
by:
$0: \ 0 \to B \to A \oplus B \to A \to 0$
653; 10.
Replace:
A.
by:
654; -9. Replace:
A, B
by:
B, A
<u> </u>
Replace:
A, B
by:
B, A

654; -6.
Replace:
A,B
by:
B, A
654; -6.
Replace:
an injective
by:
a projective
654; -5. Replace:
a projective
by:
an injective
655; 5.
Replace:
A
by:
C
655; 7.
Replace:
C
by:
A
655; 10.
Replace:
C
by:
655; 10.
Replace:
A
by:
C
<u> </u>
Replace:
$F \to G$
by:
$\frac{G \rightarrow F}{\mathbf{669; 3,4.}}$
Replace:
F
by:
A ((three occurences))

669; 5.
Delete:
\bar{F}
669; 8.
Replace:
F
by:
A
669; 10.
Replace:
F
by:
A ((two occurences))
671; -3.
Replace:
We consider
by:
Let $A = \bigoplus_{p \in \mathbb{Z}} G^p$, and let $\alpha : A \to A$ be the map defined by the inclusions $G^{p+1} \subset G^p$. We consider
671; -2.
Replace:
H(G)
by:
H(A)
671; -2.
Replace:
$H(G/\alpha G)$
by:
H(A/lpha A)
672; Figure A3.29.
Replace:
G
by:
A ((four occurences))
672; -9.
Replace:
horizontal
by:
vertical
674; 9.
After
$G^q)^p$
insert:
$= \oplus_{i+j=q,j\geq p} F^{i,j}$

674; 10. After
then in
insert:
$(G^{q+1})^{p+r}$
674; 11.
((delete the display, and close up))
688; 11.
Replace:
$G \circ P \to LF \circ P \to F$
by:
$\frac{G \circ P \to LF \circ P \to P \circ KF}{\mathbf{694; -10.}}$
Replace:
<i>R</i> -module
by:
S-module
694; -9.
Replace:
R
by:
S
$\frac{S}{694; -8. \text{Replace two occurrences of } R \text{ by } S. \text{ That is,}}$
Replace:
$\operatorname{Hom}_{R}(, E(R/P))$
by: $\Gamma(\mathcal{L}(\mathcal{D}))$
$\operatorname{Hom}_{S}(, E(S/P))$
697; 5.
Replace:
collections
by:
collection
728; -9.
Delete:
(by Lemma 3.3)
728; -9.
Replace:
$\in R_i$
by:
$\in R$
743; 16.
Replace:
b.
by:
С.

746; 13–17.

Replace:

((the complete text of the hint for Exercise 20.20 by))

by:

It follows from local duality that if $S = k[x_0, \ldots, x_n]$ is the homogeneous coordinate ring of \mathbf{P}^n , then

$$H^{j}(\mathbf{P}^{n};\mathcal{F}(m-j))^{\vee} \cong \operatorname{Ext}^{n-j}(M,S)_{-n-1-(m-j)}$$

for all j. This gives a. If M has depth ≥ 2 we have $\operatorname{Ext}^{n-j}(M, S) = 0$ for $j \leq 0$ and statement b becomes a direct translation of Proposition 20.16 and Theorem 20.17.

746; -1.

((The dots in the right part of the diagram should run from SE to NW and should connect the two pieces of this part of the diagram, in analogy with what happens in the left part of the diagram.))

$747;\,15.$

Replace:

Theorem 18.4

by:

Proposition 18.4

747; 18.

Replace:

((The displayed sequence))

by:

751; -19.
Replace:
b.
by:
C.
751; -14 $-$ -11.
Replace:
For this value Q is injective ((three sentences))

by:

The map α thus factors through the projection $I \to I/P^d I$, so by Artin-Rees it factors through the projection $I \to I/(P^e \cap I) \subset R/P^e$ for large e. Since $Q^{(e)}$ is injective over R/P^e , we can extend this to a map $R/P^e \to Q^{(e)}$, and thus to a map $R \to Q$, proving that Q is injective.

758; 5.

Replace: Théorèmes by: <u>Théorèmes</u> **758; -19 – -18.** Replace: ((italics)) by: ((roman))

758; -18.

Replace:

Preprint.

by:

Inst. Hautes Études Sci. Publ. Math. 86 (1997) 67–114.

759; 9–13.

Replace:

entire reference

by:

Bayer, D., and M. Stillman (1982-1990) Macaulay: A system for computation in algebraic geometry and commutative algebra. Source and object code available for many computer platforms. See http://www.math.uiuc.edu/Macaulay2/ for a pointer to this and to the successor program Macaulay2 by D. Grayson and M. Stillman.

759; 22.	
Replace:	
$Alg\acute{e}bre$	
by:	
$Alg \grave{e} bre$	
759; 28.	
Replace:	
Algèbre	
by:	
$Alg \grave{e} bre$	
759; -15.	
Insert:	
93 (1994) 211–229. ((at end of line))	
760; 6.	

/0\ T

Insert:

((as new reference)) Buchsbaum, D. A. (1969). Lectures on regular local rings. In *Category theory, homology theory and their applications, I.* Battelle Inst. Conf., Seattle, Washington., 1968, Vol. 1, 13–22. Springer Lect. Notes in Math. 86

	760; -8.
Repl	ace:
	1944
by:	
	1943
	761; -9.
Repl	ace:
	Schopf
by:	
	Schöpf
	762; 6.
Repl	ace:
	in the
by:	
	is the

769. 19 19
762; -13 – -12. Replace:
(in press).
by:
Duke Math. J. 84 (1995) 1–45.
763; -1814.
Replace:
the whole Gelfand-Manin reference
by:
Gelfand, S. and Y. I. Manin (1989–1996). <i>Methods of homological algebra</i> . Springer-Verlag, Berlin, 1996. English translation of the 1989 Russian original.
764; 24.
Replace:
Les foncteurs continu ((the whole title))
by:
Catégories dérivées et foncteurs dérivés
764; -14.
Replace:
point
by: points
766; 1.
Replace:
Der Frage
by:
Die Frage
766; 15.
Replace:
((boldface type))
by:
((roman))
767; -15.
Replace:
Time
by:
Times 767; -12.
Replace:
van
by:
von
768; 11.
Replace:
Birkhauser
by:
Birkhäuser

7 Insert	69 Insert as a new referece.
	Iacaulay, F.S. Modern algebra and polynomial ideals, <i>Proc. Cam. Phil. Soc.</i> 30, pp. 27–64.
	70; -14.
Repla	
	an
oy:	
	on
	70; -12
Repla	
ir	n press
oy:	
	996
	71; 7.
Repla	
R	abinowitch
oy:	
R	Rabinowitsch
7	72; -12.
Repla	ce:
В	Bemerking
oy:	
В	Bemerkung
7	72; -12.
Repla	ce:
Va	an
oy:	
v	on
7	73; -18.
Repla	ce:
U	Iber
oy:	
Ü	lber
	73; -16.
Repla	
В	Bezout
oy:	
	3ézout
	73; -2.
Repla	
	ts
oy:	
it	

its

774; 4.
Replace:
1994
by:
1995
774; 5.
Replace:
(preprint)
by:
J. Algebraic Combin. 4 (1995) 253–269.
775; -16 – -15, second column.
Insert:
$\kappa(P)$, residue field, 60
776; -0, second column.
Insert:
E(M), injective envelope, 628
785; 20, second column.
Replace:
18
by:
17
789; 10, second column.
Replace:
Kozul
by:
Koszul
790; 8 of second column.
After
M-sequence,
insert:
243,248,423ff,
793; -17 of first column.
Replace:
167
by:
308,316