ERRATA FOR THE PRACTICE OF ALGEBRAIC CURVES

DAVID EISENBUD AND JOE HARRIS

p. 9, Theorem 0.3: We should have added the hypothesis that $X \cap Y$ is generically smooth.

As stated, this version of Bézout's theorem can fail when the intersection scheme $X \cap Y$ is not generically smooth. For example If X is the union of two 2-planes meeting in a point in \mathbb{P}^4 and Y is a generic 2-plane passing through this point, then the degree of $X \cap Y$ is 3, not 2 as asserted. (This example can be massaged to make X into a variety).

However the generically smooth case implies the correct result deg([X][Y]) = deg(X) deg(Y), where [X][Y] is the product in the Chow ring.

- p. 17 line -11: "it is a" should be "it corresponds to a"
- p. 25, line 16: "the map $C \to \phi(C)$ is finite". Correct, but we should have mentioned "quasifinite & projective implies finite" in the prerequisites section.
- p. 30, line 4: \div prints as the sign for dividing one number by another. Should print as Div .
 - p. 31, line -3: after the summation sign, dx_1 should be dx_0
 - p. 36, line -3: $(\mathcal{O}_{\mathbb{P}^1}, W)$ - $(\mathcal{O}_{\mathbb{P}^1}(d), W)$
 - p. 49: line -4, formula for p_a : K_X should be K_S
 - p. 50, Theorem 2.8: Delete the +1 at the end of the formula.
- p. 53, This is not correct. The correct version is given in exercise 2.14. Delete exercise 2.2 (2).
- p. 61, line -1,-2: delete the (incorrect) phrase beginning ", so Γ imposes...
 - p. 65, line -9: $H^0_*(I_C/Q)$ should be $H^0_*(\mathcal{I}_C/Q)$
 - p. 65, line -5 : I_C/Q should be \mathcal{I}_C/Q
- p.72: "sum of $\operatorname{Sym}^{e_i} V$ ". It would be better to say "a sum of representations $\operatorname{Sym}^d V$ for various d (the symbols e_i were used for the basis of V).
 - p. 78, line 17: "normal sheaf" -; "conormal sheaf"
 - p. 78, line -10: "is a globally on C" -; "is a global section of ω_C ."
- p. 82, part (2) of the proof of Corollary 4.8. Replace this paragraph (which is nonsense) by:
- (2) In this case a divisor Γ in the series \mathcal{V} fails by 2 to impose independent conditions on forms of degree d-3. It follows that if we subtract a point from Γ the resulting divisor Γ' fails by at least one to impose independent conditions on forms of degree d-3. Thus Γ has degree at least d, and by

- part (1), Γ' is contained in a line. Repeating this argument with another point of Γ , we see that Γ must be the intersection of C with a line; that is, \mathcal{V} is the series $|\mathcal{O}_C(1)|$.
- p. 83, paragraph beginning on line -7. This is nonsense. Here is a characteristic 0 argument: We may assume n¿1. If the map p-¿ np were not surjective, it would be constant; equivalently, np nq for every pair of points p,q. But then every point would be a ramification point of the map corresponding to the complete series —np—, so this map would be inseparable.
 - p. 90: The result of Exercise 4.1 is the same as Corollary 4.8.
 - p. 90: Exercise 4.3. the x_0^2 is multiplying the wrong side of the equation.
- p. 91: The statement of the Sylvester Gallai theorem should be: In any finite set $\Gamma \subset \mathbb{P}^2_{\mathcal{R}}$ not contained in a line there is a line containing just 2 points of Γ .
- p. 97, last sentence of 2nd para of 5.6: " $\operatorname{Pic}_d(C)$ is a for $\operatorname{Pic}_0(C)$ should say " $\operatorname{Pic}_d(C)$ is a torsor for $\operatorname{Pic}_0(C)$, which means that if \mathcal{L}_0 is an invertible sheaf of degree d on C, then the map $\operatorname{Pic}_0(C) \to \operatorname{Pic}_d(C)$ sending $\mathcal{L}to\mathcal{L} \otimes \mathcal{L}_0$ is an isomorphism."
- p. 104, line -15: end of line, should be ≥ 4 . Better argument for this para: If D is a special divisor , then |D| is a subseries of the canonical series, which itself is not very ample.

Theorem 10.1: n should be r.

- p. 106, third line before subsection 5.8: Should be $\omega_C \otimes \mathcal{L}'^{-1}$, where \mathcal{L}' has degree 1
- p. 107: Lemma 5.17: change \mathbb{P}^r to \mathbb{P}^n to avoid the conflict of notation between that r and the superscript on Σ_d^r .
- p. 107, next to last sentence before the Proof of Martens Theorem: Should say: we see that $\Sigma_d^{r-1} \setminus \Sigma_d^{r-1}$ is dense in Σ_d^{r-1} .
 - p. 107 line -7 Marten's should be Martens'
- p. 108 Exc 5.2: This is the wrong defn of "freely". Should be: gx = x only when g is the identity.
 - p. 108 Exc 5.3.2 : A^2 should be A.².
 - p. 142, line 4: m should be m_0 .
- p. 143, Example 7.14: the wording is confusing. Better: In the Grassmannian of lines $\mathbb{G}(1,3)$, the Plücker coordinates of the line L that is the span of the points q,r are the 2×2 minors of the matrix..."
- p. 187: The proof given for the case of equality in Castelnuovo's theorem is not correct: the top line of the first displayed diagram is NOT left exact.
- To fix it, redraw the diagram, eliminating the top row, and replacing m by k.

Let a_k denote the right-hand map in the middle row of the diagram, and let b_k denote the right hand map in the bottom row of the diagram. Equality in Castelnuovo's theorem implies that for all k the rank of a_k , which is the

number of conditions imposed on V_k by Γ , is equal to the rank of b, which is the number of conditions imposed on $H^0(\mathcal{O}_C(k))$ by Γ

Since the bottom row of the diagram is left exact, the rank of b is $h^0(\mathcal{O}_C(k)) - h^0(\mathcal{O}_C(k-1))$. Since V_{k-1} is contained in the kernel of a, the rank of a is $\leq \dim V_k - \dim V_{k-1}$, whence

$$\dim V_k - \dim V_{k-1} \ge h^0(\mathcal{O}_C(k)) - h^0(\mathcal{O}_C(k-1))$$

for every k. The rest of the proof can be taken starting with "For large m the restriction map..."

- p. 201: last para before 11.3. can intersect... should be cannot intersect....
- p. 202: We are rather cavalier about the fiber product, and this can be confusing.
- p. 203, statement of Thm 11. delete first half of 2nd line (it's a broken, repeated phrase).

Remark 12.6 (p. 213): the Catalan number is one off; it should be $\binom{2d-2}{d-1}/d-1$

- p. 212: Cor 12.5. Hypothesis should be $r \ge 1$.
- p. 213: $C_{d-1} = {2d-2 \choose d-1}/d$ is the correct number.

page 224, between the first two displayed equations: "and the on C to be" presumably should be "and the *ramification divisor* on C to be"

page 242, line 7: "an" should be "on"

page 242, last displayed equation: d + 1 should be d

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT BERKELEY, BERKELEY, CA 94720, USA

Email address: de@msri.org

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE MA 02138 *Email address*: harris@math.harvard.edu